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Abstract

Applications of multidimensional spatially-selective pulses are sometimes limited by their long 

pulse durations resulting from the need to execute a modulated gradient waveform in concert with 

RF transmission. Here, we introduce a method to design two-dimensional selective adiabatic 

pulses using a Cartesian k-space trajectory. The full pulse can be sampled using various 

undersampled segments to create a multidimensional pulse resilient to large off-resonances. 

Moreover, the pulse can be designed to be resilient to B1
+ inhomogeneity. Experimental 

demonstrations of fully segmented and single-shot k-space sampling patterns are presented.

Graphical abstract

INTRODUCTION:

Two- (2D) and three-dimensional (3D) MRI methods usually employ radiofrequency (RF) 

pulses that are spatially selective in one direction only. Following RF excitation, phase 

encoding in one or more directions is then used to spatially encode the ensuing signal. Since 

this is a Fourier encoding strategy, Nyquist’s criterion must be met, which necessitates using 

a field-of-view (FOV) at least as large as the object in all directions. When a high resolution 

is desired in the phase-encoded direction(s), this condition can lead to lengthy acquisition 
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times. To reduce the acquisition time, a RF pulse that is selective in more than one spatial 

dimension can be used to delineate a smaller FOV in one or more of the phase-encoded 

dimensions.

As first described by Pauly et al. [1], multidimensional small tip angle pulses may be 

described by a parameterized trajectory through k-space, where the trajectory is determined 

by the linear field gradients used during the pulse. That work was then extended to large tip 

angle pulses by Pauly et al. [2], where it was shown that a large tip angle could be achieved 

if the pulse could be decomposed into several inherently refocused, small tip angle pulses. 

Here, inherently refocused is synonymous with returning to k = 0 in pulse k-space. All 

these 2D pulses were performed in a single shot; in other words, the entirety of k-space was 

sampled for the pulse in one excitation. A similar approach by Conolly et al. [3] repeatedly 

plays out sine pulses during an oscillating echo-planar type of gradient train. The peak 

amplitude and initial phase of each sine pulse are modulated according to those of a 

hyperbolic secant pulse [4] to produce a 2D adiabatic pulse. For this 2D pulse and others 

similar to it, the large number of pulses necessary to fully sample the 2D k-space of the 

pulse can lead to prohibitively long pulse duration.

In the 2D pulses of Conolly et al. [3], the bandwidth of the pulse in the direction of the 

oscillating gradient can be increased by using a frequency-modulated (FM) pulse in place of 

the amplitude-modulated sine pulses. This was the approach taken by Dumez et al. [5], 

whereby chirp pulses were used in both dimensions. The pulse design in that work was 

described in physical space, not in k-space, and equations describing the pulse design were 

not given.

Here, we describe a 2D RF pulse which is a hyperbolic secant pulse in both dimensions in k-

space. We use an echo-planar imaging (EPI) [6] gradient train during the excitation, and 

increase the low bandwidth achieved in the slow dimension of the pulses used in previous 

works. Specifically, we undersample different segments of the pulse to decrease the length 

of each pulse segment, thus increasing the bandwidth for a fixed time-bandwidth product, R.

Hereafter, the direction of the oscillating gradient will be referred to as the fast-selected 

dimension, while the direction of the blipped gradient will be referred to as the slow-selected 

dimension. This nomenclature is due to the relative time needed for spatial selection in each 

dimension. As was done by Jang et al. [7], B1
+ inhomogeneity will be addressed by scaling 

the time-dependent RF amplitude based on a B1
+ map and having knowledge of the 

spatiotemporal vertex produced by the 2D FM pulse.

THEORY:

Two-dimensional Cartesian excitation:

Denoting a normalized k-space vector by κf,s∈[−1,1] in the fast and slow dimensions, 

respectively, the amplitude- and phase-modulated functions of the RF pulse, as defined in 

terms of the pulse’s k-space trajectory, are
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ω1 = ω1, max sech βκ f (t) sech βκs(t) 1

ϕRF = A f log cosh βκ f (t) ± Aslog cosh βκs(t) 2

In these equations, β determines where these functions are truncated, and in the present 

work, its value was determined according to sech(β) = 0.01 (i.e., the amplitude-modulated 

function truncates at 1% of maximum). In Eq 2, choosing the positive sign leads to a 

parabolic phase over the object, while a negative sign yields a hyperbolic phase profile. For 

the remainder of this work, the negative sign will be used. Additionally, κf,s are normalized 

by (ω1
max = γB1

max), which is Eq [7] of Ref [1]. Denoting the time-bandwidth product of the 

pulse in the fast and slow dimensions as Rf and Rs respectively, the coefficients Af,s are 

defined by A f , s =
πR f , s

2β . The formulae given yield a rectangular excitation profile, although 

the same trajectory can be used with the k-space weighting as described by Jang et al. [7] to 

obtain a circular excitation profile. In the latter case, the single-shot Cartesian trajectory also 

yields an adiabatic pulse. Profile thickness is given in both dimensions of the current pulse 

as

Δx f , s =
R f , s

2k f , s , max
3

where f and s denote the fast and slow dimensions, respectively. For B1 compensation, the 

instantaneous vertex position is given by

x f , s(t) =
Δx f , s

2 κ f , s(t) 4

Further below it will be shown how Eq [4] can be used to modify the pulse to produce a 

uniform flip angle with a spatially-varying RF field, B1
+. While the 2D spatial selection can 

be performed in any orientation, the fast and slow spatially-selected dimensions will herein 

generally be referred to as X and Y, respectively.

Segmentation:

As mentioned in the Introduction, the bandwidth in the fast-selected dimension can be 

further increased by replacing the sinc pulses in the 2D pulse by Conolly et al. [3] with 

frequency-swept pulses. The 2D frequency-swept pulses in this work are based on the 

original hyperbolic secant pulse, HS1 [4], but other frequency-swept pulses can also be used, 

including higher order HSn pulses [8] or a chirp pulse [9], as was done by Dumez et al. [5]. 

The k-space representation of this pulse and its Bloch simulated excitation profile are shown 
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in Fig. 1. The bandwidth in the slow-selected dimension can be increased by only sampling 

segments of the fully sampled 2D pulse with each excitation, as shown in Fig. 2. This 

decreases the pulse length while maintaining R, such that the bandwidth in the slow 

dimension increases in inverse proportion to the pulse length reduction. However, to retain 

the desired 2D excitation profile, a full image readout must be acquired for each pulse 

segment. Depending on the specific sequence used, this might necessitate a complex tradeoff 

between minimum scan time and pulse bandwidth, since as the pulse is shortened, the 

minimum possible repetition time TR decreases. For a fixed TR, the total acquisition time 

scales linearly with the number of pulse segments used. At the end of all acquisitions, the 

data are summed over all segments in either k-space or image space with the appropriate 

weights.

Using a 2D pulse permits increased spatial resolution in a fixed imaging time by decreasing 

the FOV in the phase-encoded dimensions of an experiment. By segmenting the pulse with a 

fixed TR, the acquisition time increases multiplicatively with the number of segments. Thus, 

to avoid increasing imaging time, the number of segments used must not exceed the 

acceleration gained by shrinking the FOV. If we assume that phase encoding is performed in 

the zoomed spatial dimensions, then the number of segments Nseg should ideally satisfy

Nseg ≤
PE1, full

PE1, zoomed

PE2, full
PE2, zoomed

5

to not increase the imaging time, where PEi,full and PEi,zoomed denote the number of phase 

encoded steps in a given dimension (i) in the full and zoomed FOV, respectively. This 

assumes equal resolution between zoomed and full FOV scans.

To sample each segment correctly in pulse k-space, care must be taken to ensure each 

segment has the same k-space center defined. Since the k-space trajectory is defined by the 

integral of the remaining gradient, there must be a variable area gradient lobe at the end of 

each segment in the slow-selected dimension. If these refocusing lobes are not the correct 

magnitude and polarity, different segments may amount to sampling the pulse multiple times 

along the same line(s) of k-space. Hence, the trajectory of a given segment depends crucially 

on the refocusing gradient, and the sampling weight depends on the RF amplitude and 

phase. Thus, even though each segment can use the same gradient waveform during RF 

transmission, its exact trajectory in k-space is determined by the gradient refocusing lobe 

that follows the RF pulse(s) of a given segment.

Obtaining consistent contrast:

As a consequence of the amplitude modulation in the 2D HS1 pulse, each pulse segment 

produces a different flip angle. As a result, under the commonly used acquisition condition 

TR ≪ T1, the different pulse segments produce variable T1-weighting of the image data. 

This can be remedied by rescaling the power of each pulse segment to achieve a constant flip 

angle for all segments. However, during the summation over all segments used, perfect 

signal cancellation outside the desired selected region does not occur. This issue is readily 

solved by reweighting the reconstruction of each segment with a weight equal to the original 
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flip angle of the segment. For a fully segmented pulse in which one line of k-space is 

sampled per segment, this procedure then amounts to reweighting each reconstruction 

according to a HS1 pulse defined by the number of segments used. For a partially segmented 

pulse, the data for each segment is scaled in post-processing by the integral of the respective 

pulse segment. The weights are given by

Ci = ∫
0

T
ω1, i(t)exp − j ΦRF, i (t) dt 6

where the subscript i denotes segment number and j the square root of −1.

When undersampling a pulse, the sidebands in the slow dimension move closer to the 

baseband as the number of segments increases. The signals from these sidebands cancel only 

after summing the acquired data. When a pulse segment is undersampled beyond the 

Nyquist limit, the sidebands and baseband overlap, and this leads to a non-uniform flip angle 

per segment. Thus, in this case, despite maintaining the proper excitation region after 

summation, it is not possible to obtain a consistent flip angle across the entire excitation 

region for each segment. However, when using a fully segmented pulse, such spatial 

variation of the flip angle in the slow dimension does not occur for any segment. In this 

limiting case, there is again uniform T1 contrast within the desired profile.

While rescaling the pulse amplitude to achieve the same flip angle for each segment gives 

equal SNR for each readout, rescaling the data in post-processing before summation yields a 

suboptimal SNR. The exact SNR can be calculated using Eq. 2 of [10], wherein the SNR as 

a fraction of the maximum possible for N segments is

SNR =
∑i = 1

N ∣ Ci ∣
N∑i = 1

N ∣ Ci ∣2
7

where the Ci are the coefficients used to scale the data in post-processing.

B1
+ Compensation:

Because the pulse is phase modulated in two spatial domains, 2D spatiotemporal excitation 

takes place during the pulse in a manner that is dictated by the resulting (rasterized) 

trajectory of a hyperbolic phase function in space. By assuming excitation at a given 

moment is localized to the vertex of this hyperbolic phase function, the 2D pulse can be 

modified to achieve uniform flip angle despite the existence of significant B1
+ 

inhomogeneity. The process begins by obtaining a unitless B1
+ map (denoted by B1,c

+) that 

is normalized to 1 at its maximum. Then the RF waveform can be recalculated as

ω1, c(t) =
ω1(t)

B1, c
+ x f (t), xs(t)

8
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where xf and xs describe the vertex position in the fast and slow dimensions respectively. In 

areas where the B1
+ map is not well defined, the original pulse value may be used.

Simulations:

Adiabaticity and Off-Resonance Effects: The simulated pulse consisted of 28 lines of 

k-space describing the pulse in the slow dimension. Additionally, the R value in both 

directions of the pulse was set to 9 and the slab thickness set at 5 cm. Each subpulse 

element, which samples one line of pulse k-space, was 700 μs. The duration of the gradient 

blips in the slow dimension were 120 μs with a half-sinusoid shape. Taken together with the 

number of lines of k-space, these parameters fully define the 2D pulse according to Eqs [1–

3]. An example MATLAB script for creating a segmented 2D HS1 pulse is found in [11]. In 

the following simulations, relaxation effects have been ignored.

As shown in Fig. 3., the 2D HS1 pulse can be driven adiabatically when sampled on a 

Cartesian k-space trajectory, in contrast to the 2D spiral trajectory described in [7]. When 

driven sub-adiabatically (Figs. 3a and 3b), the 2D excitation profile remains square and 

unchanged even when altering the excitation flip angle. When driven adiabatically, the cross 

section through the fast dimension (Fig. 3c) becomes wider than that through the slow 

dimension (Fig. 3d) as the peak RF amplitude (ω1
max = γB1

max) increases. This happens 

because the transition regions in the profile of each subpulse undergo adiabatic inversion in 

the process of executing the full 2D pulse.

The Bloch simulated magnitude and phase of the excitation profile are shown in Fig. 4. 

Similar cross sections showing the excitation profile through the fast and slow dimensions 

for various offset frequencies are given in Fig. 5. In the ideal case, there should be no 

dependence of the excitation profile on offset frequency, but Bloch simulations reveal the 

inability of the single-shot pulse to maintain a consistent profile in the presence of large 

frequency offsets in either the fast or slow dimensions. Despite the large bandwidth in the 

fast dimension, frequency offsets prevent spin isochromats from returning through k = 0
with each sweep, marring the profile in that direction. In the slow dimension, constant 

frequency offsets cause translations in physical space of the excitation profile. As the 

number of pulse segments is increased, the fast dimension noticeably improves in quality. In 

the slow dimension, it can be observed that the unwanted transverse magnetization away 

from the desired excitation region has diminished in amplitude relative to the single shot 

case, although this is not as apparent as in the fast dimension. For the fully segmented pulse, 

the selected region exhibits only translation in physical space as a function of the frequency 

offset, while the slow dimension exhibits complete independence from constant frequency 

offsets.

Such a dramatic difference between the fully segmented pulse and any of the partially 

segmented pulses can be understood as follows. Ideally, the transverse magnetization does 

not freely evolve between different sampling times of kfast = 0. If the time between sampling 

kfast = 0 for any number of segments is given by τ the transverse magnetization evolves an 

amount
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Φ = δ τ 9

between subpulses, where δ is a constant frequency offset. In the fully segmented pulse, 

these phases are identical for all pulse segments, whereby their effects are cancelled 

perfectly. For any other number of segments, the phase offset results in additional phase 

offsets in k-space. This gives an imperfect cancellation of transverse magnetization for off-

resonant spins.

MATERIALS AND METHODS:

All experiments were performed with a Varian DirectDrive console (Agilent Technologies, 

Santa Clara, CA) interfaced with a 4T, 90-cm magnet (Oxford Magnet Technology, 

Oxfordshire, UK) and a clinical gradient system (model SC72, Siemens, Erlandgen, 

Germany). The maximum slew rate available on this gradient system is 100 mT/m/ms. 

Experimental verifications of the fully segmented and single-shot imaging sequences were 

performed using the pulse parameters described in the simulations section. A protocol 

approved by our institution’s IRB was followed for human brain imaging of healthy 

volunteers after written, informed consent was obtained.

Gradient pre-emphasis for the fast gradient direction was performed using the gradient 

impulse response function (GIRF) [12], which is measured by using triangular gradient 

waveforms of varying width and amplitude on each gradient channel to fully sample the 

GIRF in the frequency domain. Gradient waveforms were measured following a protocol 

similar to Stich et al. [13], where 12 triangular waveforms were employed with amplitudes 

distributed linearly from 0.3125 G/cm to 3.75 G/cm. The slew rate of each waveform was set 

to 0.9 times the maximum possible to minimize waveform errors from the gradient 

amplifiers. The offset slice method [14] was used to measure the waveforms. In this method, 

a single 1-mm thick slice was offset 1.5 cm from isocenter for each gradient channel. The 

readout bandwidth was 50 kHz and the total readout time was 17 ms to obtain a spectral 

resolution of 58.82 Hz. Thirty averages were used with TR = 6 s and TE = 13.83 ms. 

Gradient pre-emphasis was necessary to prevent Nyquist ghosting of the excitation profile 

which results when there is a mismatch in sampling of k = 0 between the positive and 

negative gradient polarities.

Due to the longer minimum TR necessary for the single-shot excitation, T2*-weighted 

imaging was performed with this sequence, using a flip angle of 15°, TR/TE = 41.5 ms/25 

ms with one average. The total single-shot pulse length was 23.704 ms. The receiver 

bandwidth was set at 100 kHz. Using the same total acquisition time, a full brain image was 

acquired at 1.6 mm isotropic resolution with a FOV = 192 × 192 × 192 mm3. Identical 

sequence settings were used with the single-shot pulse to demonstrate spatial selectivity, 

followed by a sequence which zoomed on the selected region. The isotropic resolution of 

this zoomed experiment was 800 μm with a FOV = 192 × 96 × 96 mm3 with the same total 

imaging time of 7.6 minutes.
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A demonstration of B1
+ compensation was performed using the single-shot sequence on a 

uniform agar phantom and a quadrature surface coil for excitation and reception. The B1
+ 

profile was measured using the double angle method (DAM) [15], while the B1
− map was 

measured using an adiabatic half passage excitation followed by two adiabatic full passages 

for refocusing. Each of these pulses was operated with sufficient RF power to be in the 

adiabatic regime. Reconstructed images were divided by the B1
− map where there was 

sufficient signal to divide by. This level was taken as 10% of the maximum image intensity 

in the B1>− map.

For the fully segmented sequence, a 3D T1-weighted GRE sequence was used with TR/TE = 

6.09 ms/2.76 ms, flip angle = 10.4°, and receiver bandwidth = 100 kHz. Isotropic resolution 

of 1.5 mm3 was used, with a FOV = 192 × 96 × 96 mm3. To demonstrate robustness to B0 

inhomogeneity, an additional experiment was performed in which one linear gradient was 

held fixed throughout the duration of the imaging sequence. A B0 map was measured for a 

single slice, which demonstrated the constant gradient was approximately 16.66 kHz over 19 

cm in the slow-selected direction of the pulse.

RESULTS:

The surface coil experiment provided an extreme case of B1 inhomogeneity for 

demonstrating B1
+ compensation. The relative improvement in the excitation profile can be 

seen in Fig. 6, where the results of the compensated and uncompensated pulses are shown 

after dividing by the B1
− map. The lower flip angle in the B1

+ compensated image is due to 

a lower average RF power in the compensated pulse when using the same peak power.

Selected cross sections from 3D brain images obtained with the single shot and fully 

segmented pulses are shown in Figs. 7 and 8, respectively. The single-shot pulse was used 

for excitation in a T2*-weighted sequence while the fully segmented pulse was used in a T1-

weighted sequence. The fully segmented version yields the most well-defined excitation 

profile, since it is essentially immune to off-resonance effects. This is clearly seen in the 

images collected with a constant gradient on during the sequence, where the excited profile 

is nearly identical to that obtained in a homogeneous field.

DISCUSSION & CONCLUSIONS:

Single-shot multidimensional pulses require long pulse lengths, which decreases their 

bandwidth. Herein, we have shown how undersampling a multidimensional pulse by 

segmenting it and adding the resultant segments together after data collection permits shorter 

pulses, in turn leading to higher bandwidths. To the best of our knowledge, this work 

describes the first experimental implementation of a frequency-swept pulse in a multi-shot 

(segmented) form, whereas only amplitude-modulated pulses have been implemented in 

segments previously ([16]–[18]). The method of segmenting a 2D EPI excitation trajectory 

was first proposed by Panych et al. [16], while the first segmented pulses were interleaved 

spirals [17]. Previously, segmented 3D pulses have been shown to be useful in 2D MRI for 

slice selection and B0 compensation [18]. In the segmentation method of Panych et al. [16], 

a 2D excitation profile was defined using a segmented EPI k-space trajectory with B1 
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amplitudes given by the Fourier transform of the desired excitation shape. To obtain 

consistent T1 contrast, an equal flip angle was assumed to be produced by every pulse 

segment without rescaling the RF power used for transmitting each segment. This condition 

cannot be satisfied when using shaped pulses. That work also did not focus on the use of a 

segmented 2D EPI trajectory to increase the pulse bandwidth, as done herein. Finally, 

previously described segmented pulses ([16]—[18]) do not permit the herein described 

method of B1
+ compensation since they are not FM pulses.

Although the imaging experiments presented demonstrate only the single-shot and fully 

segmented cases, it should be noted that any number of segments can be used to fully sample 

the pulse. However, use of an integer divisor of the number of lines of k-space is 

recommended, so that the number of subpulses, the subpulse length, and the total pulse 

length are all equal between segments. If this condition is not met, care must be taken to 

ensure TR and TE are maintained between segment acquisitions. It should be noted that 

diffusion effects may differ between segments outside of this recommended pulse design 

regime. Also, while here the pulse shapes along both directions were HS1 pulses, this need 

not be the case. For example, a sine pulse could be used for modulation in the slow 

dimension.

Although not demonstrated in the experiments, this 2D HS1 pulse which samples k-space on 

a Cartesian grid can be used to invert magnetization in an adiabatic manner, provided B1
max 

is above the threshold needed to satisfy the adiabatic condition. Here, B1
max denotes the 

peak B1 of the pulse. Conversely, the previously described 2D HS1 pulse of Jang et al. [7] 

which utilizes a spiral k-space trajectory cannot achieve adiabaticity, regardless of the B1
max 

value. A juxtaposition of the Cartesian k-space trajectory described herein with the spiral 

trajectory of Jang et al. [7] helps to elucidate how the different trajectories through the 

pulse’s k-space determine the magnetization profile with respect to frequency offset for a 

specific k-space weighting function, such as the 2D HS1 pulse. For the Cartesian sampling 

scheme, the pulse behaves adiabatically using the single-shot trajectory, due to the adiabatic 

frequency sweep in the slow dimension. The subpulses are frequency swept, but by 

themselves are not necessarily functioning adiabatically. Unfortunately, when the 2D k-

space trajectory is segmented, the pulse cannot function adiabatically because the 

segmentation process creates discontinuities in the frequency sweep. For this reason, a 

segmented 2D HS1 pulse is not useful for adiabatic inversion, while the single-shot pulse is 

practical for such purposes.

When driven sub-adiabatically (e.g. for excitation), there exists a unique method to 

compensate for B1
+ inhomogeneity. This method is that used by Jang et al. [7], where the 

pulse is compensated along the trajectory of a moving vertex in physical space. Note again 

that this method of compensation cannot be achieved with amplitude-modulated 2D pulses 

since a vertex trajectory cannot be created. It is unique to multidimensional FM pulses.

Upon inspection of the results of the fully segmented pulse (see Fig. 8), no noticeable loss of 

signal can be seen despite the large increase in B0 inhomogeneity imposed by the constant 

gradient field. The inhomogeneity merely shifts the position of the acquired data in k-space 

and produces a tilt in the excitation profile. Provided the acquisition k-space shift does not 
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preclude a large amount of the signal energy from being sampled, no significant signal loss 

occurs. This condition is met provided the shift is smaller than kmax, the largest acquisition 

k-value sampled. Hence, for a given resolution Δx and echo time TE, the following must be 

satisfied

kshift = γGΔTE < kmax = 1
2 Δ x 10

where GΔ is a constant linear field inhomogeneity. This equation should hold true for non-

linear inhomogeneous fields as well. In that case, GΔ is the local field gradient and GΔ is a 

function of x (i.e GΔ(x)). That is, the k-space center position varies depending on the 

location of each isochromat in space.

By virtue of its hyperbolic phase profile, this pulse has potential applications in xSPEN MRI 

[19], [20]. In that method, a hyperbolic phase profile permits an acceleration of data 

acquisition by utilizing the correlation between k-space and image space when a hyperbolic 

or parabolic phase profile is present. These correlations exist due to the localization of 

signals originating from the vertex of the phase profile. Hence, the k-space signal appears as 

a transposed, low-resolution version of the resulting image. This approach was not taken in 

the present work since the gradient slew rate limitations precluded the use of high time-

bandwidth products while maintaining a reasonable pulse length.

In summary, the combination of the features discussed thus far makes 2D frequency-swept 

pulses an attractive candidate when resilience to large B0 and B1
+ field inhomogeneities is 

needed. To increase the bandwidth further in the future, parallel transmission techniques 

[21], [22] might be employed to further decrease the pulse length and drive up the 

bandwidth.
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Highlights

• 2D frequency swept pulses can be modified to compensate for B1 

inhomogeneity.

• In a single-shot, Cartesian sampling of a 2D HS1 yields an adiabatic pulse.

• Segmenting pulse k-space in multiple undersampled segments increases their 

bandwidth by shortening pulse length.

• Fully segmenting the pulse’s k-space yields almost complete immunity to B0 

inhomogeneity.
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Figure 1: 
k-space description of the 2D pulse. a) The RF amplitude as a function of k-space. b) The 

RF phase as a function of k-space. c) The transverse magnetization (Mxy) profile produced 

by this pulse.
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Figure 2: 
Example k-space trajectories for a 2D RF pulse. a) A single segment coverage of k-space. b) 

Covering k-space in 2 segments, with each segment sampling 14 equidistant lines of k-

space. c) 7-segment trajectory, with each segment sampling 4 equidistant lines of k-space. d) 

Fully segmented trajectory, sampling only 1 line of k-space with each segment. Another 

option for segmented pulses is to alternate the initial direction of the k-space trajectory 

between segments, which gives different off-resonant behavior. Trajectories do not need to 
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be interleaved as shown. Segmented trajectories which sample k-space sequentially and do 

not overlap are also possible. Colors were chosen using [23].

Mullen et al. Page 15

J Magn Reson. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
Demonstration of the non-adiabatic and adiabatic regimes of the single shot 2D pulse. a) 

Transverse magnetization when applying the single-shot pulse for a 45° excitation. b) 

Transverse magnetization when applying the single-shot pulse for a 90° excitation. Notice 

the profile width is unchanged in both spatial dimensions. c) Surface plot showing the 

normalized longitudinal magnetization along the fast dimension as a function of B1
max when 

traversing all of k-space in a single shot. When the pulse begins operating adiabatically, the 

transition regions begin to invert, increasing the slab width in the fast dimension. d) Surface 

plot showing the longitudinal magnetization along the slow dimension as a function of 
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BL
max when traversing all of k-space in a single-shot. B1

max denotes the peak B1 used in t he 

pulee. Arrows in (c) and (d) indicate the RF amplitude settings used to obtain the 4° and 90° 

flip angles for (a) and (b).
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Figure 4: 
Excitation profile of the 2D pulse for any number of segments. a) Magnitude of the 

normalized transverse magnetization profile at the end of the pulse for any number of 

segments, provided they are properly weighted prior to summing. b) Phase of the transverse 

magnetization profile (radians).
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Figure 5: 
Excitation profile behavior for various frequency offsets and number of pulse Segments. a) 

Normalized transverse magnetization profile along the fast dimension versus a constant 

frequency offset when traversing all of k-space in a single shot. Note the rapid degradation 

of the profile with small offsets. b) The profile along the slow spatially-selected dimension 

versus a constant offset. Sidebands are intense and near the center band. c) With 2 segments 

defining the pulse, the profile in the fast dimension versus a constant offset is beginning to 

improve, while in d) the sidebands in the slow dimension are still prominent. e) Using 7 
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segments to define the pulse, the fast dimension has improved further. f) With 7 segments, 

the sidebands in the slow dimension are noticeably diminished in amplitude. g) With the 

fully segmented pulse, the profile simply shifts in physical space with a constant offset in the 

fast dimension, while in h), there is no dependence on constant offsets in the slow 

dimension. Rows 1-4 use the respective k-space trajectories shown in Figs. 2a - 2d. The 

complex transverse magnetization is given by Mxy = Mx + j My and the coefficients Ci are 

defined in the text as equation 6.
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Figure 6: 
Experimental demonstration of the B1

+ compensation method described in the text. a) 

Excitation profile obtained using the B1
+-compensated pulse. b) Excitation profile obtained 

using the original pulse. Both a) and b) have been divided by the receive coil sensitivity 

shown in (d), which was measured using the sequence described in the text. c) Transmit 

(B1
+) map measured using the double angle method.
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Figure 7: 
In vivo brain images obtained with a 3D T2*-weighted GRE imaging sequence, using TR = 

41.5 ms, TE = 25 ms, and flip angle = 15°. a - c) Coronal cross sections. d - f) Axial cross 

sections. a,d) FOV = 192 × 192 mm2, isotropic resolution of 1.6 mm2, with a non-selective 

excitation. b,e) FOV = 192 × 192 mm2, isotropic resolution of 1.6 mm2, with single-shot 2D 

HS1 excitation. c,f) FOV = 192 × 96 mm2, isotropic resolution of 0.8 mm2, with single-shot 

2D HS1 excitation.
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Figure 8: 
Brain images obtained with a T1-weighted 3D GRE acquisition. Sequence parameters were 

TR = 6.09 ms, TE = 2.76 ms, and flip angle = 10.4°. a) A single plane is shown from this 

dataset. The red box depicts the zoomed FOV used for (b – d). The in-plane resolution of 

this cross section is 1 mm2 and FOV = 192 × 192 mm2, while the through-plane resolution 

was 1 mm. b) The same sequence parameters as (a) except a fully segmented pulse was used 

for excitation. The in-plane resolution of this cross section is 1.5 mm2 and FOV = 96 × 96 

mm2, while the through-plane resolution was 1.5 mm. The B0 map for this case is shown in 

e). c) The same as (b), except the acquisition was performed in the presence of a constant 

field inhomogeneity created by turning on a gradient in the y-direction and leaving it on for 

the duration of the sequence. The measured B0 for this dataset is given in f). In d), the 

gradient was set even higher, creating a frequency variation of approximately 16.66 kHz 

across the brain in the slow dimension of the pulse. The corresponding B0 map is given in 

g). Note that all B0 maps are shown on the same scale to demonstrate the magnitude of the 

inhomogeneity. This obscures the small fluctuations in (e) as they are significantly smaller 

than those in (f) and (g). In both (c) and (d). the static gradient in the slow dimension causes 

a change in orientation of the gradient during excitation, resulting in a tilted profile, i) – k) 

The log-scale Fourier domain of the data shown in (b – d), respectively. Note how there is no 

additional signal loss from the constant gradient, but only a shift in k-space.
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