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Abstract

High-throughput sequencing can be used to measure changes in tumor composition across space 

and time. Specifically, comparisons of pre- and post-treatment samples can reveal the underlying 

clonal dynamics and resistance mechanisms. Here, we discuss evidence for distinct modes of 

tumor evolution and their implications for therapeutic strategies. Additionally, we consider the 

utility of spatial tissue sampling schemes, single cell analysis, and circulating tumor DNA to track 

tumor evolution and the emergence of resistance, as well as approaches that seek to forestall 

resistance by targeting tumor evolution. Ultimately, characterization of the (epi)genomic, 

transcriptomic, and phenotypic changes that occur during tumor progression, coupled with 

computational and mathematical modeling of tumor evolutionary dynamics may inform 

personalized treatment strategies.
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Missing the target by focusing on targeted approaches alone

The past two decades have brought about a bevy of targeted cancer therapies, including 

monoclonal antibodies and small molecules, that block immune checkpoints, interfere with 

cancer signaling pathways [1], or affect specific genetic vulnerabilities in tumors (e.g. PARP 

inhibitors [2]). The decision to treat with targeted therapy is typically based on the presence 

of a biomarker (such as a gene mutation or amplification) in a single tumor specimen. For 

certain cancers, targeted therapies have revolutionized patient care. Imatinib yields five-year 

survival rates of 95% for patients with chronic myeloid leukemia (CML) [3]. Unfortunately, 

for many solid tumors, response to targeted therapies is often 50% or lower [4]. Resistance 

to treatment can be classified as primary, describing patients who exhibit no response to 

treatment at all, or secondary, describing patients who initially respond to treatment, but later 
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develop resistance, as the cells that are sensitive to treatment die and the resistant cell 

population continues to grow. As an example of secondary resistance, in BRAF mutant 

(V600E) melanoma, treatment with the tyrosine kinase inhibitor vemurafenib yields 

dramatic initial responses, but most patients eventually relapse with drug-resistant, deadly 

disease [5]. Similarly, HER2 amplified and/or over-expressing breast cancer tumors treated 

with the HER2-targeted monoclonal antibody trastuzumab also commonly exhibit resistance 

[6] and many patients who initially respond subsequently exhibit disease progression [7]. In 

colorectal cancer patients with EGFR-mutant, wild type-KRAS tumors, treatment with 

cetuximab yields a dismal objective tumor response rate of less than 15% [8], indicating that 

many tumors do not respond to treatment and hence, had primary resistance. Efforts to 

understand the complex mechanisms of resistance in pre-clinical models [9] and via tissue 

correlative studies highlight the many paths to resistance [10–13], which may not be fully 

elucidated by traditional, single-sample diagnostic tissue analysis.

The role of intratumor heterogeneity and non-genetic factors in resistance 

to targeted therapy

There is growing evidence that (epi)genetic and phenotypic heterogeneity within a tumor 

(intratumor heterogeneity, ITH, see glossary) contributes to resistance [14]. High ITH is 

associated with poor prognosis in head and neck cancer [15], lung cancer [16], ovarian 

cancer [17], and in pan-cancer analyses [18]. High ITH implies that the tumor is more likely 

to harbor a rare pre-existing resistant subclone and increases the likelihood that only a 

subset of tumor cells has the specific molecular aberration targeted by the therapy. Treatment 

targeting subclonal driver mutations has been associated with resistance and recurrence in 

CML [19] and multiple myeloma [20]. Similarly, treatments targeting subclonal copy 

number gains (versus clonal high-level gains) yielded suboptimal clinical benefit in gastric 

cancer patients treated with an FGFR inhibitor [21]. A better understanding of genetic ITH 

may explain why some patients who express specific molecular markers (at least in a single 

diagnostic sample) exhibit poor responses. There is a critical need to understand resistance 

as it arises in heterogeneous tumors and develop strategies to circumvent it.

Genetic heterogeneity provides a rich substrate for the emergence of resistance under 

treatment selective pressures, but it is not the only factor. While most targeted therapies are 

directed towards genetic alterations, epigenetic and microenvironmental causes of resistance 

are gaining greater recognition. Such epigenetic alterations can arise on relatively fast time 

scales due to varied microenvironmental influences resulting in heterogeneous gene 

expression patterns. This rapid change in gene expression can cause secondary resistance 

and will confound treatment decisions that are based solely on genotype [22]. For example, 

in melanoma cells, transcription-level variability, in the absence of corresponding genetic 

alterations, has been shown to cause resistance. Rare, synchronous, high-level transcription 

of multiple resistance markers combined with drug-induced epigenetic reprogramming 
led to preservation of the resistance-inducing transcriptional state [23]. Similarly, in NSCLC 

treated with anti-PD-1 checkpoint inhibitors, epigenetic upregulation of alternative immune 

checkpoints led to resistance [24], providing further evidence for non-genetic mechanisms of 

resistance. The surrounding tumor microenvironment is also known to play a role in cancer 
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resistance, by protecting cancer cells from the full effects of infiltrating drugs. This limits 

cancer cell death and can lead to secondary resistance as the longer-surviving cancer cells 

continue to evolve under altered selective pressures [4]. In addition to providing a physical 

barrier, the surrounding tumor microenvironment may also release paracrine signaling 

factors that can alter tumor cell survival. In a murine model of Burkitt’s lymphoma, 

interleukin-6 and metalloproteinase 1 from the surrounding microenvironment affected cell 

survival following chemotherapy treatment [25]. While their presence and role are still 

somewhat debated, cancer stem cells, which are innately resistant to many treatments, are 

another potential cause of poor treatment response [4].

Towards a broader target

Comparing a tumor to a forest, current treatment approaches focus on individual trees 

(targetable genetic alterations present in a single sample). To combat resistance, an aerial 

view of the entire forest (tumor cells and their ecosystem/microenvironment) is beneficial — 

ideally with repeated longitudinal measurements to capture adaptive evolution. A spatially- 

and temporally-resolved characterization of tumor evolution (Figure 1) would include 

measurements of somatic alterations, as well as transcriptional and proteomic changes, using 

techniques that preserve tissue architecture. Changes in the tumor epigenetic landscape 

(DNA methylation and chromatin accessibility [26]) are also useful to trace. Although 

spatial profiling techniques are in their relative infancy, methods for in situ gene expression 

profiling such as MERFISH [27] and FISSEQ [28] have been used in developmental 

biology studies with extension to cancer. Additionally, a MasSpecPen has recently been 

developed and allows for nondestructive mass spectrometry analysis of ex vivo and in vivo 

cancer tissue [29]. Techniques such as MIBI [30] enable multiplexed proteomic analysis of 

formalin-fixed paraffin embedded archival tumor tissues. A multiscale, spatially and 

longitudinally resolved view of tumor progression will allow for a more complete 

understanding of the molecular and evolutionary determinants of resistance. Moreover, 

analysis of the resultant measurements within an ecological and evolutionary grounded 

framework may inform principled therapeutic strategies [31]. Previously, spatial statistics 

developed by ecologists have been used for the analysis of spatially resolved pathologic 

samples with phenotypic (cell type) information. The ecological statistics can be used to 

identify patterns of interactions that occur among cancer cells and their microenvironment 

(at the resolution of cell type) [32]. Such statistics can be similarly applied to genomic and 

proteomic data to delineate heterogeneity and interactions of resistant cell populations as 

they develop over time.

Unwanted tumor evolution breeds resistance

The theory of clonal evolution described by Peter Nowell over 40 years ago by has been 

foundational for understanding tumor initiation and progression [33]. The clonal evolution 

model posits that after transformation of a single founding neoplastic cell, tumors evolve 

through an iterative and dynamic process as they continuously accumulate somatic 

mutations, some of which confer selective growth advantages. In the classic linear 

progression model, stringent positive selection for phenotypic traits results in selective 
sweeps throughout the course of tumor progression (see [34, 35] for recent reviews). An 
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implication of ongoing selection is that multiple subclonal drivers may need to be targeted in 

addition to clonal alterations in order to achieve effective disease control.

In recent years, other tumor progression models have been proposed, including effectively 

neutral evolution and punctuated evolution. Under the Big Bang model of colorectal tumor 

growth, after malignant transformation, the tumor grows as a single (terminal) expansion 

composed of effectively equally fit clones [36], compatible with effectively neutral 

evolution. In this model, the timing of a mutation is the fundamental determinant of its 

frequency in the final tumor, rather than stringent selection for additional driver mutations. 

Subsequent work has corroborated neutral evolution in other solid tumors [37–39], 

suggesting that it may be relatively common. Importantly, under neutral evolution early 

clonal alterations (present in all tumor cells) correspond to the key drivers of progression 

and may therefore represent ideal therapeutic targets. However, the many subclones that 

subsequently diversify provide a potentially rich substrate for the emergence of resistance in 

the context of treatment selective pressure. Punctuated evolution due to mutational bursts or 

cataclysmic genomic rearrangements has also been described in multiple tumor types, 

including breast, prostate and pancreatic cancers [40–42]. The sudden accrual of a multitude 

of genomic changes represents another source of alterations that may contribute to 

resistance.

Irrespective of the mode of evolution in treatment-naive tumors, the application of therapy 

imposes selective pressure, resulting in the expansion of a pre-existing (potentially 

undetectable) resistant subclone. Additionally, when cancer recurs due to treatment failure or 

resistance, it often presents at organ sites beyond the primary tumor [43], suggesting the 

importance of delineating the evolution of metastases in addition to primary tumors. As 

progression of disease and treatment provide an expanding substrate for the selection of 

resistance, early detection of cancer is likely to provide a much more tractable target. Indeed, 

at early time points, surgery and/or radiotherapy without systemic therapy may be effective.

Mathematical and computational modeling of tumor progression and 

resistance

Mathematical modeling of tumor evolutionary processes, including progression, metastasis, 

and treatment, has become increasingly prevalent and provides a powerful tool to elucidate 

complex biological processes when used in tandem with ground-truth experimental or 

clinical data [44]. Several mathematical models describing tumor evolutionary dynamics 

have provided important insights into resistance (see [45] for a comprehensive review). 

These models generally make the simplifying assumption that tumors are composed of well-

mixed cell populations [46]. However, spatial structure is a defining feature of solid tumors 

and can influence tumor dynamics [47] and computational models that account for this may 

be particularly informative and reveal distinct insights. Additionally, local mutational 

geography and ITH can impact clonal dynamics and should be incorporated when 

simulating tumor evolution, although this introduces additional complexity. Several spatial 

computational models of primary tumor growth have been described. While these models 

focus on important aspects of tumor progression such as angiogenesis (including delivery of 

Pogrebniak and Curtis Page 4

Trends Genet. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



chemotherapeutic agents to a tumor) [48] and tumor invasion in context of the surrounding 

microenvironment [49], none explicitly model treatment.

These modeling frameworks can be further strengthened by using parameters derived from 

patient genomic data. For example, a spatial agent-based model was developed to simulate 

the growth of glandular epithelial (e.g. colon) tumors. This model employed statistical 

inference techniques to deduce patient-specific evolutionary parameters using genomic data 

[36]. Additionally, the spatial growth of primary tumors under different evolutionary 

“modes” (ranging from effectively neutral growth to strong selection) was simulated using 

genomic data in conjunction with the simulations. This method was able to classify the 

“modes” of evolution for individual patients by examining patterns of between-region 

genetic divergence [37]. Another spatial tumor model was developed that combines genetic 

evolution with spatial growth and migration to show that resistant subclones are almost 

always present in clinically detectable lesions [50]. Given the stochastic nature of resistance 

and the multiple evolutionary trajectories that can occur during tumor growth, spatial 

computational models informed by patient-derived tumor data can improve understanding of 

the dynamics and mechanisms of resistance. Comparing “virtual” tumors simulated under 

varied conditions can be used to evaluate the evolutionary trajectories and resultant genomic 

patterns for a given patient. Such models may also be used to assess therapeutic strategies 

and to inform study designs prior to in vitro and in vivo pre-clinical testing. In the future, a 

more comprehensive spatial modeling approach that incorporate ecosystem variables such as 

hypoxia, immune infiltration, and stromal cell activation with genomic variables could 

further improve predictions regarding the evolutionary trajectory of the cancer clones.

Tumor sampling strategies

Previous studies have shown that a single tumor sample is unlikely to capture the ITH 

present in the entire tumor cell population [51–53] (Figure 2A). In a study of 100 NSCLC 

cases, over 75% of the tumors had subclonal driver alterations, most of which would have 

appeared clonal in a single biopsy [51]. In a study of glioblastoma, most patients had 

multiple molecular subtypes of disease found in different regions within a single tumor [52]. 

In renal cancer, expression-based profiling of samples from different regions can yield 

drastically different prognoses [53]. These examples motivate approaches that account for 

spatial ITH when characterizing cancer genomic landscapes. When studying the impact of 

therapy using paired pre- and post-treatment samples, regional ITH can be particularly 

confounding as it is difficult to delineate the appearance of a novel treatment-induced clone 

from a clone that was present initially but missed due to inadequate sampling.

Multi-region sampling

Multi-region sequencing (MRS) accounts for tumor spatial heterogeneity by sampling and 

profiling multiple regions from a single tumor specimen (Figure 2B). Compared to a single 

sample, MRS better captures ITH and enables more robust discrimination of clonal versus 

subclonal alterations, which in turn reflect the underlying evolutionary dynamics of the 

tumor. The computational framework developed by Sun et al. exploits MRS data to compute 

genetic divergence between samples in order to distinguish effectively neutral evolution 
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from strong selection. Through simulation studies, they show that sampling additional tumor 

regions affords greater power for distinguishing between different modes of evolution as 

compared to deeper sequencing of fewer regions, with attendant implications for study 

design [37].

MRS can also illuminate functional ITH and potential convergent evolution, as originally 

demonstrated in renal cell carcinoma [53,54]. In a study of multiple synchronous lung 

cancers, MRS showed a high level of genomic heterogeneity (multiple distinct oncogenic 

alterations) between lesions from the same patient. However, these heterogeneous 

aberrations often mapped to a few key signaling pathways [55], suggesting convergent 

evolution and highlighting the utility of MRS to delineate functional ITH.

Single-cell sequencing

Single-cell profiling can characterize tumor heterogeneity at unprecedented resolution. 

Single-cell RNA-seq is becoming mainstream, but requires viable cells, making its 

application to primary human tumor samples relatively limited [56,57]. Throughput and cost 

are other key considerations for broader implementation of single-cell technologies. An 

additional challenge surrounding DNA-based single-cell assays is technical noise, which 

hinders accurate genotyping [58]. Current efforts have largely focused on single-cell copy 

number analyses to characterize clonal evolution [59,40], with notable exceptions that have 

performed clonal genotype inference [60]. Stochastic profiling, a related technique, provides 

an another approach for uncovering single cell molecular programs by identifying co-

regulated, heterogeneously expressed genes within small cellular populations [61]. As 

technological and bioinformatic methods improve, single-cell approaches will increasingly 

be used to characterize tumor evolution, likely in conjunction with bulk or multi-region 

sequencing [62,63].

Liquid biopsies

Since it is often impractical to obtain repeat biopsies to monitor solid tumor progression, 

circulating tumor DNA (ctDNA) is useful for following longitudinal tumor progression. 

Non-invasive liquid biopsies (such as blood or urine) yield ctDNA or circulating tumor cells 

that can be used to characterize ITH and tumor growth dynamics [64] (Figure 2C). Studies 

of diverse tumor types, including breast cancer [64], lung cancer [65,66], and lymphoma 

[67] indicate that ctDNA can capture clonal evolution, although analyses are often restricted 

to small numbers of mutations. Liquid biopsies also provide a potential approach for earlier 

cancer detection [68]. This is particularly appealing since detection at a stage when surgical 

resection is still feasible and treatments are more effective would significantly reduce cancer 

related mortality.

Liquid biopsies can be used to monitor treatment response and the clonal dynamics that lead 

to resistance. In NSCLC, longitudinal ctDNA from urine specimens was used to detect 

changes in the frequency of EGFR activating and resistance mutations [69]. In chronic 

lymphocytic leukemia patients who ultimately progressed following ibrutinib treatment, 

liquid biopsies were used to detect the treatment-associated patterns of clonal evolution. The 

authors showed that the kinetics of resistance depended on the pre-treatment size and 
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relative fitness of the resistant subclone [13]. In AML, ultra-deep amplicon resequencing of 

serial blood samples similarly highlighted the impact of treatment on clonal heterogeneity 

[70]. Thus, liquid biopsies can capture the selective pressures imposed by treatment, track 

the outgrowth of resistant subclones, and may also inform adaptive therapeutic strategies 

that target the tumor’s changing composition.

While ctDNA allows for non-invasive longitudinal sampling, there are limitations to its use 

in monitoring the emergence of resistance. In particular, liquid biopsies do not provide 

spatial information (i.e. organ location, primary tumor versus metastasis) about the variants 

that may cause resistance. It is also unknown whether all tumor types shed ctDNA at a 

similar rate [71]. Thus, while ctDNA represents an important tool to survey the kinetics of 

resistance and minimal residual disease, at present it is most informative when combined 

with tissue profiling.

Exploiting tumor evolution to forestall resistance

Suitable sampling strategies combined with computational models to simulate growth and 

clonal dynamics under therapy will allow for treatment advances and may inform the 

development of therapies that prevent the outgrowth of resistant subclones. Below we 

discuss current treatment strategies that acknowledge the role of tumor evolution in both the 

development and prevention of resistance.

Combination Therapy

Combination therapy, the use of multiple drugs simultaneously, has been used to 

successfully combat resistance in the context of antimicrobials [72] and HIV therapies [73]. 

Since heterogeneous tumors have multiple subclones that may be targeted with distinct 

therapies, combination therapy has been considered in this context in order to prevent the 

outgrowth of resistant subclones (Figure 3A). A mathematical model was used to compare 

combination (simultaneous) versus sequential therapy in solid tumors and it was found that 

combination therapy results in longer-term disease control. It was further noted that 

advanced cancers with greater disease burden often require simultaneous treatment with 

three agents. Even with three drugs, recurrence is inevitable in large tumors if there is the 

possibility of a mutation conferring cross-resistance [46]. By constraining a tumor’s 

evolutionary trajectory and preventing the development of more aggressive, resistant 

subclones, combination therapy can in principle impede the evolution of tumor cells that 

would be resistant to future therapies. While these results are encouraging, they depend on 

the number of potential resistance mutations that exist in the cancer genome, which may 

vary considerably by therapy, tumor type, and across patients. Additionally, mechanisms of 

resistance can extend beyond point mutations to copy number aberrations, epigenetic, 

transcriptional, and proteomic alterations, implying manifold paths to resistance, that are yet 

to be fully recognized.

In complementary work, combination therapy strategies were explored to treat 

heterogeneous tumors by using a computational optimization approach based on random 

sampling of RNAi based perturbations. It was found that optimal drug combinations depend 

on the level of genomic ITH and emphasize the inclusion of drugs with robust effects on all 
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subpopulations rather than superior efficacy in targeting a single clone [74]. For a thorough 

review on considerations for modeling tumor dynamics towards the development of rational 

therapeutic strategies see ref [75]. In practice, combination targeted therapy has shown 

modest success in a clinical trial studying patients with BRAF V600E mutant colorectal 

cancer [76]. Additionally, combination therapy may be limited by the increased toxicity that 

accompanies simultaneous treatments. An additional concern is that without enumerating 

subclones a priori and targeting them, combination therapy may still leave patients 

vulnerable to resistance. Nonetheless, the strategies outlined above provide guiding 

principles for evaluating their efficacy and generalizability in pre-clinical models.

In addition to the simultaneous combination therapy strategies discussed above, treatment 

regimens that use multiple drugs sequentially have also been explored computationally and 

experimentally. Tumor clonal evolution occurs in stages and each stage may have unique 

therapeutic vulnerabilities to be exploited. Resistant cells that develop over the course of 

tumor evolution can be collaterally sensitive to other drugs. Computationally generated 

fitness landscapes can be used to predict secondary resistance to front-line therapy, which 

can then be addressed by administering a second drug sequentially [77]. Experimentally, 

sequential treatment strategies and the role of collateral sensitivity have been explored in 

lung cancer cell lines treated with ALK inhibitors. The authors found that the length of time 

between sequential treatments may impact the evolving patterns of collateral sensitivity and 

cross-resistance [78]. Sequential drug therapy has also been explored as a way to combat 

antibiotic resistance and such studies highlight issues relevant to cancer treatment. As with 

cancer therapy, the mechanisms of resistance to beta-lactam antibiotics are many; in one 

study, even with the sequential use of 2–4 beta-lactam antibiotics, E. coli resistance was 

observed in over 70% of cases [79]. For both simultaneous and sequential combination 

therapy, the number of potential resistance mechanism that need to be targeted is immense 

and makes this task challenging.

Treatments targeting tumor-immune cell interactions

Tumors exist as part of complex ecosystems that contain fibroblasts, endothelial cells, and 

immune cells, in addition to the malignant tumor cells. Tumor evolution and continued 

mutational processes lead to the development of tumor neoantigens (often functional, non-

synonymous mutations) that are recognized by T-cells, activating an anti-tumor immune 

response [80]. Unfortunately, by the time tumors are detectable in the clinic, they have 

evolved mechanisms to evade the immune system, through the downregulation of T-cell 

responses. Cancer immunotherapy capitalizes on the interactions between the tumor and 

surrounding immune cells by targeting the tumor’s evasion mechanisms and reactivating the 

immune system to attack the tumor (Figure 3B). Many of the canonical immunotherapeutic 

agents, such as anti-CTLA-4 therapy and anti-PD-1 therapy, are antibodies that block 

immune checkpoint proteins on the cell surface. These checkpoint proteins are normally 

responsible for inhibiting the immune system response. Hence, antibody-based checkpoint 

blockade results in increased activation of T-cells and a stronger anti-tumor immune 

response [80]. Despite the promise of immunotherapy, durable responses are limited to a 

subset of patients [81,82], with changes in intratumor heterogeneity and evolution of the 

tumor and surrounding microenvironment during immunotherapy treatment [83] being 
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potential reasons for treatment failure. Heterogeneity of neoantigens provides another 

explanation for the observed variability in response to checkpoint blockade immunotherapy 

[80]. A high burden of putative neoantigens (as is seen in melanoma and NSCLC [81, 82]) 

was associated with a stronger anti-tumor cytotoxic T cell response and increased survival in 

a pan-cancer analysis [84]. There is a clear need to understand which patients have 

immunologically “cold” tumors that will never respond or will develop resistance, versus 

patients with tumors can be made immunologically “hot”. Beyond the need for improved 

patient stratification, enthusiasm should be tempered by the potential for severe off-target 

immune toxicity (the generalized activation of the immune system can result in widespread 

autoimmunity [81]). An improved understanding of the co-evolution of the tumor and 

immune microenvironment before and during immunotherapy is needed (potentially using in 
situ spatial profiling techniques, such as MIBI [30] and Nanostring digital spatial profiling 

[85]), and may reveal mechanisms of response and resistance [83,84].

Adaptive Containment Strategies

Adaptive therapy seeks to constrain evolution in tumors with multiple competing subclones, 

some of which are resistant to therapy. A key tenant of adaptive therapy is that resistance to 

treatment comes at a fitness cost. For example, cells with membrane efflux pumps required 

to expel chemotherapeutic agents have an energetic cost to the resistant clone [86]. Under 

adaptive therapy, treatments are given in a pulsatile manner such that the sensitive and 

resistant cell populations grow in the “off” and “on” phases of treatment, respectively 

(Figure 2C). Ideally, both cell populations are maintained and growth is competitively 

constrained by one another, preventing expansion of the resistant subclone(s).

Preclinical studies have provided support for adaptive therapy. Adaptive therapy was shown 

to increase the time to progression 2- to 10-fold in in vitro breast cancer models [87] and 

was also demonstrated to control growth of malignant melanoma xenografts treated with 

pulsatile vemurafenib [5]. While adaptive therapy is yet not widespread in patient care, some 

early successes have been achieved. Four melanoma patients who had developed resistance 

to BRAF inhibitors showed significant clinical response to the same agents after a median 

treatment-free period (drug holiday) of 8 months, although these responses were not lasting 

[88]. In a recent clinical trial of 11 patients with metastatic castrate-resistant prostate cancer, 

adaptive therapy maintained stable oscillations of tumor burdens in 10 patients with reduced 

cumulative drug (less than 50% of standard Abiraterone dosing) [89]. The adaptive therapy 

treatment regimen used in this clinical trial was based on a mathematical model, which 

considered the eco-evolutionary interactions between subclones in the context of 

evolutionary game theory, again highlighting the utility of modeling to guide initial 

hypotheses for testing in vivo. These case studies highlight the importance of understanding 

the evolution of both resistant and sensitive subclones on and off treatment. Adaptive 

therapy requires continual monitoring of disease burden, which is traditionally performed 

via imaging, but could also be profiled using ctDNA to quantify tumor burden and track 

tumor subclones simultaneously.
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Concluding Remarks and Future Perspectives

Tumor progression is inherently an ecological and evolutionary process, which provides a 

valuable and established theoretical basis upon which to study the dynamics of tumor growth 

and resistance. To date, most studies have characterized tumors at a single timepoint (often 

diagnosis or surgery), using bulk or dissociative methods. The resultant data, in turn, 

necessitate the bioinformatic deconvolution of cellular populations [90,91] and the inference 

of dynamics, rather than direct measurements.

Improved spatial and temporal monitoring of tumor evolution has the potential to yield far 

greater resolution on these processes, but has been challenging for practical and 

technological reasons (see Outstanding Questions). Newly developed techniques that 

measure in situ single-cell gene and protein expression at high-throughput will be necessary 

for such efforts. These methods preserve tissue architecture so that cells can be studied in 

context and should facilitate the identification of rare resistant cell populations in lesions 

that are otherwise challenging to characterize using dissociative methods requiring large 

amounts of input material. Moreover, such methods may delineate tumor 

microenvironmental differences between responders and non-responders. Multiplexed 

proteomic approaches, in particular, hold the tantalizing promise of revealing the 

canalization of resistance mechanisms at a signaling level (amidst the vast genomic 

heterogeneity) with accompanying strategic therapeutic implications.

In tandem, patient-derived organoid models [92] and xenografts [93] have been shown to 

preserve the molecular and morphological characteristics of primary patient samples while 

yielding a renewable source of high-quality material. As such, these represent powerful 

platforms for drug screening [93], studying treatment response [94, 95], and improving our 

understanding of the dynamics and mechanisms of resistance. Moreover, they are amenable 

to facile genetic manipulations, lineage tracing, and rapid functional and phenotypic 

readouts. These experimental systems complement tissue correlative studies in primary 

patient samples and when coupled with iterative computational modeling, will contribute to 

a systematic understanding of the evolutionary dynamics and mechanisms of tumor 

progression and therapeutic resistance. A long-range goal of such efforts will be to develop 

strategies to forestall resistance and to predict the future course of disease for individual 

patients.
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Glossary

Cancer Stem Cells
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a small subset set of tumor cells (with stem-cell-like self-renewal properties) that have 

tumorigenic ability; see [4]; cancer stem cells are thought to be resistant to treatment due to 

their quiescent state (providing chemoresistance), and many express multidrug resistance 

transporters, anti-apoptotic proteins, pro-survival signaling molecules [4]

Collateral Sensitivity
in adaptive evolution, a phenomenon where an increase in fitness in one environment (e.g. 

the resistant cells that survive during treatment) leads to fitness changes in other 

environments (e.g. the resistant cells have increased sensitivity to other drugs)

Clone
a set of cells that descend from a common ancestor and thus share genetic features

Driver mutation
a selectively advantageous mutation that confers a fitness (e.g. growth) benefit; in cancer, 

“driver” genes include gain-of-function oncogenes and loss-of-function tumor suppressors 

that ultimately contribute to hallmarks of cancers; while driver mutations can be context 

dependent, canonical drivers have been defined for different cancer types [96]; a variety of 

computational tools exist, but many driver genes are identified based on the over-

representation of damaging mutations or copy number aberrations in the putative driver 

genes

Drug-induced epigenetic reprogramming
drug treatment can cause specific changes in chromatin accessibility (via changes in 

processes such as DNA methylation or DNA histone modifications); these epigenetic 

changes can lead to altered gene expression that can change cell fate and/or characteristics

FISSEQ
fluorescence in situ sequencing; a method for genome-wide RNA expression profiling of 

intact cells and tissues; in this method, spatial tissue architecture is preserved allowing for 

RNA localization studies

Intratumor heterogeneity (ITH)
cellular, genotypic, or phenotypic variation amongst cells within a tumor; genetic variation is 

a necessary substrate for evolution and contributes to fitness differences amongst tumor cells

MERFISH
multiplexed error-robust fluorescence in situ hybridization (FISH); an imaging technique 

that can measure thousands of RNA species in individual cells; a robust combinatorial 

encoding scheme is used for each RNA species of interest; each RNA species is identified 

by successive rounds of hybridization that allow for the detection and correction of readout 

errors

Selection
natural selection operates on phenotypes, resulting in an increased fitness advantage relative 

to the resident population and subsequent outgrowth of clones harboring that trait; thwarting 

selection can impede evolution
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Selective sweep
the selective outgrowth (clonal expansion) of cells such that positively selected clones sweep 

to fixation, thereby replacing the resident population; such complete selective sweeps can 

only occur if there is sufficient time before the acquisition of the next driver mutation

Subclone
a subpopulation of cells that share a common genetic feature that is not present in the rest of 

the population
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Figure 1 (Key Figure). Characterizing the spatio-temporal dynamics and mechanisms of 
resistance
A. Longitudinal sampling can be used to track molecular changes during disease 

progression. In addition to solid tumor samples, liquid biopsies are particularly useful for 

studying temporal evolution. B. Spatial sampling can be used to characterize within and 

between lesion heterogeneity and to define tumor-immune cell interactions, all of which 

play a role in resistance. Single-cell sequencing methods examine heterogeneity at an 

extremely local level. In situ, multiplexed proteomic techniques, such as Nanostring digital 

spatial profiling, allow for the study of the co-evolution of the tumor and immune 

microenvironment during treatment. C. Multi-scale profiling at the genomic, transcriptomic, 

proteomic, and epigenomic levels can provide a complete picture of functional and non-

functional heterogeneity. At the genomic level, tumor tissue can be characterized via the 

mutational landscape and copy number aberrations. ATAC-seq can be used to study 

epigenetic alterations.
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Figure 2. Sampling strategies to infer evolutionary dynamics
For the tumor schematics in A and B, the green background indicates clonal alterations 

present in all tumor cells whereas other colors correspond to subclonal alterations that may 

be undetected due to spatial heterogeneity A. Sequencing of single tumor sample (e.g. 

diagnostic biopsy) illustrates that subclonal alterations and intratumor heterogeneity (ITH) 

may be overlooked. B. Multi-region sequencing (MRS) can better capture ITH and enables 

discovery of clonal versus subclonal alterations, which can, in turn, reveal the underlying 

evolutionary dynamics of the tumor. C. Liquid biopsies allow for ctDNA profiling, which 

provide a tractable method for the longitudinal characterization of clonal dynamics in the 

context of therapy and can be used to monitor the emergence of resistance prior to clinical 

manifestation on imaging.
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Figure 3. Approaches to forestall resistance
A. Tumor schematic comparing the effects of monotherapy and combination therapy. 

Combination therapy treats a tumor with multiple drugs (different colored syringes) at the 

same time. This therapeutic strategy constrains the evolutionary trajectory of the tumor and 

prevents the development of more aggressive clones (orange and green cells marked with red 

stars) that would already be resistant to the second or third-line agents. B. Tumor schematic 

describing treatments targeting tumor-immune cell interactions. Cancer immunotherapy 

leverages the relationship between the tumor and its surrounding microenvironment to 

activate anti-tumor immune cells (eg CD4+ cells, NK cells, and B cells) and downregulate 

pro-tumor immune cells such as Tregs. C. Tumor schematic describing adaptive therapy. 

Adaptive therapy constrains the evolution of tumors with multiple competing subclones, 

some of which are resistant to therapy. In this schema, the blue cells are resistant to the 

treatment while the orange cells are sensitive. Treatment is given in a pulsatile manner such 

that the sensitive and resistant cell populations grow in the “off” and “on” phases of 

treatment, respectively. Ideally, both populations are maintained, but growth of the resistant 

subclone(s) is competitively constrained by neighboring sensitive cells.
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