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Generating a functional proteome requires the ribosome to
carefully regulate disparate co-translational processes that
determine the fate of nascent polypeptides. With protein syn-
thesis being energetically expensive, the ribosome must balance
the costs of efficiently making a protein with those of properly
folding it. Emerging as a primary means of regulating this trade-
off is the nonuniform rate of translation elongation that defines
translation kinetics. The varying speeds with which the ribo-
some progresses along a transcript have been implicated in sev-
eral aspects of protein biogenesis, including co-translational
protein folding and translational fidelity, as well as gene expres-
sion by mediating mRNA decay and protein quality control
pathways. The optimal translation kinetics required to effi-
ciently execute these processes can be distinct. Thus, the ribo-
some is tasked with tightly regulating translation kinetics to
balance these processes while maintaining adaptability for
changing cellular conditions. In this review, we first discuss the
regulatory role of translation elongation in protein biogenesis
and what factors influence elongation kinetics. We then de-
scribe how changes in translation kinetics signal downstream
pathways that dictate the fate of nascent polypeptides. By regu-
lating these pathways, the kinetics of translation elongation has
emerged as a critical tool for driving gene expression and main-
taining proteostasis through varied mechanisms, including nas-
cent chain folding and binding different ribosome-associated
machinery. Indeed, a growing number of examples demonstrate
the important role of local changes in elongation kinetics in
modulating the pathophysiology of human disease.

Fundamental to every cellular process is the accurate conver-
sion of the genetic code into a functional protein. This not only
involves generating a polymer of amino acids, but also critically
depends on folding this polymer into its native conformation.
Productive protein biogenesis requires intricate coordination
of several factors in a multistep choreography in which one
misstep can disrupt protein homeostasis (proteostasis). Such
missteps can drive the pathogenesis of many different diseases
(1), either by causing an imbalance in the abundance of native

protein or an accumulation of misfolded protein and subse-
quent cytotoxic protein aggregates.

In this review, we discuss the role that translation elongation
kinetics plays in regulating proteostasis by serving as a determi-
nant of accurate synthesis, folding, and targeting of nascent
proteins. We will describe the interdependent factors that
modulate translation kinetics followed by discussing how such
modulation coordinates protein biogenesis. Although many
mechanistic details remain unclear, it is now firmly established
that the kinetics of translation elongation is a critical factor in
generating a healthy proteome.

Proteostasis begins at the ribosome

Pioneering work from Christian Anfinsen demonstrated that
proteins can spontaneously adopt their final structure in vitro
(2). This led to the proposal that the amino acid sequence car-
ried all of the necessary information for a protein to reach its
native conformation in an unassisted fashion. It is now clear,
however, that not all proteins can adopt their native conforma-
tion through an unassisted folding trajectory (3–5). This is
especially true for eukaryotic proteins that tend to be larger
with multiple domains as compared with bacterial proteins (3,
6). Larger proteins innately have a greater conformational land-
scape from which they can sample non-native interactions.
Thus, folding these proteins requires strict regulation to ensure
that a limited number of productive folding pathways outcom-
pete the many unproductive or misfolding pathways (3, 5, 7).

To overcome this challenge, the cell has evolved the capacity
to co-translationally fold nascent polypeptides in a domain-
wise fashion (8). Translation is a vectorial process that sequen-
tially produces a nascent polypeptide from its N to C terminus.
The benefit of the vectorial nature of translation is that it
allows the cell to sequentially partition folding into the distinct
structural components of multidomain proteins, thereby limit-
ing the available conformational space of the nascent chain to
more productive folding trajectories (9). However, the side
effect is that nascent polypeptides remain vulnerable to mis-
folding and aggregation until they can adopt their final native
conformation upon completion of translation (3, 5).

Balancing these competing pathways in vivo to maintain pro-
teostasis requires the constant monitoring of the nascent chain
throughout the elongation phase. At the heart of this surveil-
lance is an elaborate proteostasis network, including chaper-
ones, modification enzymes, and targeting factors, that directly
binds ribosomes and regulates folding, assembly, targeting, and
quality control of nascent polypeptides (3–5, 10). For instance,
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molecular chaperones and targeting factors are recruited to the
ribosome and must coordinate their binding and release in the
context of co-translational folding (3). Co-translational folding
is also coupled to assembly into large protein complexes (11,
12). Although the interplay between these co-translational pro-
cesses and the recruitment of proteostasis machinery is not well
understood, it is clear that these processes are controlled by
the kinetics of processing the nascent chain as translation
proceeds. This suggests that the dynamics of translation
elongation is coupled with co-translational processes, and
translation kinetics has emerged as the driving force under-
lying such coordination.

Nonuniform rates of translation elongation drive
proteostasis

Of the four major phases of translation (initiation, elonga-
tion, termination, and ribosome recycling), studies of protein
synthesis have mostly focused on translation initiation as the
rate-limiting step of translational control. However, increasing
evidence, particularly with the advent of ribosome profiling
(13), shows that balancing all four phases of translation is
important for maintaining proteostasis, with translation elon-
gation being central to determining protein fate.

During elongation, the ribosome acts as a central processing
unit. It decodes mRNA and resolves competing signals in the
crowded cytoplasmic environment to systematically recruit the
machinery necessary to output a properly folded and targeted
protein. Elongation proceeds at an average rate of �20 amino
acids/s in prokaryotes and only �4 – 6 amino acids/s in
eukaryotes, although mRNA transcripts have distinct elonga-
tion rates (7). By comparison, forming the stable secondary and
tertiary structures of folding intermediates happens on the
order of milliseconds (7). This indicates that mRNA decoding is
rate-limiting as compared with protein folding (14). Therefore,
given the length of eukaryotic proteins (median of �400 amino
acids) (6), the proteostasis machinery must monitor the nascent
chain and prevent it from forming non-native contacts for over
a minute before the complete polypeptide can acquire its native
conformation.

Yet, local elongation rates are not uniform across the length
of the transcript, with the ribosome accelerating and slowing
down during elongation (15). Variation in these rates can be
over an order of magnitude (16). It is now recognized that
these local elongation rates, in combination with global rates,
create an evolutionarily selected system of trade-offs that mod-
ulate the cell’s ability to generate a functional proteome (Fig. 1).
One set of trade-offs pertains to how the elongation rate regu-
lates gene expression: faster translation efficiently synthesizes a
large amount of protein, whereas slow elongation can decrease
mRNA stability and initiate mRNA decay and protein degrada-
tion pathways (17). For instance, in addition to reducing trans-
lation initiation, proteotoxic stress in mammalian cells can
attenuate protein biogenesis by causing ribosomes to stall
within the first 50 codons of the coding sequence and limiting
further elongation (18, 19). However, it should be noted that
these findings remain to be validated in light of recent work in
yeast demonstrating that using cycloheximide can cause arti-
facts in ribosome-profiling experiments (20, 21).

The local kinetics of translation elongation also balances a
trade-off between protein folding and the accuracy of protein
synthesis. Elongation slowdowns generally enhance co-transla-
tional protein folding, putatively by giving more time for the
protein to properly fold (15, 22). However, slower translation
can also decrease translational fidelity, causing frameshifting
(23) or amino acid misincorporation that could lead to protein
misfolding (5, 24). With such trade-offs, elucidating the under-
lying mechanisms that regulate the health of the proteome
requires greater understanding of the factors that dictate trans-
lation kinetics, as well as how translation kinetics subsequently
balances these competing determinants of protein fate.

Determinants of translation kinetics

As translation elongation requires the coordination of dis-
parate players, from mRNA and tRNA to ribosomal proteins
and proteostasis machinery, several factors influence the rate of
translation elongation and its downstream effects (Fig. 2).
These include codon usage and codon context, tRNA abun-
dance, protein sequence, and mRNA secondary structure (15,
16, 25). The most commonly studied factor is the frequency of
codons in the mRNA transcriptome, referred to as codon usage
or bias. The genetic code is degenerate with the same amino
acid being encoded by different codons. Synonymous codons
are represented in the genome at frequencies that can vary over
an order of magnitude between rare and common codons (16).
These different frequencies of synonymous codons define an
organism’s codon usage, which can vary between species. Syn-
onymous codons were long viewed as equivalent, leading to the
development of the term “silent” mutations to describe muta-
tions from one synonymous codon to another without a change
in amino acid. However, substantial work has shown that the
use of “silent” is a misnomer as synonymous mutations are
associated with disease (26). For instance, some work has
shown that synonymous mutations can drive the development
of human cancers (27). By impacting translational processes, as
discussed further below, synonymous codons can modulate
protein folding and activity (28 –36) and even translation fidel-
ity (24, 37, 38).

Codon usage dictates the kinetics of translation elongation
primarily through the interdependence between codon fre-

Figure 1. Translation kinetics balances protein production, folding, and
quality control pathways. Nonuniform rates of translation elongation along
a transcript dictate a set of trade-offs that either enhance (blue) or diminish
(orange) accurate gene expression. Slower rates of elongation enhance accu-
rate gene expression by facilitating proper protein folding, but very slow
translation (ribosome stalling) diminishes gene expression by causing the
turnover of the nascent protein and mRNA. Fast translation also has its trade-
offs on accurate gene expression by enhancing the fidelity and efficiency of
protein synthesis, while also increasing the likelihood of protein misfolding
and aggregation.
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quency and tRNA abundance (16, 39). Just as there are 61 sense
codons coding for 20 amino acids, the presence of hundreds of
tRNA genes in the genome provides an additional level of trans-
lation control. There is significant variation in the number of
tRNA genes that decode a given codon. Some codons have only
a single cognate tRNA gene, whereas other codons are decoded
by multiple isoacceptor tRNA genes (same anticodon, but pos-
sibly sequence variation elsewhere in the tRNA). For instance,
in yeast there is only one genomic copy of the arginine tRNA
gene decoding codon CGG but 12 isoacceptor gene copies of
the tRNA that decodes the arginine codon AGA. Still other
codons do not have a cognate tRNA with perfect Watson-Crick
base pairing, such as the arginine codon CGA, and instead
require wobble interactions at the third nucleotide of the codon
(first nucleotide of the anticodon) for decoding. Such variation
in number of gene copies coding for a given tRNA positively
correlates with the abundance of that tRNA within the cyto-
plasm: more abundant tRNAs have a greater number of gene
copies (40, 41). This creates a tRNA pool of diverse composi-
tion, with tRNAs of different abundance competing for incor-
poration into the ribosome’s peptidyl transferase center
(PTC).2 Such competition influences the rate of elongation,
particularly by the relative concentration of a tRNA to its near-
cognate tRNAs (42). A small cognate/near-cognate tRNA ratio,
where a low abundant tRNA must outcompete more abundant
near-cognate tRNAs, slows the rate of translation as this com-
petition necessitates more time to accurately incorporate the
correct tRNA (15, 43).

In considering tRNA abundance in combination with codon
usage, these variables compose the two sides of a supply (tRNA)
and demand (mRNA) balance that is necessary for effective
mRNA decoding and defines what is termed codon optimality
(16, 22). Codon optimality is a measure of differential codon

recognition that accounts for the correlated differences in
codon usage and the availability of the decoding tRNA. It also
accounts for the differences in interactions between the codon
and the tRNA anticodon that cause variable decoding rates,
such as wobble interactions that slow translation through inef-
ficient codon–anticodon base-pairing (17, 44, 45). Optimal
codons generally represent common codons that are efficiently
decoded by abundant tRNA. By contrast, nonoptimal codons
generally consist of rare codons decoded by wobble interac-
tions or a lower abundant tRNA and are often under-repre-
sented in coding sequences (16, 39, 43). The net consequence is
that nonoptimal codons are decoded more slowly than their
synonymous optimal counterparts, thereby slowing translation
(17, 45, 46). Altering codon optimality provides a versatile
means to fine-tune the folding efficiency of a protein without
altering its protein sequence (16, 33). Modifications of tRNA
have also been shown to influence the elongation rate, presum-
ably also by modulating decoding efficiencies (47). Interest-
ingly, the composition of the tRNA pool is dynamic and can
change with different cellular conditions or disease (48 –50). As
altered cellular conditions also influence the transcriptome,
such changes will modulate the codon optimality classification
and thus translation efficiency. As a result, genes with co-vary-
ing expression patterns, such as those in different tissues or
pathways, have similar codon optimality (51). Importantly, if
the supply and demand balance between the tRNA pool and the
transcriptome is not maintained, this can disrupt proteostasis
(52).

In addition to the dynamic nature of codon optimality deter-
mining the kinetics of translation, nascent protein sequence
also plays a role (53). After accurate mRNA decoding, the next
step in the elongation cycle involves the peptidyl transferase
reaction promoting the addition of the incoming amino acid to
the growing nascent chain. The efficiency of this reaction influ-
ences the rate of elongation. As proline creates unfavorable

2 The abbreviations used are: PTC, peptidyl transferase center; SRP, signal
recognition particle; RQC, ribosome-associated quality control.

Figure 2. Interdependent factors regulate translation kinetics and disparate downstream consequences through the recruitment of trans-acting
factors. Several upstream variables dictate the speed at which the ribosome proceeds across an mRNA transcript. These determinants of translation kinetics
include codon usage and tRNA abundance, which define codon optimality, along with pairs of codons (codon context), mRNA secondary structure, and protein
sequence. Changes in elongation rate then modulate downstream pathways that determine the fate of nascent polypeptides. On the one hand, fast translation
of protein structural elements enhances translation fidelity and translation efficiency. On the other hand, transient ribosome pausing facilitates subsequent
processes by recruitment of various machinery. This includes membrane targeting of secretory proteins by recruiting the SRP after exposure of targeting
signals such as a transmembrane domain (TMD), as well as protein folding possibly by recruiting molecular chaperones. Proper protein folding might then
accelerate translation. When a ribosome stalls, RQC machinery is recruited to degrade the nascent polypeptide, and the DEAD-box helicase Dhh1 initiates
mRNA decay.
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positioning for this reaction, both as a donor and acceptor (25,
54), the peptidyl transferase reaction is inefficient when proline
is present in the A or P site, which consequently slows transla-
tion (55). This is particularly true at proline-rich motifs, thereby
necessitating the recruitment of the elongation factor eIF5A
(EF-P in bacteria) for progression (56 –59). Through a distinct
mechanism, regions rich in positively charged amino acids also
cause a slowdown in translation (60 –63). Such pausing occurs
when these residues electrostatically interact with the nega-
tively charged wall of the ribosome exit tunnel (64). These elec-
trostatic interactions occur within 10 amino acids from the
PTC where ribosomal proteins constrict the ribosome exit tun-
nel. Interestingly, it is proposed that these ribosomal proteins
might facilitate the sensing of translation slowdowns by trans-
acting factors (53).

Additional factors have also been identified as regulating
translation kinetics. For instance, throughout the typical elon-
gation cycle, as more than one tRNA is simultaneously incor-
porated in the ribosome, particular codon pairs have been
shown to impact translation rate (55). Referred to as codon
context, translation slows just when two nonoptimal codons
are adjacent (55, 65). Other determinants of translation kinetics
include ribosomal arrest peptides and mRNA secondary struc-
ture (66), which are reviewed in depth elsewhere (15).

Elongation speed regulates co-translational protein
folding

Substantial work has shown that co-translational protein
folding is modulated by the factors discussed above that dictate
translation kinetics, with recent work confirming that elonga-
tion rate is altered (28, 34, 67, 68). These studies support a
model by which slower translation facilitates proper protein
folding. Increasing the abundance of tRNAs in prokaryotes, a
common strategy in heterologous gene expression, was shown
to increase protein aggregation presumably by enhancing elon-
gation rate (69). Similarly, using synonymous codons to alter
codon optimality has been shown to dictate folding pathways
(28, 29, 33, 34, 68, 70). For instance, increasing the codon opti-
mality of the cystic fibrosis transmembrane receptor or the cir-
cadian clock protein FRQ in Neurospora led to faster transla-
tion and greater abundance, but also less functionality and
increased aggregation (29, 70). By contrast, replacing optimal
codons with nonoptimal codons reduced the chance of protein
misfolding (68). Still, other work has shown that optimal
codons decrease the likelihood of mistranslation (24, 37, 71),
such as at structurally sensitive sites like regions buried within
the core of a protein where mistranslation would increase the
chance of misfolding (71). Collectively, these studies demon-
strate that the supply and demand of coding mRNA and decod-
ing tRNA is not necessarily optimized for greatest gene expres-
sion. Instead, it is proposed that this balance might have
evolved to ensure a properly folded proteome (72). However,
the underlying mechanisms by which the rate of translation
impacts protein folding remain poorly defined.

One mechanism underlying how slower translation facili-
tates protein folding is by regulating the synthesis of secondary
and tertiary structural elements. Synonymous codons are not
uniformly and randomly distributed. There are clusters of opti-

mal and nonoptimal codons that are conserved in equal mea-
sure and show position-dependent evolutionary conservation
(22). Clusters of rare codons are even present in highly
expressed genes that generally have high codon optimality (5).
By regulating translation kinetics and protein biogenesis, such
conservation demonstrates that these clusters are maintained
under positive selection. In particular, optimal codons are often
enriched in highly conserved regions of structural domains
where accurate translation is required (71, 73). By contrast, the
locations of nonoptimal clusters correlate with structural
boundaries, such as linker regions downstream of protein
structural domains or separating smaller secondary structural
motifs within the larger protein domain (16, 22, 74). Slowing
translation at these points, when the structural elements have
just emerged from the ribosome, is suggested to provide addi-
tional time for sub-domains and domains to sequentially fold
into a lower energy folding intermediate before more of the
protein emerges. Indeed, recent work used nuclear magnetic
resonance (NMR) to demonstrate that changes in codon opti-
mality impacted the protein conformational landscape that
nascent chains sample (28). However, the details explaining
how this additional time facilitates accurate folding remain to
be determined.

Some work demonstrates that slowing translation allows the
ribosome more time to constrain the folding pathways of the
nascent polypeptide (75). The nascent chain traverses an
�100-Å exit tunnel of the ribosome’s large subunit, which
encompasses 30 – 40 amino acids, before emerging and becom-
ing accessible to molecular chaperones and other proteostasis
machinery. Within the exit tunnel, the conformation of the
nascent chain is largely constrained until it enters a wider part
of the tunnel near the exit port (76). At this point just before
emerging, the nascent chain can adopt �-helical secondary
structure (76 –79). Upon emergence from the ribosome, how-
ever, the folding energy landscape of the nascent chain greatly
expands, necessitating additional mechanisms to help prevent
the formation of non-native contacts and facilitate native con-
tacts. It is proposed that the rate of translation helps modulate
the folding energy landscape to influence the probability of
these differential contacts (15, 80). By restricting this landscape,
the ribosome stabilizes folding intermediates (14, 75, 81), and it
might also delay folding until a sufficient length of polypeptide
has been synthesized to form productive contacts. Moreover,
folding exerts force on the nascent chain (82, 83), leading to an
attractive hypothesis in which translation rate and folding are
in a “tug-of-war” where translation slows to facilitate folding
followed by productive folding leading to translation accelera-
tion. Recent work might support this model by demonstrating
that the rate of elongation accelerates when the Hsp70 Ssb is
bound to the ribosome–nascent chain complex (84).

Another possible mechanism to explain how translation rate
facilitates productive protein biogenesis is through the recruit-
ment of machinery that recognizes the nascent chain and
assists with its maturation and cellular targeting (Fig. 2). In fact,
the ribosome serves as platform for recruiting a wide variety of
such factors (5). For instance, a slowdown in translation
enhances secretion efficiency by promoting the recruitment of
the signal recognition particle (SRP) (85). A rare codon cluster
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that slows translation is often present 35– 40 codons down-
stream of the targeting signals that are recognized by the SRP
and co-translationally target secretory proteins to the endo-
plasmic reticulum (85, 86). When the nonoptimal codon cluster
is in the ribosome’s PTC, these targeting signals have just
emerged from the ribosome exit tunnel. Hence, although it is
not the predominant pathway for SRP recruitment (86, 87), this
suggests that a slowdown in translation facilitates SRP recruit-
ment and subsequent membrane targeting. Conversely, enrich-
ment of optimal codons at conserved structural elements can
reduce the dependence on chaperones for proper folding of
certain nascent proteins (88, 89). This suggests that faster trans-
lation of these proteins correlates with decreased molecular
chaperone dependences. This provides additional evidence to
support the model in which recruitment of protein folding
machinery to the ribosome correlates with a local slowdown in
translation to fold the nascent chain.

Ribosome stalling dictates gene expression

In addition to the elongation rate regulating co-translational
protein folding, the flow of ribosomal traffic also influences
gene expression (17). One way is through codon optimality
being correlated with gene expression: Highly expressed genes
generally have higher codon optimality leading to more effi-
cient translation as compared with lowly expressed genes that
often have lower codon optimality (90). This indicates that
codon optimality is under evolutionary selection pressure to
balance gene expression with proper protein folding (16).

Codon optimality also plays a role at the 5� end of coding
sequences, where nonoptimal codons are enriched. In this con-
text, rather than slowing elongation, the reduced mRNA struc-
ture caused by AT-rich nonoptimal codons is suggested to
enhance the rate of translation and increase translation effi-
ciency, possibly by optimizing the spacing between ribosomes
(40). Yet, these nonoptimal codons might also impact the effi-
ciency of translation initiation, as including more than eight
consecutive nonoptimal codons in the 5� end of coding se-
quences causes decreased protein expression (91, 92).

Whereas the enhanced translation efficiency of fast transla-
tion is at one extreme on the continuum of translation kinetics,
ribosomal traffic coming to a standstill is at the other extreme.
Such ribosome stalling triggers protein degradation and mRNA
decay pathways (93, 94). Although ribosome stalling and ribo-
some pausing are terms that are often used interchangeably,
here we refer to ribosome stalling as a more extreme case of
ribosome pausing in which ribosomes undergo elongation
arrest as distinguished from the transient slowdowns of ribo-
some pausing. A growing number of examples demonstrate the
involvement of ribosome stalling in gene expression (95). These
cases include regulatory functions of ribosome stalling, in
which the absence of stalling leads to pathological conditions
(e.g. the loss of FMRP function causing Fragile X syndrome), as
well as abnormal cases of ribosome stalling where it is the pres-
ence of stalling that leads to disease (e.g. coupling mutant tRNA
with impaired ribosome recycling causes neurodegeneration
(96)).

There are many triggers of ribosome stalling resulting from
abnormal translation or aberrant mRNA. These triggers

include chemical damage of the mRNA, mRNA cleavage, trans-
lation of the poly(A) tail or premature polyadenylation of a new
transcript, translation of the 3� UTR, or even certain amino acid
sequences in the nascent polypeptide (94, 97). Such triggers
lead to the turnover of the mRNA transcript through nonstop
decay or no-go decay pathways (98). Indeed, codon optimality
globally influences mRNA decay (99). Decreased optimality
slows A-site decoding, and in yeast it ultimately recruits the
DEAD-box helicase protein Dhh1 to initiate mRNA decay (100,
101).

Coupled with mRNA decay is the degradation of the nascent
chain by the ribosome-associated quality control (RQC) path-
way (60, 102), which is reviewed in detail elsewhere (94, 97). Of
note, however, protein degradation pathways can also be acti-
vated without mRNA decay (103). Upon stalling of a ribosome,
it was recently shown in yeast that upstream ribosomes will
collide with the stalled ribosome (104). Such ribosome queuing
then triggers the RQC cascade involving the systematic recruit-
ment of trans-acting factors. Ribosomal proteins of the 40S
small subunit are ubiquitinated by the ubiquitin ligase Hel2
(ZNF598 in mammals), which is facilitated by Asc1/RACK1
(60, 104 –108). The 80S ribosome then dissociates from the
mRNA after recruitment of ribosome recycling factors, i.e.
Dom34/Hbs1/Rli1 in yeast or Pelota/Hbs1L or Gtpbp2/ABCE1
in mammals (109). Some work also suggests that the canonical
translation termination factors can alternatively dissociate a
stalled ribosome (110). After dissociation, the 60S–nascent
chain complex associates with Rqc2/NEMF that facilitates the
binding and subsequent ubiquitination of the nascent chain by
Ltn1/Listerin, followed by extraction of the nascent chain and
degradation (102, 111–114). Highlighting the importance of
this pathway in regulating the fate of stalled nascent proteins,
disruption of RQC can lead to protein aggregation and neuro-
degeneration (115–117).

To discuss the impact of translation kinetics on gene expres-
sion more generally, consider a model that uses translation
kinetics to describe the probability of properly folding nascent
proteins (Fig. 3). In the optimal conditions of homeostasis,
translation kinetics consists of balanced nonuniform rates of
elongation that maximize the chances of a nascent polypeptide
acquiring its native conformation. Deviating from this balance
by aberrantly slowing elongation at some point along the tran-
script, as might be the case for a mutant gene, can decrease the
likelihood of protein folding. A long enough slowdown will trig-
ger mRNA decay and RQC pathways to down-regulate protein
production. By contrast, moving the balance of translation
kinetics toward aberrantly fast elongation will enhance transla-
tion efficiency and protein production, but with the trade-off of
increased protein aggregation, as might be seen with other dis-
eases or in some strategies of heterologous protein expression.
Therefore, maintaining balanced translation kinetics remains
critical for proteostasis as deviations in either direction of this
balance combine possibly aberrant gene expression with a
decreased likelihood of proper protein folding.

Conclusions and future perspectives

In this review, we have discussed how the kinetics of transla-
tion elongation impacts protein biogenesis. Nonuniform rates
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of elongation are conserved to balance accurate protein folding
with efficient protein production. At one level, there is a trade-
off between slower elongation helping to facilitate protein fold-
ing and faster elongation helping to prevent mistranslation.
The net consequence of disrupting either side of this balance is
often the same, both resulting in protein misfolding. At another
level, there is a trade-off in translation kinetics regulating gene
expression. So as not to sequester cellular resources, faster
translation ensures highly abundant and longer proteins are
efficiently synthesized. This is balanced with slower translation,
and even ribosome stalling events, serving as a means of down-
regulating gene expression by initiating mRNA and protein
turnover.

The trade-offs represented by each of these two levels reveal
both the complexity and importance of translation kinetics.
Indeed, it becomes imperative to take context into consider-
ation as changes in cellular conditions can alter balanced kinet-
ics. This is epitomized by analyzing the composition of the
tRNA pool, which can change in different environmental con-
ditions or different tissues, and thereby alter codon optimality
and its effects on the health of the proteome. Moreover, we
discussed the emerging concept of translation kinetics being
correlated with the activity of trans-acting factors that are
recruited to the ribosome. In light of the number of chaperones
and other proteins that associate with the ribosome, future
work is needed to dissect what and how trans-acting factors
respond to changes in translation kinetics depending on the
cellular conditions. The advent of ribosome profiling and the
development of additional technology have opened new doors
to probe these questions in the context of the cell. This has
helped establish the importance of translation kinetics in gen-
erating a functional proteome, and it has paved the way for

understanding the role that translation kinetics plays in the
context of human disease.
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