
Roles of the endoplasmic reticulum–resident, collagen-
specific molecular chaperone Hsp47 in vertebrate cells and
human disease
Published, Papers in Press, December 12, 2018, DOI 10.1074/jbc.TM118.002812

Shinya Ito‡ and Kazuhiro Nagata‡§¶1

From the ‡Institute for Protein Dynamics, §Department of Molecular Biosciences, Faculty of Life Sciences, and ¶CREST, Japan
Science and Technology Agency, Kyoto Sangyo University, Kyoto 603-8555, Japan

Edited by Norma M. Allewell

Heat shock protein 47 (Hsp47) is an endoplasmic reticulum
(ER)-resident molecular chaperone essential for correct folding
of procollagen in mammalian cells. In this Review, we discuss
the role and function of Hsp47 in vertebrate cells and its role in
connective tissue disorders. Hsp47 binds to collagenous (Gly–
Xaa–Arg) repeats within triple-helical procollagen in the ER
and can prevent its local unfolding or aggregate formation,
resulting in accelerating triple-helix formation of procollagen.
Hsp47 pH-dependently dissociates from procollagen in the cis-
Golgi or ER–Golgi intermediate compartment and is then trans-
ported back to the ER. Although Hsp47 belongs to the serine
protease inhibitor (serpin) superfamily, it does not possess ser-
ine protease inhibitory activity. Whereas general molecular
chaperones such as Hsp70 and Hsp90 exhibit broad substrate
specificity, Hsp47 has narrower specificity mainly for procolla-
gens. However, other Hsp47-interacting proteins have been
recently reported, suggesting a much broader role for Hsp47 in
the cell that warrants further investigation. Other ER-resident
stress proteins, such as binding immunoglobulin protein (BiP),
are induced by ER stress, whereas Hsp47 is induced only by heat
shock. Constitutive expression of Hsp47 is always correlated
with expression of various collagen types, and disruption of the
Hsp47 gene in mice causes embryonic lethality due to impaired
basement membrane and collagen fibril formation. Increased
Hsp47 expression is associated with collagen-related disorders
such as fibrosis, characterized by abnormal collagen accumula-
tion, highlighting Hsp47’s potential as a clinically relevant ther-
apeutic target.

Heat shock protein 47 (Hsp47) is a collagen-specific
molecular chaperone

Collagen is the most abundant protein in mammals, making
up a third of the total protein (1). In general, collagen functions

as a major component of the extracellular matrix (ECM),2
where it forms a specialized network around cells and is essen-
tial for cell– cell interactions and cell attachment to the base-
ment membrane. To date, 28 different types of collagen have
been identified in mammalian cells, all sharing a common
structural feature: a triple-helical domain composed of the
Gly–Xaa–Yaa three amino acid repeat, in which Xaa and Yaa
are often proline and hydroxyproline, respectively (2). Type I
collagen is a typical fibril-forming collagen consisting of two
�1-chains and one �2-chain, each of which is co-translationally
inserted into the endoplasmic reticulum (ER). The proline res-
idue at the Tyr position is hydroxylated by prolyl 4-hydroxylase
(3), and two �1-chains and one �2-chain assemble and form
inter-chain disulfide bonds among the C-propeptide regions of
each peptide (4). Triple-helix formation proceeds from the C to
the N terminus in a zipper-like manner, and correctly folded
procollagens are transported from the ER to the cell surface via
the large coat protein complex II (COPII) vesicle and Golgi
apparatus (5, 6). When procollagen reaches the outer surface of
the cell, its N- and C-propeptides are cleaved off by N- and
C-propeptidases, respectively, followed by formation of colla-
gen bundles in the ECM (7, 8). Efficient post-translational mod-
ification and subsequent folding of procollagens in the ER
require several chaperones. Although binding immunoglobulin
protein (BiP) or protein-disulfide isomerase is shared with
other secreted proteins (9, 10), heat shock protein 47 (Hsp47) is
specifically required for collagen folding (11).

Hsp47 was initially identified as a collagen-binding heat
shock protein residing in the ER (12) and was later reported
to function as a collagen-specific molecular chaperone that
is essential for the correct folding of procollagen in the ER.
Hsp47 is encoded by the SerpinH1 gene and belongs to the
serine protease inhibitor (serpin) superfamily, but it does not
inhibit serine proteases (13). Hsp47 transiently associates
with triple-helical procollagens in the ER and dissociates at
the cis-Golgi, returning to the ER via its ER retention signal
(14). In vitro, Hsp47 directly binds collagens and prevents
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collagen fibril formation (15). Hsp47 recognizes an Arg res-
idue at the Yaa0 position of Gly–Xaa–Yaa0 repeats within the
triple-helical form of collagen, as well as the amino acid in
the Yaa�3 position in the sequence Yaa�3–Gly–Xaa–Arg
(16, 17). The residue in the Xaa position does not contribute
to the interaction. Although many enzymes responsible for
post-translationalmodificationofprocollagenbindthemono-
mer form of procollagen, Hsp47 barely binds nontriple-hel-
ical procollagen (18). Information on the Hsp47– collagen
interaction was gleaned from the co-crystal structures of
canine Hsp47 and collagen model peptides (19). Hsp47 res-
idues Asp-385 and Arg-222 (numbering based on canine
Hsp47) interact with Arg at the Yaa0 and Yaa�3 positions of
the Yaa�3–Gly–Xaa–Arg sequence, respectively. The crystal
structure also revealed that Leu-381 and Tyr-383 of Hsp47
are responsible for hydrophobic interactions with triple-hel-
ical collagens, and Hsp47 undergoes no significant confor-
mational changes upon collagen binding.

Importantly, the interaction between Hsp47 and collagen is
pH-dependent: Hsp47 binds gelatin (denatured collagen)-Sep-
harose resin at neutral pH (�7.4), but it is eluted at low pH
(�6.3) (20). This is reflected in the dissociation constant (KD)
between Hsp47 and a collagen model peptide, which ranges
from 0.74 �M at pH 7.5 to 6.23 �M at pH 6.0 (21). In this pH-de-
pendent release mechanism of Hsp47, histidine residues with
pKa values of �6.1 are suggested to act as triggers. The in vitro
and cellular experiments suggested a cycle in which Hsp47
transiently associates with procollagen in the ER (neutral
pH) and then dissociates from procollagen once the complex
is transported from the ER to the cis-Golgi or ER-Golgi inter-
mediate compartment (ERGIC; low pH). Hsp47 itself is then
recycled back to the ER via interaction with the KDEL recep-
tor (14, 22).

Hsp47 knockout (KO) mice are embryonic lethal beyond 11.5
days post-coitus (dpc) (23). At 10.5 dpc, embryos of Hsp47 KO
mice are still viable but much smaller than wildtype (WT)
embryos, and they also contained fewer somites, indicating
developmental retardation. In Hsp47 KO embryos, the mature,
propeptide-processed form of collagen type I and fibril struc-
tures of type I collagen in mesenchymal tissues were barely
detectable. Additionally, basement membranes were discontin-
uously disrupted because type IV collagen was also affected. By
contrast, heterozygous Hsp47 KO mice appeared phenotypi-
cally normal. Hsp47 chondrocyte-specific KO mice (col2a1-
Cre; Hsp47-flox/flox) died just before or soon after birth, and
they exhibited severe generalized chondrodysplasia and bony
deformities, with lower levels of type II and type XI collagen
(24), demonstrating that Hsp47 is indispensable for well-orga-
nized cartilage and normal formation of endochondral bone.

In Hsp47 KO cells, the secretion of procollagens is delayed
relative to Hsp47 WT cells, resulting in accumulation of pro-
collagen in the ER (25, 26). Trypsin digestion experiments can
be used to evaluate the triple-helical conformation of procolla-
gens (27), and type I and type IV collagen secreted from Hsp47
WT cells is resistant to trypsin digestion, whereas that from
Hsp47 KO cells is sensitive (23, 25). Fibrils of type I collagen
produced by Hsp47 KO cells are abnormally thin and frequently
branched, and N-propeptides of secreted collagens are not pro-

cessed or retained, even in the ECM (26). These findings sug-
gest that procollagens are not correctly folded into the triple-
helical form in the ER of Hsp47 KO cells. Misfolded collagens in
Hsp47 KO cells form detergent-insoluble aggregates in the ER
following ER stress, as confirmed by the splicing of X-box–
binding protein 1 (XBP-1) mRNA, the up-regulation of C/EBP
homologous protein, and apoptosis (26, 28, 29). These aggre-
gated procollagens are eliminated through autophagy (30).
Thus, Hsp47 prevents aggregation of procollagen in the ER,
thereby ensuring efficient transport of procollagens from the
ER to the Golgi apparatus. Based on these in vivo and in vitro
experiments, Hsp47 appears to be indispensable for secretion
of stable triple-helical collagen into the ECM, and it has two
functions as a molecular chaperone: inhibition of local unfold-
ing of procollagen and inhibition of procollagen aggregation
(Fig. 1).

Transcriptional regulation of Hsp47 expression

Hsp47 was identified as a heat shock protein and is the only
heat-inducible chaperone in the ER of mammalian cells (12).
Upon heat shock, heat shock factor 1 binds a heat shock ele-
ment located �180 bp from the transcription initiation site of
Hsp47 and activates the transcription of Hsp47 mRNA (31).
Although many ER-resident chaperones, including BiP and
Grp94, are induced by accumulation of misfolded proteins in
the ER, Hsp47 is not induced by ER stress-response pathways
(32, 33). During embryonic development in medaka fish, ER
stress occurs physiologically (34). Two unfolded protein re-
sponse (UPR) transducer and transcriptional factors, ATF6 and
BBF2H7, are required when notochord cells differentiate into
sheath cells, which occurs concomitantly with the synthesis of
type II collagen. ATF6 adjusts expression levels of ER chaper-
ones, and BBF2H7 regulates a set of genes (Sec proteins,
Tango1, Sedlin, and KLHL12) that are essential for the enlarge-
ment of COPII vesicles to export type II collagen. However,
Hsp47 mRNA expression is not affected by BBF2H7 KO or
ATF6�/� double KO (35).

From an evolutionary perspective, the KAR2 gene of Saccha-
romyces cerevisiae encoding BiP has a functional heat shock
element and a UPR element that are involved in the induction
of Bip mRNA by unfolded proteins, and the two elements reg-
ulate transcription of KAR2 independently (36). However, in
mammals, the Bip gene does not include a heat shock element.
Hsp47 is conserved at least in vertebrates, although collagen is
conserved in all multicellular animals (37, 38). Analysis of the
gene structure and genomic organization of Hsp47/SerpinH1
in vertebrate genomes revealed an ancestral Hsp47/SerpinH1
locus in Japanese lamprey (Lethenteron japonicum), which has
remained on the same or similar locus for �500 million years
(37). A single copy of the serpinH1 gene was detected in the
genomes of human, chicken, and frog (Xenopus) using homo-
logy detection tools. However, the number of Hsp47 genes is
variable in fish; there are two copies in the genomes of takifugu
and medaka, but three copies in the genomes of cave fish and
zebrafish (37).

Notably, Hsp47 specifically binds to procollagens, whereas
other molecular chaperones such as Hsp60, Hsp70, BiP, and
Hsp90 exhibit broad substrate specificity (39). Although Hsp47
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is induced by heat stress, the constitutive expression of Hsp47 is
invariably correlated with expression of various types of colla-
gens in multiple tissue, cell types, and collagen-related patho-
logical conditions, including fibrotic diseases. Basal expression
of Hsp47 requires a binding site for the Sp1 transcriptional
factor, whereas tissue-specific expression is regulated by two
domains in the first and second introns. Hsp47 mRNA contains
a binding site for microRNA-29 (miR-29) in the 3�-untranslated
region (UTR) (40). The simultaneous down-regulation of
miR-29 and up-regulation of Hsp47 has been reported in pan-
creatic, gastric, and cervical cancers (41–43). The miR-29 fam-
ily plays an important role in the regulation of ECM-related
genes, suggesting that miR-29 might inhibit cancer cell migra-
tion and invasion. The introduction of miR-29 or silencing of
Hsp47 in breast cancer cells also suppresses malignant pheno-
types by reducing collagen deposition (40).

Clinical relevance of Hsp47

Osteogenesis imperfecta (OI)

Hsp47 is a collagen-specific molecular chaperone that is
essential for collagen synthesis at least in vertebrates. Thus,
unsurprisingly, Hsp47 is tightly associated with collagen-re-
lated diseases, including OI, keloid, and fibrosis. OI, also known
as brittle bone disease, is a genetic disease of connective tissue
characterized by bone fragility, bone deformity, growth defi-
ciency, and shortened life span. Most cases involving autosomal
dominant inheritance are caused by mutations in type I colla-
gen genes, which are associated with defective molecular
assembly of bone collagen. There are four types of OI (Sillence’s
classification) based on clinical features and disease severity
(44): OI type I (mild, common, with blue sclera); OI type II
(perinatal lethal form); OI type III (severe and progressively

Figure 1. Procollagen folding in the ER comparing Hsp47 WT and Hsp47 KO cells. Newly synthesized procollagen is inserted into the ER where it forms a
trimer with a triple-helical structure. The collagen-specific molecular chaperone Hsp47 binds to triple-helical procollagen in the ER and dissociates in the
cis-Golgi under low pH. Hsp47 prevents the local unfolding and aggregation of procollagens. In Hsp47 KO cells, collagen folding is impaired, and a fraction is
retained in the ER. Detergent-insoluble aggregates of procollagen and induction of ER stress are observed, ultimately triggering apoptosis. N-propeptides of
procollagen secreted from Hsp47 KO cells are not processed due to improper folding of the triple helix.
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deforming, with normal sclera); and OI type IV (moderate
severity with normal sclera). There is no cure for OI; treatment
is directed toward preventing fractures, controlling symptoms,
and developing bone mass.

In the last decade, recessive forms of OI resulting from muta-
tions in collagen-modifying enzymes and chaperones, such as
CRTAP, P3H1, CyPB, FKBP65, and Hsp47, have also been iden-
tified (45). Mutations in Hsp47 that lead to an OI phenotype
have been reported in both humans and dachshunds (Table 1),
comprising five missense mutations, including c.233T�C
(p.L78P), c.710T�C (p.M237T), c.977C�T (p.L326P), and
c.149T�G (p.L50R)/c.1214G�A (p.R405H), and two deletion
mutations, c.338_357del22 and c.314_325del12 (p. deletion of
Glu-105–His-108). The most severe symptoms were associated
with deletion mutant c.338_357del22, resulting in a premature
termination codon and nonsense-mediated decay of the abnor-
mal mRNA. The patient was delivered by cesarean section at 36
weeks’ gestation with a birth weight of 1600 g, and he died at 8
days of age with hemodynamic instability and pulmonary hem-
orrhage (46).

It is difficult to understand genotype–phenotype correla-
tions in OI patients with SerpinH1 mutations because the sam-
ple size is small. However, it seems that there is a correlation
between a decrease in the expression level of Hsp47 and the
severity of the phenotype. The L78P mutant of Hsp47 was
hardly detected in skin fibroblasts from the patient (47). In con-
trast, about half the amount of Hsp47 was detected in M237T
and L326P mutants compared with WT levels (48, 49). L78P
presented a more severe OI phenotype. The overmodification
of procollagens was observed in Hsp47 L326P mutant cells but
not in the human OI L78P patient. To compare the molecular
features of Hsp47 between mutants, stability and proteasome
sensitivity were examined by transfection of L78P and L326P
mutants into Hsp47 KO mouse embryonic fibroblast (MEF)
cells (50). The amount of Hsp47 in both OI mutants was
reduced due to ER-associated degradation of these structurally
unstable proteins by the ubiquitin–proteasome system. The
solubility of both Hsp47 mutants was considerably lower than
that of WT Hsp47, and neither mutant bound to collagen, sug-
gesting that these Hsp47 mutants lack the ability to bind pro-
collagen in the ER. Thus, the molecular mechanism of OI in
human and dog appears to involve not only a decrease in the
amount of soluble Hsp47 in the ER, but also a reduced ability of
Hsp47 to bind procollagens as a molecular chaperone.

Fibrosis

Fibrotic diseases, including liver, heart, kidney, and idio-
pathic pulmonary fibrosis, are characterized by the abnormal

accumulation of ECM components, including collagen, fol-
lowed by the onset of chronic inflammatory events. Long-term
pathological accumulation of collagen in the ECM disrupts the
normal structure and integrity and impairs the normal func-
tions of the organ (51). Although a vast number of patients
suffer from fibrotic diseases, no specific treatment is currently
available (52). An imbalance between collagen synthesis and
degradation caused by chronic inflammation results in abnor-
mal accumulation of collagen. Thus, regulation of collagen bio-
synthesis and secretion offers a promising target for the treat-
ment of these diseases.

Expression of both collagen and Hsp47 is increased dramat-
ically with the onset of liver fibrosis, idiopathic pulmonary
fibrosis, intestinal fibrosis, and glomerulonephritis (53–55). In
an experimental glomerulosclerosis model induced by anti-
Thy-1 antibodies, knockdown of Hsp47 using antisense oli-
godeoxynucleotides decreases collagen accumulation in mouse
kidneys (56). Knockdown of Hsp47 also suppresses peritoneal
fibrosis (57) and scar formation in rats (58). These studies
clearly indicate a promising strategy for fibrosis treatment;
inhibition of Hsp47 could suppress collagen accumulation and
thus reduce the progression of fibrotic diseases.

Several Hsp47 siRNA delivery systems have been developed.
In one system, injection of biodegradable cationized gelatin
microspheres containing Hsp47 siRNA can continuously re-
lease siRNA over 21 days as a result of microsphere degrada-
tion, which suppresses collagen expression and prevents peri-
toneal fibrosis (59). In another system, mesoporous silica
nanoparticles (MSNPs), which are biodegradable and have low
toxicity in vivo, can decrease reactive oxygen species (60). In a
bleomycin-induced scleroderma (skin fibrosis) mouse model,
intradermal administration of siHsp47–MSNPs effectively
reduced Hsp47 protein expression in skin to normal levels, and
reduced the pro-fibrotic markers, collagen type I, �-smooth
muscle actin, and NADPH oxidase 4 (Nox4), as well as skin
thickness (61). However, the most successful delivery system
to date involves vitamin A-coupled liposomes encapsulating
siRNA that targets Hsp47, and this system efficiently and pref-
erentially targets stellate cells that store vitamin A (62). Chronic
injury causes fibrosis in several organs by inducing collagen
production. When stimulated by reactive oxygen intermediates
or inflammatory cytokines, stellate cells are activated and trans-
form into myofibroblasts, which actively produce and secrete
collagen into the ECM (63). Thus, stellate cells are largely
responsible for fibrosis, and vitamin A-coupled liposomes
siRNA targeting Hsp47 can improve liver, pancreatic, pulmo-
nary, and skin fibrosis (62, 64 – 66).

Table 1
Hsp47/SerpinH1 osteogenesis imperfecta mutations
OI type is based on Sillence’s classification. Homo, homozygous; hetero, heterozygous.

Gene mutation Amino acid change Hetero-/homozygous Species OI type Ref.

c.338–357del Premature termination Homo Human II 46
c.233T3C p.L78P Homo Human III 47
c.149T3G/c.1214G3A p.L50R/p.R405H Compound hetero Human IV 94
c.314–325del p.delE105_H108 Homo Human IV 95
c.710T3C p.M237T Homo Human IV 48
c.977C3T p.L326P Homo Dog NAa 49

a NA means not available.
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During regression of liver fibrosis, half of activated hepatic
stellate cells (HSCs) undergo apoptosis, and the other half
escape apoptosis and revert to inactivated HSCs, which are
more rapidly reactivated in response to fibrogenic stimuli than
quiescent HSCs. The reactivation of these HSCs is regarded as a
risk factor for fibrosis (67). Treatment of siRNA targeting
Hsp47 induces apoptosis in HSCs (62); thus, dysfunction of
Hsp47 could alleviate fibrosis in two concomitant ways: inhibi-
tion of collagen secretion and induction of apoptosis in colla-
gen-producing cells. Down-regulation of Hsp47 or chemical
inhibition of Hsp47 function therefore represents a novel ther-
apeutic strategy for treating various fibroses (29).

Hsp47 mutants lacking the ability to bind to procollagen fail
to recover collagen secretion in Hsp47 KO fibroblasts (68), sug-
gesting that inhibitors targeting Hsp47–procollagen binding in
the ER offer another promising strategy for treating fibrotic
diseases. Some potential inhibitors of this interaction have been
identified by in silico screening based on the crystal structure
(69) and by screening for the ability to prevent collagen fibro-
genesis in vitro (70). However, no compound that inhibits
Hsp47 function both at the cellular level and in vivo has yet been
reported. Recently, we identified a small molecule compound
(Col003) that inhibits the interaction between Hsp47 and collagen
by screening chemical libraries. Col003 competitively inhibits the
Hsp47–collagen interaction, inhibits collagen secretion by desta-
bilizing the collagen triple helix, and decreases accumulation of
collagen in the ECM (68). Structural information obtained by
nuclear magnetic resonance (NMR) spectroscopy analysis
revealed that Col003 competitively binds to the collagen-binding
site of Hsp47, which could provide a basis for designing more
effective therapeutic drugs for managing fibrosis.

Hsp47 on the cell surface in rheumatoid arthritis (RA) and
thrombosis

Although Hsp47 localizes in the ER as the collagen-specific
molecular chaperone, Hsp47 was also reported to localize on
the cell surface in RA-related cell lines and platelets (71, 72). RA
is an inflammatory autoimmune disease, in which pain and
deformation of joints of arms and legs are caused by self-immu-
nity. Hsp47 was reported as RA-related antigen protein from a
human chondrosarcoma-derived chondrocytic cell line (71).
When cells are treated with inflammatory cytokines such as
TNF�, Hsp47 was detected on the cell surface by immunofluo-
rescence staining. The altered localization of Hsp47 to the cell
surface or the secretion into the blood may be used as the
marker of RA.

Hsp47 on the surface of human platelets was also reported by
proteomic analysis (72). Platelets, anucleate blood cells critical
for hemostasis, adhere to collagens at sites of vessel wall injury,
and form platelet aggregation that plugs the wound and pre-
vents blood loss. Hsp47 is detected on the surface of platelet
progenitor megakaryocytes and platelets by immunofluores-
cence and immunoblot (73). Inhibition of the interaction
between Hsp47 and collagen using Hsp47 antibody diminished
the formation of platelet aggregation. Platelet-specific Hsp47
KO mice (Pf4 (platelet factor 4)-Cre; Hsp47-flox/flox) reduced
thrombosis induced by laser in cremaster muscle arterioles and
needed more bleeding time. These data suggest that not only

well-known platelet collagen receptor glycoprotein VI but also
Hsp47 on the platelet surface interacts with collagen, stabilizes
platelet adhesion, and thrombus formation (73).

The above two studies suggest intriguing new aspects of
Hsp47 function. However, it is not well understood how Hsp47
localizes to the cell surface. One possible mechanism of the
transport of Hsp47 to the cell surface is that overexpression of
Hsp47 may saturate the Hsp47-anchoring protein in the ER,
such as the KDEL receptor, and overflow beyond the Golgi
apparatus (74). Because several ER oxidoreductases, ERp57 and
ERp72, were observed on the platelet surface (75, 76), the spec-
ificity of ER protein localization and function on platelets
should be investigated in the future.

New interactors of Hsp47

Recently, novel Hsp47-interacting proteins were identified
(Fig. 2). These binding partners could help to elucidate as-yet-
undefined biological roles of Hsp47.
Inositol-requiring enzyme 1� (IRE1�)

The UPR in the ER is a dynamic signaling network that helps
to maintain ER proteostasis (77). The UPR adjusts and matches
the protein folding capacity of the ER physiologically and
pathologically (78). Inositol-requiring enzyme 1� (IRE1�), a
type I ER transmembrane protein with serine/threonine pro-
tein kinase and endoribonuclease activities, is the most con-
served UPR transducer that determines the cell fate under ER
stress (79). Binding of the ER chaperone BiP to the luminal
domain of IRE1� maintains it in a monomeric inactive state.
Under ER stress, BiP preferentially associates with unfolded
proteins, releasing the inhibitory effects that which allow the
dimerization and autophosphorylation of IRE1�, triggering the
activation of its RNase domain. IRE1� catalyzes the unconven-
tional splicing of the mRNA encoding XBP-1, which modulates
the expression of ER components that respond to ER stress.
Although IRE1� is known to regulate ER stress via the UPR, the
mechanistic details of the regulation of IRE1� itself remain
poorly understood.

Interactome screening of IRE1� regulators identified Hsp47
as a candidate (80). Hsp47 directly binds to the ER luminal
domain of IRE1� with high affinity in vitro, displacing the neg-
ative regulator BiP from the complex to facilitate IRE1� oligo-
merization. Co-immunoprecipitation assays showed that
binding of endogenous Hsp47 to IRE1� is enhanced a short
time after ER stress induction, correlating with the release of
BiP from IRE1�. This indicates that Hsp47 is a novel IRE1�
interactor that adjusts IRE1� signaling and may be impor-
tant for a flexible and adaptive UPR pathway. Further inves-
tigation will hopefully clarify the novel role of Hsp47 in the
UPR, especially the connection between collagen folding and
ER stress regulation.

TANGO1

Procollagens folded in the ER form rigid rod-like structures
�300 nm in length (81) that are too large to enter conventional
COPII-coated vesicles, which are less than 90 nm in diameter,
suggesting that procollagen secretion from the ER requires spe-
cialized factors. TANGO1 has been identified as a cargo recep-
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tor for large proteins, including procollagens and pre-chylomi-
crons (6, 82). In mice, KO of TANGO1 results in delayed
secretion of various types of collagens, including types I, II, III,
IV, and VII, resulting in delayed chondrocyte and bone matu-
ration (83). TANGO1 forms a complex with cTAGE5, interacts
with Sec12 and Sec16 at the ER exit site, and tightly regulates
the Sar1 GTPase cycle to accomplish large cargo secretion (84).
The Src homology 3 (SH3) domain of TANGO1, located on the
inside of the ER, reportedly recognizes type VII collagen
because a mutant lacking the SH3 domain of TANGO1 does
not bind collagen type VII secreted from RDEB/FB/C7 cells in
pulldown assays (6). SH3 domains are small protein modules
mediating protein–protein interactions related to cell prolifer-
ation, migration, and cytoskeletal modifications (85).

Recently, the collagen-specific molecular chaperone Hsp47
was identified as a candidate guide molecule for directing col-
lagens to special vesicles by interacting with the SH3 domain
of TANGO1 (86). Purified chicken Hsp47 directly binds the
recombinant SH3 domain of human TANGO1, with a KD of
0.26 �M. The binding orientation between collagens, the SH3
domain, and Hsp47 was evaluated by surface plasmon reso-
nance, and binding of the SH3 domain to Hsp47 is not compet-
itive with the binding of Hsp47 to type I collagen. Therefore,
Hsp47 can function as an anchor molecule between the SH3
domain of TANGO1 and collagens. This finding may solve the
important question of how TANGO1 is able to recognize dif-
ferent types of collagens (83). Additional studies are required to
reveal the catch and release mechanisms of Hsp47, procollagen,
and TANGO1 in the ER exit site, because TANGO1 does not
enter the large COPII vesicles, whereas Hsp47 and procollagens
are packed into these vesicles, and Hsp47 is dissociated from
procollagens at the ERGIC or cis-Golgi. It would be intriguing
to investigate whether the TANGO1 and Hsp47 system can
evaluate and select the quality of procollagen at the ER exit site.

FKBP65

Collagens are structural ECM proteins that provide mechan-
ical support to tissues (87). To gain stability, collagens can form

intermolecular covalent cross-links between collagen telopep-
tide and helical domains, following telopeptide lysine hydrox-
ylation by lysyl hydroxylase 2 (LH2) (88, 89). FKBP65, a 65-kDa
FK506-binding protein encoded by the Fkbp10 gene, is an ER-
resident peptidylprolyl isomerase that forms complexes with
LH2 (90). FKBP65 is involved in collagen cross-linking by spe-
cifically mediating the dimerization of LH2, which is required
for LH2 activity. Fkbp10 KO mice die before birth due to a
growth delay and tissue fragility. Type I collagen isolated from
these mice revealed less stable cross-links at telopeptide lysines
(91). Furthermore, in Fkbp10 KO MEFs, procollagen secretion
was delayed, resulting in dilated ER, suggesting that FKBP65
also possesses chaperone activity for procollagens. Indeed,
FKBP65 inhibits the thermal aggregation of citrate synthase
and is involved in refolding denatured rhodanese (92). FKBP65
interacts with collagen and inhibits the in vitro fibril formation
of type I collagen.

In Hsp47 OI mutant (M227T) cells, Hsp47 is destabilized
and mislocalized, and FKBP65 is also destabilized at the pro-
tein level (48), suggesting that Hsp47 and FKBP65 act coop-
eratively during post-translational maturation of type I pro-
collagen and that FKBP65 and Hsp47 fail to properly interact
in M227T cells. In situ localization of the interaction
between Hsp47 and FKBP65 was detected using proximity
ligation assays with Fkbp10 KO fibroblasts as controls, and a
significant reduction in signal was observed in Hsp47
mutant cells compared with WT cells (48). These results
suggest that Hsp47 and FKBP65 interact or work in very
close proximity. Using purified endogenous proteins, inter-
actions between Hsp47, FKBP65, and collagen were exam-
ined in vitro, and Hsp47 and FKBP65 were found to engage in
a direct but weak interaction, whereas FKBP65 preferentially
interacts with Hsp47 rather than type I collagen (93). Taken
together, the findings indicate that FKBP65, LH2, and Hsp47
work together during procollagen maturation, contributing
to the molecular stability and post-translational modifica-
tion of type I procollagen.

Figure 2. Newly discovered molecules that interact with Hsp47. Hsp47 directly binds to the ER luminal domain of IRE1�, displacing the negative regulator
BiP from the complex to facilitate IRE1� oligomerization and modulate IRE1� signaling. Hsp47 also interacts with FKBP65, an ER-resident peptidylprolyl
isomerase involved in collagen cross-linking via LH2. These proteins work together during procollagen maturation, contributing to the molecular stability and
post-translational modification of type I procollagen. Hsp47 interacts with the SH3 domain of TANGO1, anchoring the molecule between TANGO1 and
collagens at the ER exit site. TANGO1 is the cargo receptor required for the enlargement of COPII vesicles to accommodate large proteins for secretion from
the ER.
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Although Hsp47 has been identified as a collagen-specific
molecular chaperone, newly discovered interacting proteins of
Hsp47, including IRE1�, TANGO1, and FKBP65 as above, indi-
cate a much broader role for Hsp47 that warrants further
investigation.
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