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The molecular chaperones are central mediators of protein
homeostasis. In that role, they engage in widespread protein–
protein interactions (PPIs) with each other and with their “cli-
ent” proteins. Together, these PPIs form the backbone of a net-
work that ensures proper vigilance over the processes of protein
folding, trafficking, quality control, and degradation. The core
chaperones, such as the heat shock proteins Hsp60, Hsp70, and
Hsp90, are widely expressed in most tissues, yet there is growing
evidence that the PPIs among them may be re-wired in disease
conditions. This possibility suggests that these PPIs, and per-
haps not the individual chaperones themselves, could be com-
pelling drug targets. Indeed, recent efforts have yielded small
molecules that inhibit (or promote) a subset of inter-chaperone
PPIs. These chemical probes are being used to study chaperone
networks in a range of models, and the successes with these
approaches have inspired a community-wide objective to pro-
duce inhibitors for a broader set of targets. In this Review, we
discuss progress toward that goal and point out some of the
challenges ahead.

Molecular chaperones help ensure protein homeostasis (i.e.
proteostasis), playing essential roles in the folding, trafficking,
sequestration, and turnover of proteins (1). There are �150
genes for molecular chaperones in the human genome, includ-
ing the heat shock proteins Hsp110, Hsp90, Hsp70, Hsp60,
Hsp27, etc. and the associated proteins such as co-chaperones,
TCP-1 ring complex (TRiC),2 protein-disulfide isomerases
(PDIs), peptidyl-prolyl cis-trans isomerases (PPIases), calnexin/
calreticulin, and more (2, 3). Together, the coordinated activity
of these factors serves to balance proteostasis and protect cells

from protein misfolding and/or aggregation. Other articles in
this Review Series cover the structure and function of the indi-
vidual chaperone families in more detail. Here, we focus on the
roles played by chemical probes in understanding their activity
(4, 5). For example, our knowledge of Hsp90 biology has bene-
fitted from the availability of chemical inhibitors, which can
be applied to cells or organisms to ask how Hsp90 might be
involved in a process. In this Review, we briefly introduce how
chemical probes are developed and then outline how these
ideas are being applied to chaperones.

What is a chemical probe?

One simple definition of a chemical probe is as follows: a
small molecule that, at a given concentration, selectively inhib-
its the function of a biological target (6). It is essential that a
chemical probe be selective for the intended target. Otherwise,
it is difficult to ascribe its activity in cells or organisms to the
function of the intended protein (7). Accordingly, the commu-
nity of chemists and chemical biologists has developed an intu-
itive, experimental workflow that can be used to understand
whether a molecule might be sufficiently selective to be consid-
ered a chemical probe. In 2010, Frye (6) published an influential
commentary that coalesced many of these emerging ideas, and
this concept has been expanded and extended by others (8, 9).
From a pragmatic perspective, a good chemical probe is typi-
cally evaluated through a combination of chemical, biochemi-
cal, and genetic experiments (Table 1). Often, this process starts
with discovery of an active molecule in a high-throughput
screen. Then, a medicinal chemistry campaign is used to create
analogs that reveal the relationship between the compound’s
chemical structure and its activity in vitro (e.g. binding and/or
functional assays) and in cells (e.g. cell growth, gene expression,
or another phenotype). This correlation is typically referred to
as a structure–activity relationship (SAR). An important (and
sometimes overlooked) product of an SAR campaign is the
selection of a negative control molecule, which is structurally
similar to the active molecules but does not bind to the target.
Finally, this process is often coupled with determination of the
solubility, metabolism, permeability, and lifetime of key ana-
logs. Together, these studies provide a chemical and pharma-
cological basis for understanding how much active compound
is present and whether it would be expected to bind to the
intended target under those conditions.

From this starting point, the putative probe and its controls
are then evaluated in a series of cell-based experiments that are
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intended to establish confidence that, at a given concentration,
it will primarily bind to the intended target and not others. A
classic method to assess selectivity is to immobilize the com-
pound on a bead and determine whether it will preferentially
“pull down” the intended target from cell lysates (see Table 1).
Often, this experiment is supported by a combination of other
assays, including cellular thermal shift assays (10), drug-resis-
tance screens (11), and/or testing of the compound in cells in
which the putative target has been knocked down, knocked out,
or removed by CRISPRi (12). Together, the results of these
experiments are used to assess whether a molecule is selective
enough to be considered a chemical probe. Because so many
different experiments are needed to understand selectivity, the
evaluation process often takes years and involves multiple inde-
pendent laboratories (typically in both academics and indus-
try). Thus, many groups continue using a probe during its eval-
uation period, often confirming any results with independent
methods. It is also important to note that the criteria needed to
define a chemical probe are different from those needed to
define a drug/therapeutic, i.e. selectivity is relatively more
important for probes, whereas safety is of high value for drugs
(13, 14).

Where does one learn whether an existing compound is con-
sidered a good chemical probe? On-line resources that collate this
information, such as Chemical Probes (www.chemicalprobes.
org)3 and Probe Miner (https://probeminer.icr.ac.uk/#/),3 are
places to start. In addition, reference tools are available for rooting
out the worst, most promiscuous molecules, such as pan-assay
interference molecules (15) and protein aggregators (16). Pub-
Chem (https://pubchem.ncbi.hlm.nih.gov/) provides another
guide, as it can be used to determine other assays in which a mol-
ecule has been found to be active (17). Finally, Open Science
Probes (https://www.sgc.ffm.uni-frankfurt.de/)3 describes a col-
lection of industry-derived tool molecules that have already
undergone extensive validation (18). Together, these resources
make it easier for the casual user to become quickly informed
about a molecule’s suitability for his/her experiment, including
using it at the proper concentrations.

Categories of chemical probes

In the case of targets in the chaperone network, it is worth
considering two major classes of chemical probes: (i) those that
inhibit the enzyme activity of a chaperone, and (ii) those that

inhibit protein–protein interactions (PPIs) at the connection
between two chaperones. These designations are somewhat
arbitrary, but the methods for finding and improving them can
be quite different, so a brief review of their characteristics is
warranted.

Inhibitors of enzyme activity

The simplest case of a chemical probe is a molecule that
binds at an enzyme’s active site. The structure of these inhibi-
tors is often based on the enzyme’s substrate or product; thus,
in a cellular context, it must bind tight enough to compete for
the natural ligand (e.g. ATP). In contrast, allosteric inhibitors
bind to a distal pocket (i.e. away from the active site) and only
indirectly disrupt enzyme function, so they might not be com-
petitive binders. The major target enzymes in the chaperone
network are the ATPases, including TriC, Hsp70, Hsp90, and
Hsp60. These chaperones use ATP hydrolysis to power confor-
mational motions that are coupled to their function (albeit not
directly (19, 20)). Thus, compounds that inhibit nucleotide
binding in these proteins would be expected to block chaperone
activity.

Inhibitors of PPIs

Not all of the chaperones have enzymatic activity; for exam-
ple, small heat shock proteins (sHSPs), Spy, trigger factor, clus-
terin, and prefoldin, are nonenzymatic chaperones that seem to
specialize in limiting protein aggregation (21–25). Moreover,
even the ATP-utilizing chaperones are assisted by non-enzy-
matic co-chaperones, which serve as critical adapters between
different categories of chaperones (26, 27) and between chap-
erones and other proteostasis pathways. Thus, PPIs are another
possible source of targets for chemical probes.

PPIs are potentially interesting targets because they are often
less well conserved than active sites (28); thus, selectivity may
be easier to achieve (29). PPIs also tend to be associated with
“tuning” activity rather than switching it off, which could be
useful when considering the housekeeping roles of some chap-
erones. Together, these features seem, on the surface, to gener-
ate significant opportunities for probe development (30, 31).
However, targeting PPIs also comes with a number of impor-
tant technical hurdles, namely these contacts tend to have a
larger buried surface area (BSA) than enzyme-active sites, mak-
ing it more difficult to identify small, drug-like molecules (less
than 500 Da) that are able to block them. Indeed, recent retro-
spective analyses of �200 successful PPI inhibitors have shown
that a majority of the most potent ones act on PPIs with rela-

3 Please note that the JBC is not responsible for the long-term archiving and
maintenance of this site or any other third party hosted site.

Table 1
Select criteria for consideration of a molecule as a high-quality chemical probe
This list is not inclusive but is intended to provide an overview of the experimental approaches.

Chemical ● Test the relationship between compound structure and function in multiple in vitro and cell-based assays
● Key molecules were examined for metabolic stability, reactivity, solubility, pharmacokinetics and other pharmacological properties
● Compound is active at the expected concentrations in cellular and animal models

Biochemical ● Immobilized compound will “pull down” the target; this interaction is competitive with free compound but not with related controls
● Compound, but not control, will stabilize the target in vitro (thermal shift assays) and in cells (CETSA)
● Evidence of inactivity is against closely related family members
● Compound affects known biomarkers

Genetic ● Treatment with compound resembles phenotype of knockdown or mutagenesis of the target
● Overexpression or knockdown of the target changes the potency of the molecule (short hairpin RNA or CRISPR screens)
● Resistance to the compound occurs by mutation of the target or target pathway (drug-resistance screening)
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tively small BSA values (�2,000 to 4,000 Å2) (32–34). More-
over, the most “druggable” PPIs also tend to be those with tight
affinity (Kd �500 nM), likely because those contacts involve a
closely spaced combination of hydrophobic and polar residues
that facilitates tight inhibitor binding. Thus, not all PPIs are
considered equally “druggable.” If PPI targets are placed into
four quadrants based on their BSA and affinity values, then
those with weak affinity and large BSA values are usually the
most difficult. Conversely, targets with small BSA values and/or
tight affinity tend to be more tractable.

Targets in the chaperone network: nodes and edges

The chaperones and co-chaperones are physically linked to
each other through a series of protein–protein interactions,
existing as a PPI network (35, 36). In this parlance and borrow-
ing from the systems biology lexicon, we term the major
chaperones (i.e. Hsp70, Hsp90, Hsp60, and TRiC) as “nodes.”
In turn, these nodes are connected by a series of “edges” that
represent the PPIs. As will be detailed below, we find these
designations useful when considering chemical probes of the
chaperone network; specifically, enzyme inhibitors target
the ATP-utilizing enzymes of the nodes, whereas PPI inhib-
itors target the edges.

However, one caution in this nomenclature is that the edges
should not be considered equivalent. Indeed, the physical con-
nections between chaperones come in a great variety of shapes
and sizes. For example, a short peptide sequence from the C
terminus of Hsp70, EEVD, binds to the tetratricopeptide repeat
(TPR) domain that is present in a family of co-chaperones (Fig.
1), such as CHIP and HOP (37, 38). The EEVD–TPR interaction
is of relatively tight affinity (Kd � 0.5 �M), and it involves a small
surface area (BSA �1,100 Å2) (Fig. 2) (39, 40). By comparison,
the interaction between Hsp60 and Hsp10 is weaker (Kd �7 �M;
Figs. 1 and 2A) and involves a 5-fold bigger contact surface area
(BSA �5,500 Å2) (41). More globally, we have shown a subset of
chaperone PPI structures in Fig. 1 and collated the BSA values
from available PDB-deposited structures of chaperone com-
plexes and matched these to measured Kd values in Fig. 2A.
Together, this information, although certainly not inclusive,
drives home the point that inter-chaperone contacts (“edges”)
have quite distinct topologies. For example, the measured Kd
values range nearly 6 orders-of-magnitude (from 0.04 to �100
�M), whereas the BSA values can be compact (�700 Å2 for the
Hsp27 system) or large (�20,000 Å2 for the Hsp90 –Cdc37
contact).

Based on this analysis, some of the chaperone PPIs are
expected to be relatively more difficult to inhibit. For example,
PPIs with weak affinity (�500 nM) and large BSA values
(�4,000 Å2), including Hsp90 –p23, Hsp60 –Hsp10, and
Hsp90 –Cdc37, are predicted to be particularly challenging
(Fig. 2B). Other contacts, such as the ones between Hsp70 –
BAG1 and Hsp70-HOP, are predicted to be relatively tractable.
Recent examinations of published PPI inhibitors have shown
that small molecules (�500 Da) can often be used to inhibit a
subset of PPIs, whereas the ones with larger BSA values typi-
cally need larger molecules, such as peptides or macrocycles
(34). Therefore, it is reasonable to speculate that many different
types of chemical scaffolds may be needed to inhibit the full

suite of chaperone PPIs. In the following sections, we discuss a
few examples of PPI systems that have been successfully tar-
geted, with a focus on Hsp70, Hsp90, Hsp60, and sHSPs. In this
discussion, we also comment on the current status of each mol-
ecule’s ongoing evaluation as a chemical probe, according to the
criteria in Table 1.

Inhibitors of the Hsp70 sub-network

Hsp70 is called the “triage” chaperone (42) because it plays
keys roles in both protein folding and turnover (43, 44). Hsp70s
are composed of a nucleotide-binding domain (NBD) and a
substrate-binding domain (SBD) (45). ATP binds in the NBD,
and the misfolded clients interact with the SBD. This chaper-
one is assisted by co-chaperones, including the J-domain con-
taining proteins (JDPs) and nucleotide exchange factors
(NEFs). Accordingly, there are at least two conceptual ways of
targeting Hsp70: block its ATPase activity or change its PPIs
with co-chaperones (46). Molecules targeting the ATP-binding
cleft include VER-155008 and apoptozole (Fig. 3) (47, 48),
which have been recently reviewed (49). VER-155008 competes
with nucleotide for binding, as shown by crystallography (47),
and this molecule has been shown to have the anti-proliferative
activity expected of an Hsp70 inhibitor in HCT116 cells (50).
Similarly, immobilized apoptozole will pull down Hsp70 from

Figure 1. Diversity of PPIs between molecular chaperones. Representa-
tive structures of PPIs between chaperones are shown. Hsp70 refers to the
nucleotide-binding domain of either the prokaryotic or eukaryotic protein,
and ACD is the �-crystallin domain of a small heat shock protein. Monomers of
Hsp60 are shown in blue and orange. Please see the citations and PDB codes
for information on the exact constructs used: Hsp70-J domain (5NRO);
Hsp70 –BAG (1HX1); TPR–EEVD (4KBQ); Hsp90 –Aha1 (1USU); Hsp90 –p23
(2CG9); Hsp90 –Cdc37–Cdk4 (5FWP); Hsp60 –Hsp10 (4PJ1); TRiC (5GW4);
�-crystallin ACD–ACD (2WJ7); and Hsp27 ACD–IPV (4MJH).
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A549 (adenocarcinoma) cells (48), and the molecule induces
apoptosis in that system. However, Hsp70s, as compared
with kinases or Hsp90s, have an unusually tight affinity for
ATP (Kd �100 –500 nM), such that competition for cellular
ATP (�1–10 mM) creates a significant challenge. Covalent
versions of VER-155008 have recently been developed (51),
which might circumvent this challenge. The next step for
these compounds is evaluation in a greater number of bio-
logical systems, using the chemical, genetic, and biochemical
validation assays in Table 1.

The other way to inhibit Hsp70 is by targeting its PPIs, and
one of the first chemical series found to do this were the
dihydropyrimidines (Fig. 3; Table 2) (52, 53). These mole-
cules were inspired by the natural product spergualin, and
they were found to bind at an interface between bacterial
Hsp70 and the JDPs (54). Limited medicinal chemistry
efforts (52, 55) showed that, depending on their individual
chemical substitution patterns, the dihydropyrimidines
either promote or inhibit this PPI (56). A recent crystal
structure of Hsp70 bound to a J domain (57) (see Fig. 1) is
expected to increase our understanding of how these com-
pounds might work. Still, although the potency and pharma-
cokinetics of this chemical series remain un-optimized (i.e.
EC50 � micromolar), there is reason to be optimistic. For
example, immobilized dihydropyrimidines pull down Hsp70
from cell lysates (56), and treatment with analogs, such as
MAL3-101 and MAL1-27, has been shown to induce known
Hsp70 biomarkers (58). Additional evidence for target
engagement comes from studies in which yeast treated with
an agonist, SW02, was partially protected from genetic dele-
tion of a JDP (56). Moreover, treatment with MAL1-27 (also
called 115-7c) protects against polyglutamine (polyQ) aggre-
gation in multiple models, which mirrors what happens
when Hsp70 is overexpressed (59, 60). Finally, acquired resis-
tance to MAL3-101 in rhabdocarcinoma cells was mapped to
an hsp70 gene (58). Together, these results provide support
for selectivity in cells. The next steps for these molecules
include expanded medicinal chemistry efforts to increase
their potency and identification of additional negative con-

trols. Given the importance of JDPs to Hsp70 biology (25,
54), this chemical series seems worth careful exploration.

The other major category of Hsp70 PPIs is the one with the
NEFs, including the BAG family of proteins that bind to the
NBD through a conserved BAG domain (61). The NEFs are
important mediators of Hsp70 function because they control
the release of clients from the complex (62, 63). Thus, blocking
NEF binding to Hsp70 would be expected to increase the dwell
time of clients in the chaperone complex, favoring their degra-
dation in some cases (63). A series of rhodacyanine-benzothia-
zoles (Fig. 3; Table 2) have been identified that inhibit this PPI.
These molecules were first described by Wadhwa et al. (64) in
phenotypic anticancer screens and only later were they found
to bind to cytoplasmic and mitochondrial Hsp70 family mem-
bers in pulldowns. NMR studies showed that the compounds of
this series bind in a deep, allosteric pocket on Hsp70 (63, 65).
Binding to this site favors the ADP-bound form of Hsp70 and
disrupts binding to BAG proteins through a conformational
change. As expected from the natural role of the NEFs, treat-
ment of cells with these compounds induces degradation of
particularly sensitive “client” proteins, such as FoxM1 (66), Akt
(67), RIP1 (68), and inhibitor of apoptosis proteins (69). Medic-
inal chemistry campaigns (�400 analogs) produced more
potent molecules (EC50 �30 nM) and inactive controls (JG-258)
and allowed initial correlation between in vitro activity and cel-
lular functions (70, 71). Target engagement in cells and animals
has also been explored using genetic approaches; for example,
overexpression of a point mutant of BAG3 (R480A) that cannot
bind to Hsp70s gives a similar phenotype to compound treat-
ment in breast cancer cells (66). In addition, whole-genome
CRISPRi studies revealed that knockdown of Hsp70 family
members gives rise to compound sensitivity (71). Most
recently, JG-231 and other analogs have been characterized in
vitro for liver microsome stability and in mice for maximal-
tolerated dose and pharmacokinetics (71). This pharmacologi-
cal information enables use of the compounds in some animal
and tissue models. For example, they were used to identify a role
for Hsp70 –BAG in breast cancer initiation (66), tau homeosta-
sis (72), Dengue viral replication (73), and castration-resistant

Figure 2. PPIs between chaperones and their binding partners. A, table of BSA and affinity values for PPIs between chaperones. B, categorization of PPIs
based on BSA and affinity values. Based on retrospective analyses of PPI inhibitors, certain quadrants are comparatively easier (green), challenging (gray), or
difficult (red) to inhibit with drug-like small molecules.
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Figure 3. Selected chemical probes for molecular chaperones. See text for citations and details.
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prostate cancer (74). Together, this type of data, acquired in
different laboratories and in different model systems, begins to
build confidence in the suitability of the inhibitors as chemical
probes. With that being said, the pharmacophore has chemical
liabilities that limit its use, including its poor solubility and pho-
tosensitivity, so further optimization is needed.

Additional Hsp70 inhibitors are at a comparatively early
stage in their evaluation as chemical probes (Fig. 3; Table 2). For
example, the compound YK-5 and its analogs were designed to
bind to a distinct, allosteric site in Hsp70, and this series has
been explored in a series of medicinal chemistry campaigns (75,
76). These molecules have clear SAR; they pull down Hsp70
from lysates, and they have promising anti-proliferative activity
in breast cancer models, providing a strong basis for further
evaluation. In a quite different approach, the compound HS-72
was discovered in a screen for nucleotide-binding molecules
(77). In follow-up studies, binding to Hsp70 was confirmed in
vitro and by using pulldowns. Finally, phenotypic screens have
identified PES (78) and novolactone (79) as inhibitors of Hsp70.
Both of these compounds were found to bind at different allos-
teric sites in the SBD by structural approaches, and in both
cases, the site was confirmed by mutagenesis of the interacting
residues. Each of these chemical series (i.e. TK5, HS-72, PES,
and novoloactone) is at a different stage of evaluation as a
chemical probe, but each holds promise due to their different
binding sites and mechanisms-of-action (MoAs) (80).

Inhibitors of the Hsp90 sub-network

Hsp90 is a dimeric chaperone composed of three domains:
an N-terminal ATPase domain, a middle region, and a C-ter-
minal dimerization motif. In addition, this protein binds to a
number of co-chaperones, including Aha1, p23, and Cdc37 (see
Fig. 1). The best-known Hsp90 inhibitors are enzyme inhibitors
that bind in the N-terminal domain, such as geldanamycin and
its analogs (e.g. 17-AAG) (81). Some of these molecules are clin-
ical candidates (82, 83), and they have been extensively
explored for selectivity, including screening against a panel of
ATP-binding proteins (84), so they are generally considered to
be good chemical probes (85). Indeed, these compounds have
been crucial in expanding our knowledge of Hsp90 function,
including being used to identify its clients. Molecules of this
type have been extensively reviewed (81), so they will not be
discussed further.

Alternative ways of inhibiting Hsp90 have also been
explored. For example, the natural products novobiocin/
coumermycin (86, 87) and sansalvamide A (88) served as inspi-
ration for the development of inhibitors directed against the
C-terminal domain (Fig. 3; Table 2). For example, Blagg and
co-workers (89 –91) and others (92, 93) have synthesized ana-
logs of novobiocin, complete with negative controls (i.e. inac-
tive molecules), and information about the binding site. Treat-
ment with these compounds induces degradation of Hsp90
clients in multiple cancer cell types. In addition, they may dis-
rupt Hsp90 dimerization (94) and co-chaperone interactions
(95, 96), suggesting that they are bona fide Hsp90 PPI inhibitors.
Similarly, McAlpine and co-workers (88) have produced bioti-
nylated analogs of sansalvamide A and shown that they pull
down Hsp90 from cells and disrupt binding to some client pro-T
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teins. In this way, molecules from these two series are progress-
ing toward becoming chemical probes. Interestingly, treatment
with certain analogs of novobiocin and sansalvamide A does
not induce a stress response in cells, which is considered a hall-
mark biomarker of the canonical, competitive Hsp90 inhibitors
(85, 97). This finding highlights the importance of using mul-
tiple assays for assessing selectivity (see Table 1), as mole-
cules with different MoAs might not always share the same
biomarkers.

In addition to these chemical series, a number of other
reports have introduced leads toward potential Hsp90 PPI
inhibitors (98 –102). Although these chemical series, such as
celasterol, are relatively early in their analysis as chemical
probes, further work may expand the suite of available chemical
series for the Hsp90 sub-network.

Inhibitors of the Hsp60 sub-network

Hsp60 –Hsp10 and its prokaryotic ortholog, GroEL–GroES,
play important roles in protein folding (103). Hsp60 is thought
to be located in the mitochondria of eukaryotes, where it helps
stabilize client proteins. In addition to their ATPase activity,
these systems involve multiple types of PPIs, including interac-
tions between Hsp60 protomers and those between Hsp60 and
the regulatory component (i.e. Hsp10; see Fig. 1). This system
also likely interacts with the Hsp70 sub-network through direct
PPIs. Most of the Hsp60 inhibitors that have been identified
thus far originated in phenotypic screens, and only later did the
pulldown studies suggest Hsp60 as a potential target. It is not
yet clear whether these compounds are enzyme inhibitors (i.e.
targeting “nodes”) or whether they disrupt PPIs (i.e. act on
“edges”).

The chemical series described as Hsp60 inhibitors thus far
are structurally diverse (Fig. 3; Table 2) and include 2-phe-
nothiazole-pyrimidine-2,4-diamines, such as KHS101 (104),
gold porphyrins (105), pyrazolo-pyridazines (106), phenoxyac-
etanilides (107), and the natural products suvanine (108), epo-
lactaene (109), and myrtucommulone (110). Although more
work remains to verify the selectivity of these molecules in cells,
the striking lack of similarity in these chemical structures is
suggestive of different binding sites or MoAs. However, none of
these putative Hsp60 inhibitors has yet been subject to exten-
sive medicinal chemistry or the full spectrum of analyses that
are needed to give great confidence in their use as probes (see
Table 1). Overall, given the central role of Hsp60 –Hsp10 in
mitochondrial protein quality control (111), it seems worth a
greater investment in chemical probe discovery for this system.
For example, KHS101 has been shown to disrupt energy metab-
olism in glioblastoma (104), suggesting a cancer-specific role
for Hsp60 in mitochondrial function. These efforts might also
benefit from screens focused on finding inhibitors of the folding
activity of the prokaryotic GroEL–GroES system using in vitro
assays (112).

Inhibitors of the sHSPs

The sHSPs are chaperones that lack enzymatic function;
rather, they seem to operate by binding directly to each other
and to their client proteins and co-chaperones, such as BAG3
(26). Thus, the only way to inhibit these systems is to target

their PPIs. The sHSPs engage in a number of distinct interac-
tions, such as the one between conserved �-crystallin domains
(ACDs) that are known to stabilize sHsp dimers (see Fig. 1).
Another, nonoverlapping interaction is the one between the
ACD and the IXI motif that is found in the C terminus of some
sHSPs (113). Finally, the N-terminal domain of some sHSPs
also seems to make interactions within larger oligomers (114).
Thus, sHSPs are a rich source of PPIs, which could become
targets for chemical probes. However, the structural complex-
ity of the system has hindered development of such molecules.
Aptamers directed at Hsp27 (HSPB1) (115), diterpenes that
seem to bind to Hsp27 (116), and oxysterols, such as compound
29, that bind to the ACD of �-crystallin (HSPB5) (117) have
been identified (Fig. 3; Table 2), but their selectivity in cells has
not been extensively explored.

Other inhibitors

We have focused this discussion on molecules that target a
handful of heat shock proteins (i.e. Hsp70, Hsp90, Hsp60, and
sHSPs). However, the proteostasis system includes other chap-
erones that are not classified as heat shock proteins but could be
important targets. For example, Kelly and co-workers (118)
have recently described inhibitors of PDIs, including informa-
tion on target validation, MoA, and medicinal chemistry. These
molecules activate the unfolded protein response, so they have
promise in improving quality control in the endoplasmic retic-
ulum. Recent efforts are also producing new inhibitors of the
FK506-binding protein (FKBP) family of PPIases (119, 120),
including the first selective inhibitors of FKBP51 (121). Such
molecules might be especially good probes of steroid hormone
receptor biology (120). The broader protein quality control
field also benefits from the availability of chemical probes that
inhibit proteins that are not widely considered to be chaper-
ones, including VCP/p97 (122), the proteasome (123), the
Sec61 channel (124), and the integrated stress response (125).
Although we lack the space to adequately describe these mole-
cules or evaluate their validation as chemical probes (see Table
1), they collectively serve to provide a wider chemical toolbox
for studying proteostasis.

Outlook for the future

Chemical probes are powerful tools for studying and per-
turbing the chaperone network. Despite the production of
probes for a handful of chaperone systems, such as Hsp70 and
Hsp90, there is much more work to be done. For example, there
are no validated probes for major nodes, such as TRiC. Like-
wise, hundreds of PPIs (“edges”) lack chemical tools. An opti-
mistic vision for the future is one in which each chaperone
node and edge has a well-validated inhibitor. Although this
goal is certainly ambitious, there is legitimate reason for hope.
New technologies, such as CRISPRi, high content screening,
cryo-EM (126), isoelectric-focusing capillary electrophoresis
(127), and others, are accelerating the rate of probe discovery
and optimization. At the same time, increasingly sophisticated
chemical libraries, such as macrocycles (128) and natural
product–inspired libraries (31), which tend to be enriched in
PPI inhibitors, are being built. It seems likely that these
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advances will combine to produce additional chemical probes
for a wider range of chaperones and their PPIs.
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