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The antibiotic trimethoprim is frequently used to manage
Burkholderia infections, and members of the resistance-nodulation-
division (RND) family of efflux pumps have been implicated in
multidrug resistance of this species complex. We show here that
a member of the distinct Escherichia coli multidrug resistance B
(EmrB) family is a primary exporter of trimethoprim in Burk-
holderia thailandensis, as evidenced by increased trimethoprim
sensitivity after inactivation of emrB, the gene that encodes
EmrB. We also found that the emrB gene is up-regulated follow-
ing the addition of gentamicin and that this up-regulation is due
to repression of the gene encoding OstR, a member of the mul-
tiple antibiotic resistance regulator (MarR) family. The addition
of the oxidants H2O2 and CuCl2 to B. thailandensis cultures
resulted in OstR-dependent differential emrB expression, as
determined by qRT-PCR analysis. Specifically, OstR functions
as a rheostat that optimizes emrB expression under oxidizing
conditions, and it senses oxidants by a unique mechanism
involving two vicinal cysteines and one distant cysteine (Cys3,
Cys4, and Cys169) per monomer. Paradoxically, emrB inactiva-
tion increased resistance of B. thailandensis to tetracycline, a
phenomenon that correlated with up-regulation of an RND
efflux pump. These observations highlight the intricate mecha-
nisms by which expression of genes that encode efflux pumps is
optimized depending on cellular concentrations of antibiotics
and oxidants.

Bacteria experience diverse environmental challenges during
host infection. To survive, they must withstand host-derived
stresses, such as changes in temperature, pH, generation of
reactive oxygen species (ROS),3 and nutrient scarcity. In addi-
tion, they may encounter antibiotics, disinfectants, and other
harmful chemicals. To proliferate in the face of such challenges,

bacteria employ diverse transcription factors, which respond to
the environmental changes and modulate gene expression.
Multiple antibiotic resistance regulator (MarR) family tran-
scriptional regulators often participate in regulating expression
of virulence genes in response to environmental cues (1). First
characterized in Escherichia coli K-12, MarR was shown to play
critical roles in conferring resistance to antibiotics, household
disinfectants, and oxidative stress (2). Members of the protein
family named for E. coli MarR are ubiquitous in bacterial spe-
cies, and the most common mode of transcriptional regulation
involves binding to the intergenic DNA between the gene
encoding the MarR homolog and divergently or adjacently ori-
ented genes, thereby hindering access of RNA polymerase to
the promoter. DNA binding by a given MarR family protein
may be modified upon binding to small-molecule ligands or
oxidants, a result of which is altered expression of genes in its
regulon (1).

Many pathogenic Burkholderia species exhibit inherent resis-
tance to a wide range of antibiotics and disinfectants (3). Efflux
systems involved in antibiotic resistance include the resistance-
nodulation-division (RND) efflux systems and the E. coli mul-
tidrug resistance B (EmrB) family transporters (3–5). Exten-
sively studied pathogens include Burkholderia pseudomallei, a
soil saprophyte causing melioidosis, and its clonal derivative
Burkholderia mallei, a host-adapted pathogen, which is the
causative agent of glanders (6). Both are categorized as category
B priority pathogens because of the low infectious dose, capa-
bility for aerosol transmission, and resistance to antibiotics (3).
By contrast, Burkholderia cenocepacia is an opportunistic
pathogen that primarily infects immunocompromised patients
(7). Burkholderia thailandensis is particularly closely related to
B. pseudomallei and B. mallei, and these species are founding
members of the B. pseudomallei (Bpc) group (8, 9). B. thailan-
densis is much less virulent despite conservation of many genes
involved in virulence (10).

One of the very early host responses to a bacterial infection is
the production of ROS. For example, NADPH oxidase gener-
ates superoxide radicals (O2

. ), which give rise to H2O2. H2O2
may in turn oxidize ferrous iron to generate highly reactive
hydroxyl radicals (OH�) (11, 12). ROS can target bacterial DNA,
protein, or membrane lipids and thus can attenuate bacterial
survival and proliferation in the host environment (13). Tran-
sition metals, such as Cu(II) and Zn(II), can also cause microbial
poisoning when in excess (14). In addition, Cu(II) can partici-
pate in the Fenton reaction and cause elevated intracellular
ROS production.
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Bacterial responses to ROS by transcriptional regulators
such as MarR family proteins have been described, including in
Burkholderia species (15, 16); oxidation of cysteine residues,
usually by reversible formation of disulfide linkages, leads to
conformational changes that allow such transcriptional regula-
tors to promote expression of genes involved in detoxification
of ROS or repair of ROS-mediated damage (17). The redox-
active Cu(II) has also been implicated in modification of MarR
proteins by inducing formation of disulfide linkages between
separate dimers, but with distinct outcomes (15, 18).

B. thailandensis encodes 12 annotated MarR homologs,
all of which are conserved in B. pseudomallei and B. mallei
(19). One of these is encoded by BTH_I0021, which is
upstream of a gene encoding an EmrB/QacA family transport
protein. This genomic locus is conserved among pathogenic
species such as B. pseudomallei, B. mallei, and B. cenocepacia
(19). Based on the identified roles of this MarR family protein in
oxidant sensing and control of a transporter, we have assigned
the name OstR (oxidant-sensing transport regulator). We
report here differential and OstR-dependent expression of
BTH_I0022 encoding the EmrB family transporter under
reducing and oxidizing conditions and that OstR employs a
novel response to oxidants involving vicinal cysteines. Notably,
disruption of BTH_I0022 confers sensitivity to trimethoprim,
an antibiotic commonly used in combination with sulfame-
thoxazole to treat Burkholderia infections. Unexpectedly, dis-
ruption of BTH_I0022 also confers increased resistance to tet-
racycline, a resistance that correlates with up-regulation of an
RND efflux pump.

Results

Conserved genomic locus encoding OstR and EmrB

The gene encoding OstR is immediately upstream of BTH_
I0022, which encodes an EmrB/QacA family drug resistance
transporter (Fig. 1A). A model of OstR was predicted using
SwissModel and 4AIK (Yersinia pseudotuberculosis RovA (20))
as a template, one of the structures with highest sequence iden-
tity to OstR (28%). This model shows the expected homodimer,
which consists of a dimerization region formed by N- and
C-terminal �1, �5, and �6 helices from both subunits and a
DNA-binding region that includes recognition helices �4/�4�
(arrow; Fig. 1B). In addition, each monomer contains N- and
C-terminal extensions beyond the conserved core fold that is
represented in the modeled structure, with the core fold span-
ning residues Ser28–Ala164 (Fig. 1B; terminal residues in gray
space-filling representation). The electrostatic surface potential
of the OstR core was calculated by Swiss PDB Viewer. Notably,
one lobe of the dimeric protein is predicted to be highly posi-
tively charged (Fig. 1C). The other lobe features a more usual
distribution of charges, being electropositive surrounding the
recognition helix and the wing regions, a common feature that
would promote interaction with the negatively charged cognate
DNA. The unusual surface charge distribution within one pro-
tein lobe appears to derive from a constellation of five Arg and
Lys residues, which is not balanced by equivalent negative
charge (Fig. 1D); salt bridges between Glu75 and Arg71/Arg78

are predicted, whereas the side chain of Glu27� is predicted to be
�8 Å from the other positively charged side chains (Lys36�,
Arg67, and Lys79). Another notable feature of the OstR

Figure 1. Burkholderia thailandensis OstR. A, ostR-emrB genomic locus. Transposon insertion is indicated by inverted triangles. Lines below the arrows
illustrating open reading frames represent the positions of PCR amplicons used for quantitative RT-PCR. B, predicted model of OstR based on template 4AIK,
created by SwissModel (in automated mode; GMQE 0.55) and visualized by PyMOL. One monomer is shown in cyan and the other is in gray, with positively
charged residues in blue and negatively charged amino acids in red. Serine at position 28 and alanine at position 164 (marking the range of amino acids
included in the model) are shown in space-filling representation. Black arrow, DNA recognition helix. C, electrostatic surface potential was calculated using Swiss
PDB Viewer (red, negative; blue, positive). D, magnified image of the positively charged patch. E, N- and C-terminal extensions of OstR that are not included in
the modeled structure, with cysteines in boldface type and underlined.
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sequence is the presence of three cysteine residues per mono-
mer, two vicinal cysteines (Cys3 and Cys4) in the N-terminal
extension that precedes the core MarR fold and Cys169 in the
C-terminal extension (Fig. 1E). With six cysteines per dimer,
regulation of OstR function by oxidation would be possible.

OstR regulates emrB differentially in response to oxidants

To assess whether OstR participates in regulation of emrB,
we obtained and verified B. thailandensis E264 mutant strains
in which ostR or emrB genes were disrupted by the insertion of
transposons at position 98 of ostR and position 89 of emrB open
reading frames, respectively, to generate �ostR and �emrB
strains (Fig. 1A) (21). Relative transcript levels of emrB were
measured in both WT and �ostR strains. emrB was up-regu-
lated 25.2 � 0.7-fold in the �ostR strain (Fig. 2A), suggesting
that OstR is a repressor of emrB. Complementation of �ostR
was attempted using plasmid-encoded ostR. Because a gentam-
icin-resistant derivative of the broad host range vector pBBR1-
MCS5 was used for this purpose, WT cells were transformed
with empty pBBR1-MCS5 (generating strain WTe) to control
for any effects of gentamicin on gene expression. However, res-
toration of WT levels of emrB expression was not achieved in
�ostR transformed with pBBR1-MCS5-ostR (�ostRc) and
grown with gentamicin, only an �20% reduction in expression
compared with WTe. To address the possible reason, expres-
sion of ostR was determined in WTe grown with gentamicin
and found to be significantly reduced (Fig. 2B). Consistent with
a gentamicin-mediated reduction in ostR expression, emrB
expression was �7-fold higher in WTe compared with WT
cells (Fig. 2A). This suggests that gentamicin negatively regu-

lates the expression of ostR, a consequence of which is increased
emrB expression.

Many MarRs are autoregulatory (1). To determine whether
any autoregulation of ostR by OstR occurs, we analyzed expres-
sion of the gene fragment that is upstream of the point of trans-
poson insertion (position 98 of the ostR ORF). There was no
significant difference in expression between WT and �ostR,
indicating that expression of ostR is not regulated by OstR (Fig.
2B). By contrast, analysis of ostR expression using primers,
which amplify a fragment that is downstream of the transposon
insertion, showed no expression in �ostR consistent with trans-
poson-mediated gene disruption (Fig. 2B, gel inset); combined
with the �25-fold increase in emrB expression in �ostR, this
experiment also shows that emrB is expressed under the control
of its own promoter.

To determine the effect of oxidants on the expression of
emrB, WT and �ostR strains were grown to mid-log phase fol-
lowed by incubation with a 2 mM concentration of the oxidant
H2O2 or CuCl2 for 30 min. RNA was isolated, and cDNA was
made using gene-specific primers for analysis of relative tran-
script levels by quantitative RT-PCR. In the presence of 2 mM

H2O2, emrB expression was increased 3.5 � 0.4-fold, whereas
incubation with 2 mM CuCl2 resulted in significant reduction in
emrB expression (0.4 � 0.01-fold; Fig. 2C). To determine
whether redox-inactive metals also regulate emrB expression,
we assessed Zn2�-dependent transcriptional regulation of
emrB. Gene expression analysis revealed an �2-fold increase in
emrB expression in the presence of 2 mM ZnCl2. No significant
change in emrB expression was observed in the �ostR strain in
the presence of oxidants or ZnCl2, suggesting that the observed

Figure 2. Regulation of gene expression. A, relative transcript level of emrB in WT, �ostR, WTe (containing empty vector), and �ostRc (complemented with
ostR) strains. -Fold changes are reported relative to the reference gene encoding glutamate synthase large subunit (BTH_I3014/BTH_RS27550) and normalized
to expression in WT cells, except for expression in �ostRc, which is reported relative to WTe. Error bars, S.D. values of three biological replicates. B, relative -fold
change in transcript level of ostR in �ostR strain calculated by the 2��CT method relative to the reference gene and normalized to expression in WT cells. The
gel shows expression of ostR in WT and �ostR strains. Lane 1, 100-bp DNA marker. C and D, relative abundance of transcript level of the gene encoding EmrB
in the presence of 2 mM H2O2, CuCl2, and ZnCl2 in WT and �ostR strains. The transcript levels were calculated using 2���CT relative to the reference gene and
normalized to expression in the corresponding unsupplemented cultures. Error bars, S.D. of three individual experiments. Asterisks represent statistically
significant differences in expression compared with WT cells, except as indicated in A, based on a Student’s t test (*, p 	 0.05; **, p 	 0.001).
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changes in gene expression in WT cells depend on OstR (Fig.
2D).

Gene disruption affects sensitivity to antibiotics and oxidants

For clues to the substrate for EmrB, the WT, �ostRX, and
�emrBX strains (in which antibiotic resistance cassettes were
removed from transposons) were serially diluted and spotted
on LB-agar plates containing antibiotics. It was previously
reported that expression of the corresponding B. cepacia EmrB
protein (named BcrA) in E. coli resulted in resistance to tetra-
cycline and nalidixic acid (22). Nalidixic acid was seen to be
toxic to WT cells and to �emrBX, whereas the �ostRX strain
was more resistant (Fig. 3B). A minimal inhibitory concentra-
tion (MIC) was estimated by growing the respective strains in
liquid culture containing serially diluted antibiotics; this analy-
sis indicated a similar MIC for WT and �emrBX cells, whereas
the MIC for �ostRX cells was higher (Table 1). The increased
resistance exhibited by �ostRX would be consistent with up-
regulation of emrB and more efficient export of nalidixic acid.

Resistance to tetracycline was likewise elevated in the �ostRX
strain, consistent with export through EmrB; however, resis-
tance was also increased in the �emrBX strain (Fig. 3C and
Table 1). Expression of two operons encoding RND efflux
systems (BpeEF-OprC and AmrAB-OprA) was previously
reported to be induced by the tetracycline derivative doxycy-
cline (23); a possible explanation for the increased resistance to
tetracycline in the �emrBX strain is therefore that failure to
export tetracycline through EmrB might lead to elevated intra-
cellular concentrations and induction of one or both of these
RND efflux systems. We therefore grew �emrBX and �ostRX
strains in the presence of different concentrations of tetracy-
cline and measured expression of amrB and bpeF (Fig. 4).
Expression of amrB was greater in �emrBX cells grown with at
least 10 �g/ml tetracycline, whereas expression of bpeF was
reduced. In contrast, expression of both amrB and bpeF was
reduced in �ostRX cells grown with tetracycline. This is consis-
tent with the inference that the increased resistance to tetracy-
cline characteristic of �emrBX cells is due to induction of the
operon that encodes AmrAB-OprA.

High concentrations of gentamicin were tolerated by WT
cells, with a further increase in resistance in �ostRX cells

(Fig. 3D and Table 1). Because increased resistance was also
observed in �emrBX cells, one possibility is that failure to
export gentamicin by EmrB may result in induction of an alter-
nate exporter, as seen for tetracycline. Notably, EmrB appears
to be a primary efflux system for trimethoprim; at a concentra-
tion of the antibiotic where growth of WT and �ostRX was
largely unaffected, as estimated by plate assays, growth of
�emrBX was severely compromised (Fig. 3E). Consistent with
EmrB being important for trimethoprim efflux, the MIC for
�emrBX cells was lower than the MIC for WT cells (Table 1).

Because emrB expression was sensitive to redox state (Fig.
2C), the strains were exposed to either 5 mM H2O2 or CuCl2 and
plated on LB-agar plates. Whereas the �emrBX strain exhibited
similar sensitivity to either oxidant as WT cells, �ostRX was
more sensitive to H2O2 but less sensitive to CuCl2 (Fig. 3, F and
G). This differential sensitivity is intriguing, and it parallels the
opposite effects of either oxidant on emrB expression, suggest-
ing that gene regulation by oxidized OstR depends on the iden-
tity of the oxidant. Exposure to ZnCl2, however, resulted in a
phenotype similar to that observed on treatment with tetracy-
cline and gentamicin (Fig. 3H).

Interaction of OstR with Zn2� and oxidants in vitro

OstR was examined in vitro, focusing on responses to the
inducers of differential emrB expression in vivo. The gene
encoding OstR was cloned, and the protein was expressed in
E. coli and purified using a nickel-nitrilotriacetic acid–agarose
column to apparent homogeneity (Fig. 5 (E and F), lanes 2). The
calculated molecular mass of monomeric OstR is �21 kDa.
Far-UV CD spectroscopy showed that the predicted secondary
structure composition of OstR is about 37% �-helix, 25%

Figure 3. Gene deletions alter resistance to antibiotics and oxidants. In each panel, the top row shows WT, the middle row shows �ostRX, and the bottom
row shows �emrBX (strains deleted for antibiotic resistance cassettes within transposons). Spots represent 10-fold serial dilutions of the indicated strains; the
doubling time of mutant strains (�60 min) is greater than that of WT cells (�26 min). A, LB. B, nalidixic acid (10 �g/ml). C, tetracycline (1 �g/ml). D, gentamicin
(150 �g/ml). E, trimethoprim (50 �g/ml). F, treatment with 5 mM H2O2. G, 5 mM CuCl2. H, 2 mM ZnCl2.

Table 1
MIC in LB medium

B. thailandensis
E264 derivative

Concentration
Nalidixic

acid Tetracycline Gentamicin Trimethoprim

�g/ml
WT 64 2 2,000 64
�ostRX 256 8 32,000 �1,000
�emrBX 64 4 16,000 16
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�-sheet, and 38% random coils (Fig. 5A). By comparison, the
structure of Deinococcus radiodurans HucR, which also has an
N-terminal extension beyond the conventional MarR fold,
reveals �55% �-helix, a helical content that is also reflected in
its CD spectrum; the lower �-helical content for OstR may

reflect that its unique N- and C-terminal extensions are not
helical (24, 25). The secondary structure of OstR was predicted
using the PSIPRED Protein Analysis Workbench (26); disorder
prediction using DISOPRED3 revealed that the extensions
beyond the core MarR fold represent intrinsically disordered

Figure 4. Expression of genes encoding AmrAB-OprA and BpeEF-OprC efflux pumps in the presence of tetracycline. A and B, expression of amrB
(BTH_I2444) in �emrBX and �ostRX, respectively. C and D, expression of bpeF (BTH_II2105) in �emrBX and �ostRX, respectively. Expression is reported relative
to unsupplemented cultures. Asterisks represent statistically significant differences in expression compared with unsupplemented cultures based on Student’s
t test (*, p 	 0.05; **, p 	 0.001). Horizontal axes identify the concentration of tetracycline (in �g/ml). Note that the ordinate scale for A differs from that in B–D.
Error bars, S.D.

Figure 5. Characterization of OstR. A, far-UV CD spectrum of OstR. Ellipticity is presented in machine units (millidegrees). B, thermal denaturation of OstR
determined by differential scanning fluorometry. Fluorescence intensity reflects binding of SYPRO Orange to hydrophobic regions of denatured protein as a
function of temperature. C, prediction of intrinsically disordered regions (blue) and likelihood of disordered regions participating in protein interactions
(orange). The y axis reflects confidence score, with values �0.5 considered relevant. D, release of metal ion from denatured OstR determined by absorbance of
PAR. Absorbance at 416 nm corresponds to uncomplexed PAR, whereas absorbance at 520 nm reflects formation of PAR–metal ion complex. E and F, OstR
oxidation by H2O2 (E) and CuCl2 (F). In both images, the left lanes show protein marker (kDa), lanes 2 show protein incubated with DTT (Rd; species migrating
at �43 kDa is residual oxidized protein), and lanes 3 show air-oxidized protein (O2). E, lanes 4 – 8, increasing concentration of H2O2 (10 �M to 2 mM). F, lanes 4 –7,
increasing concentration of CuCl2 (10 �M to 2 mM).
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regions and that they likely participate in protein interaction,
both with high confidence scores (Fig. 5C).

A thermal stability assay in which SYPRO Orange was used
as a fluorescent reporter of protein unfolding as a function of
temperature showed that reduced OstR exhibited a one-step
melting transition with a relatively low Tm 
 34.1 � 0.1 °C (Fig.
5B). Protein stability was found to increase in the presence of
DNA (Tm 
 39.3 � 0.2 °C) and Zn2� (Tm 
 37.2 � 0.1 °C) or
upon oxidation (Tm �39 °C; Table S1). Incubation of OstR with
bipyridyl prior to measurement of thermal stability did not
affect the Tm, indicating that purified OstR had no metal ions
already bound. To verify binding to metal ions, OstR was incu-
bated with 2 mM ZnCl2 followed by treatment with 4-(2-pyri-
dylazo) resorcinol (PAR). The metallochromic indicator PAR
chelates zinc ions released from the protein upon its denatur-
ation, which results in an absorbance peak at �520 nm, whereas
uncomplexed PAR has an absorbance maximum at 416 nm
(27). As shown by the marked absorbance at 520 nm, OstR
binds Zn2� (Fig. 5D).

Each OstR monomer harbors three cysteine residues, all
within the N- and C-terminal extensions (Fig. 1E). Reduced
OstR was therefore incubated with increasing concentration of
H2O2 and CuCl2, and oxidation products were analyzed by
electrophoresis on SDS-polyacrylamide gels. When oxidized
with H2O2, OstR formed dimers and oligomeric species as well
as intramolecular disulfide bonds, as indicated by a species with
a faster migration than reduced monomeric protein. In addi-
tion, OstR formed three dimeric forms with distinct mobility,
likely reflecting different disulfide-bonded species (Fig. 5E).

OstR was also oxidized by CuCl2. Whereas the appearance of
multiple dimeric species was more evident on H2O2-mediated
oxidation, intramolecular disulfide bonds and oligomeric spe-
cies were also seen upon oxidation with CuCl2.

OstR binds the emrB promoter

Electrophoretic mobility shift assays (EMSAs) were per-
formed to determine OstR binding upstream of emrB. Reduced
OstR bound the 146-bp DNA spanning ostR and emrB forming
multiple complexes (Fig. 6A). The apparent dissociation con-
stant Kd was 6.7 � 0.8 nM with Hill coefficient nH 
 1.9 � 0.3,
indicating positive cooperativity of binding (Table S2 and Fig.
6C). At lower protein concentration, the faster-migrating com-
plex C1 was visible, whereas the slower-migrating complex C3
remained predominant across a greater range of concentration.
Nonspecific binding may occur at even higher protein concen-
tration, leading to slower migration of the complexes. To
address whether OstR bound specifically to the emrB promoter,
increasing concentration of competitor DNA was added in the
reaction with specific labeled DNA and a constant concentra-
tion of the protein. Specific unlabeled DNA competed effi-
ciently for OstR binding (Fig. 6F, lanes 3– 8). Nonspecific DNA
did not compete as efficiently for OstR binding to its cognate
DNA (Fig. 6F, lanes 10 –15; note that the highest concentration
of specific competitor DNA represents a 250-fold excess over
specific labeled DNA, whereas the highest concentration of the
5,368-bp pET28b represents an almost 2,000-fold excess).

OstR was oxidized with 2 mM H2O2, and DNA binding was
visualized by EMSA (Fig. 6, B and D). The affinity of H2O2-

Figure 6. OstR binds emrB promoter DNA. A, EMSA showing reduced OstR binding emrB promoter DNA (0.2 nM). DNA was titrated with increasing concen-
tration of OstR (1–200 nM; lanes 2–14). Lane 1, free DNA only. Free DNA and protein–DNA complex are shown as FD and C1–C3, respectively, at the right. B and
E, EMSA showing oxidized OstR binding emrB promoter DNA. Reactions in lanes 1 contained free DNA only, and reactions in lanes 2 contained reduced OstR.
Lanes 3–14, operator DNA (0.2 nM) titrated with increasing concentration (1–200 nM) of oxidized protein (oxidized with 2 mM H2O2 and 5 �M CuCl2, respectively).
Normalized complex fraction for reduced OstR (C) and normalized complex fraction for H2O2-oxidized OstR (D) are plotted as a function of OstR concentration.
S.D. values of three replicates are represented as error bars. F, EMSA showing OstR (5 nM) bound to 0.2 nM labeled operator DNA challenged with increasing
concentration of specific unlabeled 146-bp operator DNA (0.2–50 nM, lanes 3– 8) or nonspecific DNA pET28b (0.2–10 nM, lanes 10 –15). The reaction in lane 1
contained free DNA only; the reactions in lanes 2 and 9 contained no competitor DNA.
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oxidized OstR for cognate DNA was not markedly different
from that of reduced protein (Kd 
 9.7 � 1.1). Incubation of
increasing concentration of 2 mM CuCl2-oxidized OstR with
emrB promoter DNA also showed no significant change in
DNA-binding affinity, Kd 
 6.5 � 1.0 (Fig. 6E and Table S2).

Substitution of cysteine residues leads to altered binding
affinity for promoter DNA

To determine the role of cysteines in oxidant sensing by
OstR, we replaced each cysteine with alanine and created three
individual cysteine mutants (OstR-C3A, OstR-C4A, and OstR-
C169A). Each variant was expressed in E. coli and purified to
apparent homogeneity (Fig. 7, lanes 2). The yield of OstR-
C169A mutant was lower compared with the other variants,
with precipitation observed after purification, indicating that
the absence of Cys169 may cause instability or improper folding.

Increasing concentrations of OstR-C3A, OstR-C4A, or
OstR-C169A were incubated with 146-bp emrB promoter DNA
followed by analysis of protein–DNA complexes by EMSA (Fig.
8, A, C, and E). OstR-C3A showed a modest reduction in DNA-
binding affinity with Kd 
 17.5 � 2.3 and Hill coefficient, nH 

1.6 � 0.3 (Fig. 8B). OstR-C4A exhibited a comparable reduc-
tion in DNA-binding affinity with Kd 
 23.4 � 3.2 and nH 

1.2 � 0.3 (Fig. 8D). Replacing Cys169 with alanine, however,
caused DNA binding to be significantly impaired, with Kd 

539 � 58 nM and nH 
 1.9 � 0.2 (Fig. 8E and Table S2). Because
the cysteine residues all reside in extensions beyond the core
MarR fold, these data suggest that modulation of these exten-
sions leads to structural rearrangements that impact the DNA-
binding region, an impact that implies an interaction between
the extensions and the protein core.

Cys169 participates in intramolecular disulfide bond formation

The role of individual cysteines in disulfide bond forma-
tion was investigated by incubation of OstR variants with
increasing concentration of H2O2 (Fig. 7, A, C, and E) or
CuCl2 (Fig. 7, B, D, and E), followed by analysis by SDS-
PAGE. All variants were readily oxidized on exposure to air
(lanes 3). Intramolecular disulfide bonds were seen for both
OstR-C3A and OstR-C4A, as evidenced by a product that
migrated faster than reduced, monomeric OstR (Fig. 7,
A–D). By contrast, such faster-migrating monomeric species
were absent with oxidized OstR-C169A (Fig. 7, E and F),
suggesting that Cys169 is required for intramolecular disul-
fide bond formation. Oxidized OstR-C3A and OstR-C4A
also formed two prominent dimeric species, whereas oxi-
dized WT OstR featured three dimeric species and oxidized
OstR-C169A formed only one. Higher-order oligomeric spe-
cies were observed in the presence of CuCl2, but not in the
case of H2O2-mediated oxidation.

All cysteines play a structural role

Differential scanning fluorometry showed that OstR-C3A
and OstR-C4A are thermally more stable (Tm 
 44.7 � 0.1
and 50.6 � 0.1 °C, respectively) than WT OstR (Fig. 9A (red
dotted line) and Fig. 7B (blue dotted line), respectively). The
addition of oxidants (H2O2 or CuCl2), however, resulted in
significant destabilization of these mutant variants, as
reflected in high initial fluorescence and the absence of a
melting transition (Fig. 9, A (blue dashed line) and B (purple
dashed line), respectively, and Table S3). Upon binding to
ligands such as DNA or zinc, both OstR-C3A and OstR-C4A
variants showed significant increase in thermal stability

Figure 7. Oxidation of OstR cysteine variants by H2O2 and CuCl2. A, C, and E, OstR-C3A. OstR-C4A and OstR-C169A oxidized with increasing concentration
of H2O2 (10 �M to 2 mM). B, D, and F, OstR-C3A. OstR-C4A and OstR-C169A oxidized with increasing concentration of CuCl2 (10 �M to 2 mM). Lanes 1, protein
marker (kDa); lanes 2, reduced protein (Rd); lanes 3, air-oxidized protein (O2), except for B, in which air-oxidized protein is not shown.
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(Table S3). By contrast, OstR-C169A exhibited a high initial
fluorescence and a decrement in fluorescence as a function
of temperature and no identifiable melting transition (Fig.
9C, orange dotted line). Such a pattern of interaction with
SYPRO Orange suggests that OstR-C169A exposes hydro-
phobic residues, indicating improper folding and a feature
reminiscent of molten globule formation. The addition of
oxidant had no effect on this pattern. In the presence of zinc,
OstR-C169A behaved as a globular protein with a clear melt-
ing transition (Fig. 9C, green dashed line). Incubation of
OstR-C169A with DNA also resulted in protein stabilization
(Table S3), consistent with the ability of this protein variant
to bind DNA (albeit with low affinity; Fig. 8 (E and F)). That
substitution of either cysteine impacted thermal stability is
consistent with the inference that both N- and C-terminal
extensions contact the protein core.

All three cysteine variants bind to zinc

The Zn2�-mediated changes in thermal stability of OstR cys-
teine variants suggested metal binding. All OstR variants were
incubated with 2 mM ZnCl2, followed by denaturation and mea-
surementofreleasedZn2�bychelationtoPAR.Significantabsor-
bance peaks at �520 nm were observed for all three variants,
indicating release of Zn2� from denatured proteins (Fig. 10,
A–C). This suggests that none of the three cysteines were
required to coordinate Zn2� in OstR. Based on this informa-
tion, we opted to assess whether Zn(II) binding modulated cys-
teine oxidation in vitro. The OstR variants were incubated with
2 mM ZnCl2 for 30 min, followed by oxidation with 12 mM

H2O2 for another 30 min. SDS-PAGE analysis showed that
both OstR-C3A and OstR-C4A formed intramolecular disul-
fide bonds, dimeric species, and higher-order oligomers

Figure 8. Cysteine variants bind DNA with reduced affinity. A, OstR-C3A binding emrB promoter DNA. DNA (0.2 nM) was titrated with increasing concen-
tration of OstR-C3A (1–200 nM; lanes 2–13). Lane 1, free DNA only. Free DNA and protein–DNA complex are shown as FD and C1–C3, respectively, at the right.
C and E, EMSA showing binding of OstR-C4 and OstR-C169A to promoter DNA, respectively. B, D, F, normalized complex fraction for OstR-C3A, OstR-C4A, and
OstR-C169A, respectively, plotted as a function of protein concentration. Error bars, S.D. of three replicates.

Figure 9. Differential scanning fluorometry showing thermal stability of cysteine variants. Fluorescence intensity reflects binding of SYPRO Orange to
hydrophobic regions of denatured protein as a function of temperature. A, reduced OstR-C3A (red dotted line; left and bottom axes) and H2O2 oxidized OstR-C3A
(blue dashed line; right and top axes). B, reduced OstR-C4A (teal dotted line; left and bottom axes) and H2O2-oxidized OstR-C4A (purple dashed line; right and top
axes). C, reduced OstR-C169A (orange dotted line; left and bottom axes) and OstR-C169A bound to Zn2� (green dashed line; right and top axes).
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(Fig. 10D, lanes 3 and 5, respectively). The OstR-C169A var-
iant also formed dimers (faint dimeric species in Fig. 10D,
lane 7) upon oxidation, but due to the presence of both metal
and oxidant, the protein precipitated significantly. That
Zn2� did not preclude cysteine oxidation is consistent with
the interpretation that neither Cys3, Cys4, nor Cys169 is
required for Zn2� coordination.

Discussion

Antibiotic efflux by EmrB

Trimethoprim inhibits dihydrofolate reductase, and it is fre-
quently used in combination with sulfamethoxazole (as co-tri-
moxazole) to treat Burkholderia infections. In B. pseudomallei,
the RND efflux pump BpeEF-OprC has been shown to extrude
trimethoprim (28). Our data identify the EmrB drug trans-
porter encoded by BTH_I0022 as another primary transporter
of trimethoprim, as evidenced by the increased sensitivity
imposed by its inactivation (Fig. 3E and Table 1).

Expression of the B. cepacia EmrB ortholog (BcrA) in E. coli
resulted in increased resistance to nalidixic acid and tetracy-
cline (trimethoprim was not tested) (22). The emrB expression
is increased in the �ostRX strain that shows enhanced resis-
tance to both nalidixic acid and tetracycline (Fig. 3 (B and C)
and Table 1), consistent with facilitated efflux. However, we
cannot rule out that genes encoding other drug transporters are
up-regulated as a result of inactivation of ostR, thereby confer-
ring or contributing to the observed resistance. Because inacti-
vation of the emrB gene did not result in increased sensitivity to
nalidixic acid, we also infer that other mechanisms for efflux of
this compound exist.

By contrast, the increased resistance to tetracycline in the
�emrBX strain points to a more intricate cross-talk between
efflux systems. The tetracycline derivative doxycycline was pre-
viously shown to induce expression of two RND efflux systems,

AmrAB-OprA at intermediate concentrations of doxycycline,
followed by BpeEF-OprC at very high drug concentrations (23).
It was also noted that the addition of an RND inhibitor resulted
in a 2–3-fold increase in expression of amrB, an overexpression
that was associated with elevated resistance to certain anti-
biotics. Consistent with these observations, we find that amrB
expression is induced in �emrBX cells grown with tetracycline,
an induction that does not occur in �ostRX cells. This is con-
sistent with the interpretation that failure to export tetracycline
through EmrB leads to induction of amrB (Fig. 4). Taken
together, these observations point to a complex mechanism for
induction of optimal efflux systems, which should be consid-
ered when attempting to restore multidrug resistance by con-
trolling activity of specific efflux pumps.

Redox-dependent differential regulation of emrB by OstR

OstR represses expression of emrB and modulates its expres-
sion under conditions of oxidative stress (Fig. 2). Preferred
binding of OstR to the emrB promoter is consistent with the
observed regulation. Reduced and H2O2-oxidized OstR bind to
emrB promoter DNA with comparable affinity (Fig. 6, A–D),
yet the presence of oxidant affects gene expression (Fig. 2C).
Changes in gene expression due to features other than altered
DNA-binding affinity of the cognate transcription factor have
been reported previously. For example, the redox-sensitive
MarR homolog HypR in Bacillus subtilis binds to DNA with
similar affinity regardless of redox state, but only oxidized
HypR activates target gene expression (29). Similarly, PecS
from the plant pathogen Pectobacterium atrosepticum binds to
promoter DNA with comparable affinity at pH 7.4 and 8.3, but
it represses gene expression only at alkaline pH; in the case of
PecS, the differential ability to repress gene activity was
ascribed to its pH-dependent ability to alter DNA topology (30).
Reduced and oxidized OstR may likewise impose distinct con-

Figure 10. All cysteine variants bind Zn2�. A–C, release of Zn2� from denatured OstR-C3A, OstR-C4A, and OstR-C169A, respectively, determined by absor-
bance of Zn2� in complex with PAR (peak absorbance at 520 nm). D, identified cysteine mutants were incubated with 2 mM ZnCl2 for 30 min followed by
treatment with 12 mM H2O2 for another 30 min (lanes 3, 5, and 7). Lanes 2, 4, and 6, Zn2�-treated OstR-C3A, OstR-C4A, and OstR-C169A, respectively.
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formational changes in promoter DNA that manifest as differ-
ential ability to compete with RNA polymerase for binding.

OstR also senses Cu2�, which results in further repression of
emrB (Fig. 2C). The opposite effects of H2O2 and Cu2� suggest
that the different oxidants result in different OstR oxidation
products and therefore distinct effects on gene expression; such
opposite effects also manifest in the distinct changes in sensi-
tivity to these oxidants imposed by deletion of ostR, consistent
with differential control of genes in the OstR regulon (Fig. 3, F
and G). Reduced and Cu2�-oxidized OstR also bind to pro-
moter DNA with equivalent affinity (Table S2). By comparison,
the B. thailandensis MarR homolog BifR, which is also subject
to Cu2�-mediated oxidation, forms a dimer of dimers when
oxidized and acts as a “superrepressor” to attenuate gene
expression further even though oxidation has little effect on
DNA-binding affinity (15). Taken together, our data suggest
that reduced OstR represses emrB and that it operates as a
rheostat in the presence of oxidants to optimize emrB
expression.

Modification of cysteines affects stability of OstR

Oxidation of OstR and the Cys-to-Ala mutants results in for-
mation of dimeric species (Figs. 5 (E and F) and 7). As evidenced
by the formation of an oxidized species that migrates faster than
reduced, monomeric OstR, we also infer that Cys169 can partic-
ipate in intramolecular disulfide linkages with either Cys3 or
Cys4 (Fig. 7). The presence of three dimeric species upon oxi-
dation of WT protein (two dimeric species with OstR-C3A and
OstR-C4A and one dimer with oxidized OstR-C169A) could be
explained by the formation of intermolecular disulfide bonds
involving either Cys3 or Cys4 from two OstR dimers alone (as
seen for OstR-C169A) or in combination with intramolecular
disulfide linkages between Cys169 and either Cys3 or Cys4,
resulting in oxidized species with distinct mobilities.

Differential scanning fluorometry reveals that OstR-C169A
exposes hydrophobic residues (Fig. 9C), suggesting that it is
intrinsically unfolded or that it exists in a molten globule state
(25); considering that a closely packed protein conformation
with a distinct melting transition is restored in the presence of
Zn2� or DNA, we speculate that it may be the latter. By con-
trast, OstR-C3A and OstR-C4A mutants are thermally more
stable compared with WT OstR (Tables S1 and S3). That ther-
mal stability is altered as a result of either mutation indicates
that neither N- nor C-terminal extensions are disordered;
rather, they are docked to the core fold of the protein (consis-
tent with the prediction for participation in protein interaction;
Fig. 5C).

Notably, oxidation of both OstR-C3A and OstR-C4A leads to
a fluorescence profile similar to that observed for reduced
OstR-C169A, indicating disruption of the protein fold (Fig. 9, A
and B). The unusual electrostatic surface potential that charac-
terizes one lobe of OstR in which positively charged residues
are predicted to be clustered (Fig. 1, C and D) affords a clue to
the observed destabilization of cysteine mutants. We propose
that the C-terminal extension interacts with this positive patch
and that a thiolate anion of Cys169 is required to neutralize
excess positive charges; electrostatic interactions that stabilize
the thiolate anion would lower the pKa of cysteine compared

with its intrinsic pKa of �8.5 (31). In the absence of Cys169,
electrostatic repulsion would result in a disruption of the com-
pact protein fold. This model also explains the need for the
vicinal cysteines in the N-terminal extension and the observed
destabilization that occurs on oxidation of OstR-C3A and
OstR-C4A; upon formation of an intramolecular disulfide
bridge between either Cys3 or Cys4 and Cys169, the Cys169 thio-
late is lost. Protein stability, therefore, requires the thiolate
form of the neighboring N-terminal cysteine, rationalizing why
oxidation of an OstR variant with only one N-terminal cysteine
would lead to a loss of the protein fold.

The addition of ZnCl2 increases thermal stability of WT
OstR and all cysteine variants (Tables S1 and S3), and the PAR
assay supports the conclusion that OstR binds Zn2� (Figs. 5D
and 10 (A–C)). Because Zn2�-binding restores a compact fold
to OstR-C169A, one possibility is that it coordinates residue(s)
in the N-terminal extension and near the positively charged
patch (Fig. 1, D and E), thereby promoting association of the
N-terminal vicinal cysteines (which are preceded by His) with
the positively charged patch, supplying a required negative
charge.

Taken together, our data identify B. thailandensis OstR as a
novel oxidant-sensitive regulator of the downstream gene
encoding an EmrB family transporter. Its unique N- and C-ter-
minal extensions contact the core fold of the protein, in the
process modulating protein stability and responses to oxidants.
Substrates for EmrB include commonly used antibiotics;
whereas inactivation of emrB leads to trimethoprim sensitivity,
it results inmarkedly increasedresistancetotetracycline,a resis-
tance that correlates with induced expression of the RND efflux
pump AmrAB-OprA, illustrating the intricate mechanisms by
which expression of genes encoding efflux pumps is optimized
depending on cellular concentrations of inducing antibiotic.

Experimental procedures

Protein modeling and purification

PyMOL was used to visualize the model of OstR, which was
generated by homology modeling using SwissModel in auto-
mated mode and Protein Data Bank entry 4AIK as template
(selected as allowing the most residues of OstR to be included in
the model).

The gene encoding B. thailandensis E264 OstR was ampli-
fied from genomic DNA using primers OstR_tran_Fw and
OstR_tran_Rv containing NdeI and EcoRI restriction sites,
respectively (Table S4). The PCR product was cloned into
pET28b after restriction digestion with NdeI and EcoRI to
express N-terminal His6-tagged protein. The construct was
verified by sequencing and then transformed into E. coli
BL21(DE3). Cells were grown until mid-exponential phase at
37 °C in LB with 50 �g/ml kanamycin, followed by induction
using 1 mM isopropyl �-D-1-thiogalactopyranoside. After 1 h,
cells were pelleted at 4 °C and stored at �80 °C. Cell pellets
were thawed, and cells were resuspended in wash buffer (50 mM

sodium phosphate (pH 7.0), 250 mM NaCl, 5% glycerol).
Lysozyme (final concentration 1 mg/ml) and 2 �l of DNase I
with 50 �l of 10� DNase I reaction buffer were added to each
5-ml cell suspension, which was incubated at 4 °C for 60 min.
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Lysate was obtained by centrifugation at 10,000 � g for 1 h at
4 °C and incubated with 1 ml of HIS-Select nickel affinity beads
(previously washed with two volumes of distilled H2O and one
volume of wash buffer) at 4 °C for 1 h. The beads were then
transferred to a gravity flow column to elute protein by the
addition of increasing concentrations of imidazole (10 –200
mM). Pure protein fractions were detected by SDS-PAGE,
pooled, and concentrated using Amicon centrifugal filter units
(Millipore). Protein was dialyzed overnight against 50 mM

sodium phosphate (pH 7.0), 250 mM NaCl, 10% glycerol, and
5 mM 2-mercaptoethanol. Concentrations were determined
based on the absorbance at 280 nM, using a calculated extinc-
tion coefficient of 7,450 M�1 cm�1. To create cysteine-to-ala-
nine substitutions, overhanging primers (Table S4) were used
to amplify the whole plasmid harboring the ostR gene, reactions
were incubated with DpnI, and the DNA was transformed into
E. coli TOP10 (Invitrogen); plasmids were sequenced for veri-
fication. Mutant proteins were purified as described above.

To determine secondary structure of the protein, the far-UV
CD spectrum was measured using a Jasco J-815 CD spectropho-
tometer (32). In brief, 0.2 mg/ml protein in CD buffer (20 mM

sodium phosphate (pH 7.0), 20 mM NaCl, 0.8% glycerol, and 1.5
mM DTT) was used to measure ellipticity. A quartz cuvette
with 0.1-cm path length was used after equilibrating protein
the sample at room temperature. The K2D program from
Dichroweb was used to calculate secondary structure of the
protein (33–35). The fitness of data was determined by the
normalized root mean square deviation value at a range of
0.094 – 0.110.

To determine oligomeric states upon oxidation, WT protein
and cysteine mutants were treated with increasing concentra-
tion of the oxidants (H2O2 and CuCl2) on ice for 20 min fol-
lowed by termination of the reaction by adding Laemmli sam-
ple buffer without 2-mercaptoethanol. Samples were analyzed
by SDS-PAGE after heating at 90 °C for 8 min, followed by
staining with Coomassie Brilliant Blue.

DNA binding

To determine protein–DNA interaction, an EMSA was per-
formed. Increasing concentration of OstR was incubated on ice
for 30 min with 146-bp ostR-emrB intergenic DNA amplified
from B. thailandensis E264 genomic DNA with primers
BTH_22int_Fw and BTH_22int_Rv (Table S4) and 5�-end–
labeled using [�-32P]ATP and T4 polynucleotide kinase. Pro-
tein and DNA were mixed in binding buffer containing 20 mM

Tris-HCl (pH 8.0), 50 mM NaCl, 0.1 mM EDTA, and 0.1 mM

DTT. Pre-run 8% polyacrylamide gels were used to separate
free DNA and protein–DNA complex, followed by phospho-
rimaging using a Typhoon PhosphorImager (GE Healthcare).
Densitometric data were quantified by ImageQuant version 5.1
and are presented based on an average of three replicates � S.D.
KaleidaGraph version 4.0 (Synergy Software) was used to cal-
culate the equilibrium dissociation constant (Kd) by fitting the
data to the equation, fmax � (PnH/Kd)/(1 � PnH/Kd

nH), where
fmax is maximal saturation, P is OstR concentration, and nH is
the Hill coefficient. EMSA was performed also at 37 °C.

To determine the effect of oxidants on protein–DNA bind-
ing, increasing concentrations of oxidized OstR (previously

oxidized with 2 mM H2O2 or 5 �M CuCl2) were incubated with
intergenic DNA, and EMSAs were performed as described
above. To assess the specificity of DNA binding, protein and
labeled DNA was titrated with increasing concentrations of
unlabeled specific 146-bp operator DNA or with nonspecific
unlabeled DNA (pET28b), followed by EMSA.

Thermal stability assay

3 �M protein was added to thermal stability assay buffer (50
mM Tris (pH 8.0), 50 mM NaCl) along with SYPRO Orange
(5�). Increasing temperature from 5 to 94 °C (in 1 °C incre-
ments) was used in an Applied Biosystems 7500 real-time PCR
system for protein unfolding, which was measured by fluores-
cence of SYPRO Orange bound to the hydrophobic core of
denatured protein. Corrected fluorescence emission was
obtained by subtracting control values. SigmaPlot version 9 was
used for determination of melting temperature by regression
analysis using a four-parameter sigmoidal equation. The Tm
was calculated from the averages of three technical replicates
obtained from each of three independent experiments and is
presented as mean � S.D.

Metal binding

Proteins were incubated with 50 mM 2,2�-bipyridyl at 4 °C to
remove any bound metals. Bipyridyl-treated proteins were dia-
lyzed overnight against buffer A (50 mM Tris-HCl (pH 8.0), 250
mM NaCl, 2 mM 2-mercaptoethanol, and 10% glycerol) and then
incubated with 1 mM ZnCl2 on ice for 30 min and again dialyzed
overnight against buffer A to remove unbound metal. Proteins
were denatured by adding 1% SDS in assay buffer (20 mM Tris-
HCl (pH 7.5), 50 mM sodium chloride) followed by heating at
90 °C for 10 min. 100 �M PAR was added to each sample and
buffer control, and an Agilent 8453 spectrophotometer was
used to measure absorbance from 320 to 630 nm. Fluorescence
data are reported as the mean of three technical replicates from
representative experiments.

Confirmation of transposon mutants and removal of
antibiotic resistance cassettes

ostR (BTH_I0021) and emrB (BTH_I0022) were disrupted by
the insertion of transposon T8 at position 98 of the ostR ORF
to generate strain BTH_I0021–153:ISlacZ-hah-Tc and T23 at
position 89 of emrB (strain BTH_I0022–124::ISlacZ-PrhaBo-
Tp/FRT). Transposon inserted mutants (�ostR and �emrB) were
obtained from the Manoil laboratory and grown on LB-agar plates
with 80 �g/ml tetracycline and 50 �g/ml trimethoprim, respec-
tively (21). Single colonies were grown overnight after inoculating
in LB medium with the respective antibiotics. To verify correct
insertion of transposons, PCR was performed using primers
BTH_21_Fw, BTH_22int_Fw, and LacZ_148 (Table S4).

Transposon insertion mutants �emrB and �ostR harbor tri-
methoprim and tetracycline antibiotic cassettes, respectively.
Plasmids pFLPe4 or pCRE3 (a generous gift from H. Schweizer)
were used to remove the antibiotic resistance cassettes from
�emrB or �ostR, respectively (36, 37). In brief, Flp/Cre recom-
binase-encoding pFLPe4 or pCRE3 plasmid was transformed
into E. coli TOP10 cells. Tri-parental mating was performed to
transfer plasmids harboring Flp/Cre recombinase into �emrB
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or �ostR stains, respectively. Selection was done on LSLB/ka-
namycin (for pFlpe4) or LSLB/ampicillin (for pCRE3) plates at
30 °C (where LSLB denotes low-salt LB). To induce flp or cre
expression, selected colonies were streaked on LSLB/kanamy-
cin/rhamnose (for pFlpe4) or LSLB/ampicillin/rhamnose (for
pCRE3) plates. Corresponding antibiotic-sensitive clones were
grown at 37 °C to induce loss of the temperature-sensitive pFlpe4/
pCRE3. Removal of antibiotic cassettes was confirmed by PCR
using primers (Tra_delE_Fw, Tra_delE_Rv; Cre_del21_Fw,
Cre_del21_Rv; Table S4). �emrB and �ostR strains in which anti-
biotic resistance cassettes were removed were named�emrBX and
�ostRX.

Genetic complementation

ostR with 170 bp upstream of the coding sequence was ampli-
fied using primers OstR_XbaI_Fw and OstR_KpnI_Rev (Table
S4), which contain XbaI and KpnI sites, respectively. Digested
PCR product was then cloned into the gentamicin-resistant
broad host range cloning vector pBBR1-MCS5 (38). The con-
struct was transformed into E. coli TOP10 (Invitrogen), and
plasmid was verified by sequencing.

Tri-parental mating was performed to transfer plasmid har-
boring ostR to the B. thailandensis E264 �ostR strain. Conjuga-
tion was performed by mixing overnight cultures of donor
(E. coli TOP10 containing pBBR1-MCS5 plasmid harboring
ostR, grown in the presence of 80 �g/ml gentamicin), recipient
(�ostR grown in the presence of 80 �g/ml tetracycline), and
helper strain (HB101(pRK2013:Tn7)) in a ratio of 1:1:2. Resid-
ual antibiotics were removed by centrifuging the cells and
washing pellets with 1.0 ml of LB four times. The pellets were
then resuspended in 50 �l of LB and spotted on a preheated LB
agar plate. After 12 h of incubation, cells were scraped off and
resuspended in 1.0 ml of LB, and serial dilutions were spotted
on LB-agar plates with 80 �g/ml tetracycline, 250 �g/ml gen-
tamicin, and 8 �g/ml chloramphenicol. Individual colonies
were screened to verify trans-conjugants by PCR with primers
Con_pBBR_XbaI and Con_pBBR_KpnI (Table S4). The com-
plemented strain is referred to as �ostRc. Empty plasmid
pBBR1-MCS5 without the ostR gene was similarly transferred
to WT B. thailandensis, and the strain was referred to as WTe.

Gene expression analysis

WT and mutant strains were grown overnight, followed by a
1:100 dilution of each culture in fresh LB media. Cultures were
grown until A600 of �0.5, and cells were harvested by centrifu-
gation and washed with ice-cold diethyl pyrocarbonate–treated
water. To determine the effect of oxidants (H2O2 or CuCl2) and
ZnCl2 on gene expression, cells were grown until A600 of �0.5
and treated with 2 mM H2O2, 2 mM CuCl2, or 2 mM ZnCl2 for
30 min, followed by harvesting and washing with diethyl
pyrocarbonate–treated water. The effect of tetracycline on
gene expression in �ostRX and �emrBX strains was determined
after growing the cells overnight with tetracycline (5, 10, 20, 50,
and 128 �g/ml). Cells were stored at �80 °C. The Illustra
RNAspin Mini Isolation kit (GE Healthcare) was used to isolate
total RNA. Any genomic DNA contamination was removed by
Turbo DNase (Ambion) treatment, and PCR was performed
using fresh RNA samples to verify the absence of genomic

DNA. NanoDrop (Thermo Scientific) was used to measure the
concentration of RNA. cDNA was prepared using gene-specific
primers (Table S4) and 1 �g of RNA with 1 mM MgCl2, 1 mM

dNTP, 10 units of avian myeloblastosis virus reverse transcrip-
tase (New England Biolabs) in 1� avian myeloblastosis virus
reverse transcriptase buffer. The reaction mixture was incu-
bated at 42 °C for 60 min. The qPCR was performed using a
QuantStudio 6 Flex Real-Time PCR system and SYBR Green I
(Sigma) to detect gene expression. Data were normalized to the
reference gene glutamate synthase large subunit, which was
amplified using primers GluSyn_qPCR_Fw and GluSyn_qP-
CR_Rv and expressed as 2��CT. The comparative CT method
(2���CT) was used to analyze the effect of antibiotics, oxidants,
and ZnCl2 on gene expression. All expression analyses were
performed in biological triplicates and are presented as mean �
S.D.

Plate assay and MIC determination

Sensitivity to antibiotics and oxidants was assessed by plate
assays. Overnight cultures of WT and mutant strains were
diluted 1:100 using LB medium and grown at 37 °C to A600
�0.6. To assess the susceptibility to antibiotics, 5 �l of 10-fold
serial dilutions were spotted on LB-agar plates containing the
desired antibiotic (nalidixic acid, tetracycline, gentamicin, or
trimethoprim). To determine the response to oxidants, 1 ml of
each culture was incubated with 5 mM H2O2 or CuCl2 for 30
min at 37 °C, followed by spotting 5 �l of 10-fold serial dilutions
on LB-agar plates. Plates were incubated at 37 °C for 18 –22 h.

MICs were estimated by preparing 2-fold dilutions of antibi-
otics in LB in 96-well microtiter plates. Overnight cultures were
freshly diluted 1:100 in LB and grown to exponential phase; an
equal volume of culture was added to the microtiter wells at an
A600 of �0.6. Cell growth was determined visually after incuba-
tion at 37 °C for 24 h.
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