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A bioinspired adaptive model, developed by means of a spiking neural network made of thousands of artificial neurons, has been
leveraged to control a humanoid NAO robot in real time. )e learning properties of the system have been challenged in a classic
cerebellum-driven paradigm, a perturbed upper limb reaching protocol. )e neurophysiological principles used to develop the
model succeeded in driving an adaptive motor control protocol with baseline, acquisition, and extinction phases. )e spiking
neural network model showed learning behaviours similar to the ones experimentally measured with human subjects in the same
task in the acquisition phase, while resorted to other strategies in the extinction phase. )e model processed in real-time external
inputs, encoded as spikes, and the generated spiking activity of its output neurons was decoded, in order to provide the proper
correction on the motor actuators. )ree bidirectional long-term plasticity rules have been embedded for different connections
and with different time scales. )e plasticities shaped the firing activity of the output layer neurons of the network. In the
perturbed upper limb reaching protocol, the neurorobot successfully learned how to compensate for the external perturbation
generating an appropriate correction. )erefore, the spiking cerebellar model was able to reproduce in the robotic platform how
biological systems deal with external sources of error, in both ideal and real (noisy) environments.

1. Introduction

)is work belongs to neurorobotics, a discipline that has the
objective to replicate typical animal behaviours in robotic
platforms. Its aim is to develop systems that, through specific
algorithms and computational models inspired by biology
and physiology, are capable of mimicking the sensory and
motor control mechanisms of animals and humans. )is
ambitious objective is pursued in order to develop a better
understanding of the biological mechanisms that rule our
behaviours. )e obtained technology and systems will also
provide valuable feed-back and feed-forward control
functions that could introduce sensory-motor coordination
in robots. In this work, we focused on a bioinspired cere-
bellar simulator integrated into the controller of a humanoid

robot. We tested its learning properties in the typical sen-
sorimotor task of perturbed upper limb reaching [1].

Motor control is one of the main tasks of the central
nervous system (CNS), and many hypotheses on its oper-
ating principles and mechanisms have been proposed.
Considering the intimate relation between the motor control
system and the sensory system in the motor execution, it is
possible to refer to their combined behaviour as a senso-
rimotor loop. )is loop combines both feed-forward and
feed-back strategies where the sensory and cognitive pro-
cesses are the inputs that generate the next motor output.
Computationally, the CNS is represented by the system that
processes the inputs and generates the outputs. )e inputs
consist of all the sensory information from external and
proprioceptive receptors as well as the cognitive internal
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signals. )e output is the motor command directed to the
muscles which will produce an effect on the environment.
)e sensorimotor loop comprehends many different sub-
structures and, among the others, the cerebellum. It has a
major role in the fine motor control and in the learning of
motor tasks and association patterns. )e cerebellum pro-
cesses the data from many sensory channels (i.e., vestibular
and proprioceptive) and combines them with the previous
motor commands to produce the updated motor commands
for the next execution.)e cerebellum is also supposed to be
involved in a large amount of cognitive learning processes
[2]. )e paradigms assessed in literature, stressing the
cerebellar role, are the eye blinking classical conditioning for
the associative tasks [3], the vestibule-ocular reflex (VOR)
[4], and the perturbed upper limb reaching for the motor
control [5].

More than half of all the brain neurons are located in the
cerebellum, which accounts for just the 10% of the brain
mass. )e cerebellar cells are thus densely packed in the grey
matter of the highly convoluted cerebellar cortex and in the
four deep cerebellar nuclei, on both brain hemispheres. )e
cerebellar cortex is composed of three layers, which include
at least five types of cells. )e cerebellar structure and its
functional behaviours have been deeply analysed. During
this extensive study, many cerebellar computational models
have been proposed and developed [6–9]. Among these, the
phenomenological models obtained from computational
motor control studies are the best candidates to solve the
sensorimotor integration issue, since they use an abstract
function-based approach. )is kind of models is capable to
deal with motor planning, internal models, state estimation,
motor learning, and modularity [10]. A realistic approach
based on neurobiology requires the use of interconnected
adaptive spiking neural networks (SNN). )ese networks
have the potential to reproduce good adaptive control
systems for robots, considering how biological organisms
perform excellent control using ensembles of interconnected
neurons [11].

In previous works, we have tested a range of simplified,
but realistic, cerebellar models into sensorimotor tasks
[12–14]. )e objective of this work was to implement a
computational model in a robotic platform in order to
validate its functionality and behaviour in real-time control
problems. In particular, a robot controller has been in-
tegrated with the cerebellar-inspired network, which pro-
vides the system with the capability of motor learning. )e
component of the motor control system can be represented
by their phenomenological models, such as the feed-back
and feed-forward mechanisms of the internal models. )e
first is based on the ongoing error coming from the sensor
updates, while the latter is based on the direct motor
commands. To allow such integration between the robotic
platform controller and the bioinspired spiking network, we
needed to introduce the right interfaces within the modules.
)ree interfaces have been introduced; two that encode the
desired inputs trajectories and the errors obtained into a
spiking activity, and the other one that decodes the fre-
quency of the output neurons into an angular value that can
be then applied by the robot controller. )e spiking neural

network has been simulated by the EDLUTplatform, a SNN
simulator which allows a real-time execution. By means of
look-up tables, EDLUT bypasses the need to solve the dif-
ferential equations governing the state of every network unit,
thus reducing the computational load.

2. Materials and Methods

First, we defined a suitable version of the perturbed upper
limb reaching protocol.)is paradigm is used to enhance the
cerebellar effect in the sensorimotor loop. )e objective is to
have the subject, the robot in this case, to follow a particular
trajectory, At a certain point, an unexpected external force is
applied which will then produce a perturbation in the
performed trajectory. )e same perturbation is then applied
in a sequence of trials, so that the subject learns to predict the
perturbation and thus to limit the error (acquisition phase).
After that, the perturbation is suddenly removed, the subject
generates an error in the opposite direction, which is can-
celed out in the following trials (extinction phase).

)e network was tuned using a robot simulator to
perform a physiological behaviour; therefore, we set the
starting weight values between the different kinds of cells to
provide activity frequencies matching the ones present in the
literature. )en, we performed a brute force exploration to
find the best combination of the model plasticity parameters.

Once the network was optimized, we proceeded to test
its capability of generalization with other trajectories, dif-
ferent than the one used to train the network. To further
investigate the network behaviour, we evaluated its per-
formances with the real robot using the parameters derived
from the tuning with the simulator. We evaluated how the
different plasticities and the gain tuning affected the per-
formances on a noisy environment and also how the net-
work in the real robot can deal with the different
perturbations (i.e., different trajectories).

A final test was performed using a network ten times
larger, with the same trajectory and parameters, to verify
how a more detailed SNN could alter the performances for
the proposed motor task.

Summarizing, we have focused this work on three main
objectives: (i) the optimization of the upper limb reaching
protocol, adapting it to the NAO robot to simultaneously
control 3 degrees of freedom (DoFs); (ii) the parameter
tuning of the SNN, to replicate the physiological behaviour
of its constituent neurons and of the resulting robot be-
haviour; and (iii) the exploitation of the optimized network
on different trajectories (transfer learning).

2.1. Simulated and Real Robots. NAO is an integrated,
programmable, medium-sized humanoid robot developed
by Aldebaran Robotics. NAO (version V3.3) is a 58 cm, 5 kg
robot, communicating with remote computers via an IEEE
802.11 g wireless or a wired Ethernet link. )e NAO has 21
DoFs and features a variety of sensors. Since we were in-
terested in arm movements, we controlled three joints of the
robot left shoulder and elbow (Figure 1(c)): shoulder pitch
(Joint 1), elbow yaw (Joint 2), and elbow roll (Joint 3).
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To interface the robot with the neural network, able to
run in real time with a frequency of 1 kHz, a stable frequency
update was a strict requirement. For this reason, the robot
was commanded by means of the device communication
manager (DCM). )e DCM is the software module that is in
charge of the communication with all electronic devices in
the robot (boards, sensors, actuators, etc.). It is the link
between high-level functions and low-level controllers. )e
DCM has a separate real-time thread that runs every 10ms,
thus guaranteeing a stable refresh rate of 100Hz.

NAO robot cannot be controlled directly in torque/
current to the motors, but only in position. )is forbids
to physically perturb the arm reaching motion task with an
external force. In case of a lower force, the robot arm would
just reach the desired angle, while in case of a higher force
the motor would stall without moving at all. For this reason,
two different trajectories were used: one ideal trajectory used
as the desired path and another perturbed trajectory, to be
corrected by the network using the angular errors of the
joints as learning signals.

Since the network optimization process will need hun-
dreds of tests, we used a robot simulator called Webots. )is
simulator allows launching a simulated NAO moving in a
virtual world, offering a safe place to test behaviours before
deploying them on a real robot. Considering the level of

control offered by the DCM and the unpredictable behav-
iour of the SNN, especially in tuning phase, a simulator was
ideal to test how the motor commands would be affected and
to prevent dangerous commands to be sent to the real robot.
While being a very accurate simulator for the NAO, as with
any other simulator, some nonidealities are not considered
(e.g., nonlinear friction, sensor errors, and motor
overheating).

2.2. Cerebellar Model. In this work, a cerebellar-inspired
SNN, based on previous versions presented and tested in
[12, 13], was used to prove its adaptation capabilities in a
complex motor task. )e cerebellar neural network used has
the following architecture (Figure 2(a)), built taking in-
spiration from physiological studies of the cerebellum, in a
tight collaboration with neuroscientists. )e SNN was
composed of 6480 Leaky Integrate and Fire neurons repli-
cating the cerebellar microcircuit: 300 mossy fibers (MFs),
the first input of the cerebellar network, organized in 6
groups of 50 cells each: 3 groups, one for each controlled
joints, encoding information on the desired positions and 3
groups encoding information on the desired velocities; 6000
granular cells (GrCs), generating a sparse representation of
the state input; 72 inferior olive neurons (IOs), the second
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Figure 1: Trajectories and experimental protocol. (a) Planar representation (Y-Z axis, in the robot reference frame) of the ideal (blue) and
perturbed (yellow) Cartesian trajectories.)e corresponding trajectories in the joint space are depicted in panel (b). (c))e controlled joints
of the robot correspond to three rotations: shoulder elevation (Joint 1), humeral rotation (Joint 2), and elbow flex extension (Joint 3). (d))e
experimental protocol consists of 5 baseline trials, 20 trials of acquisition, where a load is applied to the robot arm, and 5 trials of extinction,
where the additional load is removed.
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cerebellar input, with their respective climbing fibers (CFs);
IOs are divided into 6 groups of 12 cells each, 3 groups, one
for each joint, encoding the positive errors and other 3
groups encoding the negative ones; 72 Purkinje cells (PCs),
the integrators of the sparse state-information coming from
the GrCs through the parallel fibers (PFs) with the error-
information coming from the IOs through the CFs; 36 deep
cerebellar nuclei neurons (DCNs), which are the only output
of the cerebellar microcomplex, thus producing the cere-
bellar output variable, divided in 6 groups, two for each joint,
where one group controls the compensation of positive
errors (i.e., agonist muscles) and the other compensates for
negative errors (i.e., antagonist muscles).

)ree interfaces (Figure 2(b)) were implemented to
transform analog signals into spiking activity to be fed to the
network (input) and vice versa (output).

)e first interface computes the input current for MFs
with a radial basis function (RBF) method. )is current I(t)

is used to increment the membrane potential Vm(t) of the
MF. RBF centers are distributed equally along the sensory
dimensions, with their widths tuned to ensure a small
overlap in the response of consecutiveMF. One-dimensional
values are converted into multidimensional current vectors,
one for each RBF. Every MF has its own receptive field to

encode the analog information, normalized between −1
(minimum value) and 1 (maximum value).

)e second interface converts joint errors into IO
spikes. )ese neurons have a low firing rate (less than
10Hz) that could prevent the representation of high-
frequency error signal related to the task being learned.
)is issue can be fixed exploiting the irregular firing of the
IO by statistically sampling the entire error signal over
multiple trials. It has been observed that the temporal
distribution of the spikes of IOs shares similar charac-
teristics as the Poisson model. IOs fire randomly in be-
having animals at rest and during the ocular following
response and arm-motion tasks in monkeys. )is sto-
chastic characteristic firing enhanced the input-output
mutual information despite the ultralow firing rates of
CFs [16]. )e firing rate is reproduced with a Poisson
model of spike generation and, at every time step, IO
spikes are randomly generated with a probability that is
proportional to the error magnitude. )is approach has
been employed to generate independent spike patterns on
multiple IO neurons. For each IO, the firing probability is
therefore independent of the previous spiking activity and
from the activity of the other IOs [17, 18]. Substantial
evidence supports a role for CFs in error signalling and
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Figure 2: Cerebellar SNN and coding/decoding strategies. (a) )e computational model applied for creating the cerebellar SNN
embedded into the controller of NAO robot. Each block represents a neural population, with the relative inputs and outputs. )e
excitatory, inhibitory, and teaching connections are depicted. )e shaded areas represent the three plasticity sites: magenta the PF-PC
synapses, blue the MF-DCN synapses, and green the PC-DCN synapses, adapted from [15]. (b) Coding (for MFs and IOs) and
decoding (for DCNs) strategies implemented to integrate the analog robotic world with the spiking activity of the SNN. )e 3 joint
angles and angular velocities are fed as input to the MFs by means of an RBF approach, overlapped to a random activity. Each joint
error is transformed into IO spikes by means of Poisson generators, which produce spikes with a probability that is proportional to the
error magnitude. Each IO generates a spike pattern that is therefore independent of their history and of the other IOs. )e DCN spikes
are transformed into an angular correction sent to the robot joints by means of an instantaneous firing rate computation, subsequently
averaged with a mobile-window filter.
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motor learning, and the proportionality between the error
signal and the spiking activity of CFs has been verified
[19, 20].

)e third interface decodes DCN spike patterns into
analog angular values. First, the instantaneous firing rate of
every DCN is calculated, and then positive and negative
DCN firing rates are averaged with a mobile time window of
200 samples (i.e., 200ms). )e cerebellar output is obtained
by calculating the net difference between the two averaged
mean DCN firing rates (positive and negative) [12].

)anks to these interfaces, the SNN could be integrated
into the robotic platform controller, with the function of a
feed-forward predictive controller.

)e SNN neurons are connected in three possible ways:

(i) Excitatory connections: synapses in which an action
potential in a presynaptic neuron increases the
probability of an action potential occurring in a
postsynaptic cell. )ere are excitatory connections
between MFs and GrCs, between MFs and DCNs,
and between GrCs and PCs.

(ii) Inhibitory connections: synapses in which the im-
pulse in a presynaptic cell results in a reduced
likelihood for a postsynaptic cell to produce an
action potential. )ere are inhibitory connections
between PCs and DCNs.

(iii) Teaching connections: connections that encode
teaching spike trains (related to the error) for the
supervised learning in plasticity sites of the
cerebellum.

According to neurobiological studies, three plasticity
sites have been identified in the human cerebellum: at the
level of PF-PC excitatory connections; at the level of MF-
DCN excitatory connections; and at the level of PC-DCN
inhibitory connections [21–24].

)e SNN model was equipped with three plasticity sites,
at cortical (PF-PC) and nuclear (MF-DCN and PC-DCN)
levels. )e synaptic connections in each site followed three
different learning rules, which strengthen or weaken these
connections by long-term modifications: long-term poten-
tiation (LTP) and long-term depression (LTD). LTP and
LTD mechanisms were modeled as modifications on the
synaptic conductances as described in detail in [13, 15]. In
general, the three mechanisms were based on different kinds
of Spike-Timing-Dependent Plasticity (STDP), but each one
was tailored to the specific experimentally measured
mechanism. )e first plasticity (PF-PC) modulates the ac-
tivity of PCs, increasing or decreasing the synaptic strength
of the connections under the supervision of the IO activity.
)e second plasticity (MF-DCN) is also a supervised
learning rule; in this case, the PC activity is the modulator
signal that influences the synaptic weights. )e third plas-
ticity (PC-DCN) is an unsupervised standard STDP, where
the weight modifications are driven uniquely by the timing
of the presynaptic (PC) and postsynaptic (DCN) neurons.

For the initialization of the network synaptic weights,
we referred to physiology values. MF activity has been set to
a frequency comprised around 50Hz, by adjusting the

background random activity and the overlap and bell width
of the RBFs. MF-GrC weights have been set to achieve a GrC
frequency of 3–6Hz and the GrC-PC weights to produce a
PC frequency around 40–60Hz. MF-DCN weights were set
in order to have a DCN frequency around 25Hz in absence
of PC inhibition (PC-DCN weight� 0). )e last step con-
sisted in adjusting PC-DCN weights, nullifying the DCN
activity in presence of a stable PC activity around 45Hz.

To perform the simulations in real time, we leveraged the
EDLUT simulator [25], an open source simulator of SNN
that provided a reduction of the computational loads,
speeding up the network simulation by means of look-up
tables. In fact, with a standard simulator (e.g., NEURON
[26], NEST [27, 28], or Brian [29]), the program has to solve
one or more differential equations for each neuron and
cannot guarantee the real-time performances that are re-
quired in interfacing a real robotic platform.

2.3. Experimental Protocol. We challenged the SNN in a 3D
motion adaptation protocol, similar to adaptation protocols
based on force-fields performed on human subjects [30–32].
)e ideal trajectory that the robot wants to perform is a
planar circle of 0.1 m radius, executed in the Y-Z plane and
with center Y � 0.1m and Z � 0.1m (Figure 1(a), blue line).
When an unexpected load is virtually added to the robot
hand, the trajectory deviates from the desired one, being
deformed toward the ground (Figure 1(a), yellow line). As a
result, the three controlled joint angles deviated from the
ideal paths (Figure 1(b)), thus generating positive and
negative errors for each DoF.

)e experimental protocol consisted in 30 trials divided
into three phases (Figure 1(d)): the first one was the baseline
phase, in which the command for the robot was the ideal
trajectory and lasted for 5 trials. )e second phase was the
acquisition phase that lasted for 20 trials and in which the
input for the robot was the perturbed trajectory.)e last one
was an extinction phase of 5 trials, in which the input was
again the ideal trajectory. In order to mimic the adaptation
capabilities of the cerebellum, the goal of the SNN was to
minimize the joint errors, thus reducing the subsequent
Cartesian errors in the 3D space.

2.4. Parameter Tuning. As mentioned above, there are three
different plasticity sites that can modify the behaviour of the
SNN, each one is characterized by two learning parameters:
LTP and LTD. In order to assess the best values for these six
parameters, a brute force exploration has been performed.
)e first plasticity (cortical plasticity, PF-PC) is the main
cause of the learning effect, as it regulates the activity of the
PC which depresses the DCN output. )e other two plas-
ticities (nuclear plasticities, MF-DCN, and PC-DCN) have a
secondary effect, affecting the error reduction performance
on a longer time scale and with a lower magnitude. )e
parameter tuning tests have been performed with Webot
simulator, to prevent damages and avoid unpredictable
movements of the robot arm due to unexpected behaviour of
the network.
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To evaluate the network performance, we calculated a
global cost function, which we wanted to minimize. )e cost
function is the sum of two quality metrics. Both metrics take
into account the root mean square error (RMSE) of all the
three joints. For each trial, RMSE for every joint was
computed over the 5000 ms of trial time, and then the three
RMSEs were averaged. )e average RMSE for the ith trial is
computed as

RMSEAvg(i) �
RMSEJoint1(i) + RMSEJoint2(i) + RMSEJoint3(i)

3
.

(1)

)e first quality metric computed a weighted average of
RMSEAvg in the acquisition and extinction phases.While it is
normal to have higher errors in the first acquisition trials, a
good cerebellar controller should gradually correct the
ongoing joint errors. )is metric rewards SNN showing a
good correction in the late stages of the acquisition and also
low extinction errors:

RMSEWeighted �
􏽐

30
i�6RMSEAvg(i) · weight(i)

25
, (2)

where

weight(i) �

i− 4
3

, if 6≤ i≤ 25 (acquisition phase),

4, if i> 25(extinction phase).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

)e second quality metric measures the stability of the
correction, computing the standard deviation (SD) of the
trials 21–25 (i.e., the last 5 trials of acquisition). High values
of LTP and LTD parameters could lead to fast changes in the
RMSE in the acquisition phase, but also to its instability.)is
leads to a high standard deviation of the RMSE, especially in
the last five trials, where the minimum error should have
been reached already:

STD �

��������������������������

􏽐
25
i�21 RMSEAvg(i)−RMSEAvg􏼐 􏼑

2
􏽱

5
. (4)

Finally, a global cost function, whose minimum should
identify the most performing model in the explored area, is
calculated normalizing RMSEWeighted and STD over their
maximum and minimum values, thus obtaining values
between [0-1], and then summing them to obtain a global
cost value in the range [0–2].

For the first plasticity, we evaluated an 11× 11 matrix,
with LTP1 values ranging from 0 to 0.01 with steps of 0.001
and LTD1 values ranging from 0 to 0.05 with steps of 0.005.
)e exploration was performed iteratively, choosing an LTP
value and pairing it with all the LTD values and then re-
peating the process for all the other LTP values. For each
LTP and LTD combination, a complete simulation of the
protocol was performed, and the final global cost value was
computed. After the first exploration, a second one has been
performed in the area of the global minimum of the cost
function, with finer steps, testing other 10×10 values. )e

best LTP-LTD configuration has then been chosen for the
tuning of the other nuclear plasticities.

For the nuclear plasticities, the LTP1 and LTD1 resulting
from the previous exploration have been kept fixed, and the
exploration has been performed on LTP and LTD param-
eters (i.e., LTP2, LTD2, LTP3, and LTD3). )e evaluation
was similar to the first plasticity, with the exception of the
parameter ranges. LTP and LTD ranged from 10−10 to 10−1
with a ×10 steps. As before, a second exploration in the best
area identified was performed. )e second search covered a
10×10 parameter area centered on the best parameter
identified in the first exploration, testing half of the below and
above values (i.e., 0.5 0.6 0.7 0.8 0.9 1 2 3 4 5􏼂 􏼃 × 10j,
where j is the best generation exponential).

Once the plasticities values have been set, another pa-
rameter to consider is the gain needed to convert the analog
output of the network in an angular value (in radians). Since
each joint has different ranges and different errors ampli-
tude, a proper gain for each joint has to be used. To find the
optimal gain values, a brute force exploration has been
performed with a gross exploration (i.e., testing gain values
ranging from 0.005 to 0.05 with steps of 0.005) and a
subsequent finer exploration (i.e., testing 10 gain values
centered on the best result of the gross exploration, with
steps of 0.001). )e gain factor is particularly relevant due to
the normalization of the angular values and the error that is
given as input to the network. As the network manages
values comprised between 0 and 1 for all joints, its output
does not consider the differences in the actual angular errors.
)erefore, a joint with small angular error will require a
lower gain, while more perturbed joints will require a greater
gain.

2.5. Transfer Learning. Having identified the set of the
network parameters (i.e., LTP1− 3, LTD1− 3, and
gain 1− 3) which produced the best performances, we have
verified if (i) the SNNwas able to compensate for an external
perturbation a 3D movement performed by a physical NAO
robot and if (ii) the SNN was able to compensate different
perturbations on both simulated and physical robotic
platform.

)erefore, we executed 10 tests with both Webot sim-
ulator and NAO robot, in order to verify the robustness of
our controller in a noisy system performing the same
protocol used for the SNN optimization.

To verify the transfer learning capabilities of the cere-
bellar model, we have executed 10 tests with both Webot
simulator and NAO robot in variations of the protocol, with
3 other couples of ideal and perturbed trajectories: two
deformations of the ideal circle trajectory (an oval and a
squared deformation) and with ideal and deformed
∞-shaped trajectories.

2.6. Network Enhancement. One of the limits of the network
used is the low number of output cells which limits the
resolution of the correction, leading to jerky angular tra-
jectories. )erefore, we tested an expanded version of the
SNN, to observe how the network size can change the overall
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performances of the cerebellar-inspired controller. Each
neural population was increased ten-fold, maintaining the
same connectivity rules explained above. All parameters
have been kept the same as the ones used with the normal-
sized network, and the gain has been reduced by ten, in order
to match the increased number of output cells. A side effect
of the increased size of the network is the loss of the real-time
property due to a larger number of spikes to be processed.
)erefore, the larger network was tested for a single test
instead of the usual 10 tests. Also in this case, we tested also
the three additional trajectories to verify the generalizability
of the learning properties of the SNN.

3. Results and Discussion

3.1. Parameter Tuning. After every plasticity gross explo-
ration, the parameter space area resulting in the best per-
formance, according to the developed cost function, was
further explored. )e RMSE over all trials was computed for
10 tests, using the parameters found during the optimiza-
tion, in order to verify the behaviour of the SNN over the
different phases.

In Figure 3(a), it is possible to see the effect of LTP1 and
LTD1 on the quality of the correction: there are three main
areas that is possible to identify.)e first one is the lower-left
corner, where LTD is too low and LTP is consistently higher
(blue cross). Since the LTD is the major player in the at-
tenuation of PC activity and the consequent increase of DCN
activity, the network does not performwell in the acquisition
phase (i.e., there is no learning) while it performs well in the
extinction phase as there is no overcompensation when the
additional load is removed (Figure 3(c), blue line). )e
second area is the middle right corner, where LTD is higher
than LTP (green cross). Here the activity of the DCN reaches
high levels, and since the correction is strong, this is the
worst area for the extinction phase. Note that also in ac-
quisition, this area is not useful, as a too fast and aggressive
correction leads to instability in the final trial of this phase
(Figure 3(c), green line). Finally, there is the area around the
principal diagonal, where we can find lower values of the cost
function. )e top central area containing the global mini-
mum (red square) is the area chosen for the finer exploration
(Figure 3(b)).

)e finer exploration produced more uniform results,
but it was still possible to exclude the lower area with too
high values of LTD, where the correction was insufficient
and unstable. )e global minimum of this exploration
corresponded to the parameters LTP1 � 0.0006 and
LTD1 � 0.015. As already proved in previous works
[21–23, 33], the cortical LTD has greater values with respect
to the LTD. )is combination of parameters was tested ten
times to assess the reproducibility of the results
(Figure 3(d)), and it was then used during the tuning of the
nuclear plasticities.

)e results obtained after the second plasticity (MF-
DCN) gross exploration are shown in Figure 4(a)). It
is evident that the highest errors are present in the bot-
tom right area, where the high LTP produce an

overcompensation effect. Note that, for this plasticity, LTP2
is the main responsible for the increased activity of the DCN
while LTD2 concurs to their attenuation. In the right area,
too high LTD2 leads to the absence of DCN activity and
therefore of the correction. In the left area, the LTD2 allows
an activity from the DCN, and thus the better results. We
investigated the top left area, containing the global mini-
mum. )e finer exploration (Figure 4(b)) was almost uni-
form; therefore, we identified the minimum global cost
function for the combination of parameters LTP2 � 10−9
and LTD2 � 2 · 10−10. As in other protocols Medina et al.
[34]; Antonietti et al. [13]; Mauk and Ruiz [35]; and Medina
and Mauk [36], the MF-DCN plasticity parameters have
significantly lower values than the cortical plasticity, thus
confirming the hypothesis that the effect of nuclear plas-
ticities becomes meaningful on longer time scales.

)e third plasticity (PC-DCN) gross exploration pro-
duced almost uniform results, if compared to the other two
plasticities (Figure 4(c)). In the right area, the LTD is too
high, and therefore, the PCs could not selectively inhibit the
corresponding DCN. Even if more combination of LTP3 and
LTD3 gave low cost function values, without defining a
specific area, the parameter space near the global minimum
was explored in the finer search. )e finer exploration
(Figure 4(c)) revealed homogeneous performances without
particular spots of interest. )e global minimum of this
exploration corresponded to the parameters LTP3 � 10−2
and LTD3 � 10−7.

3.2. Simulated and Real Robot Performances. Having opti-
mized the three learning rules, 10 tests were performed with
only the cortical plasticity and with all the plasticities ac-
tivated (Figure 5(a)). It becomes clear that the performance
improvements given by the addition of the nuclear plas-
ticities were negligible. As already mentioned, the main
effect of nuclear plasticities could be seen on a longer time
scale. It has been demonstrated [13] that the benefits of the
nuclear plasticities can be verified in long paradigms, after
more than 100 trials, possibly when more repeated sessions
of acquisition and extinction are repeated. In addition, the
possible improvements provided by the nuclear plasticities
could be hidden by the nonnegligible variability between the
10 performed tests.

Once the three plasticities have been optimized, we
proceeded with the tuning of the three joint gains. In the
previous cases, all the joints used the same gain value of
0.012, theoretically derived from the foreseen maximum
joint errors. )e first rough exploration confirmed values
near the ones already used. )e results of the finer ex-
ploration identified the optimal gains as follows:
Gain 1 � 0.005, Gain 1 � 0.013, and Gain 1 � 0.012. Since
we have optimized the network plasticities with a fixed
gain of 0.012, it is reasonable that the obtained gains are
not very different from the original one.

Testing the SNN with optimized gains (Figure 5(b)), we
obtained a generally lower error and a more stable trend in
the acquisition phase, where the appropriate gain makes the
intervention of the network more adequate in compensating
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the error, thus reducing the overcorrection effects leading to
instability.

Having assessed the performance of the SNN in an al-
most ideal environment (the Webot simulator), we pro-
ceeded to test the model performance in the real world with
NAO robot. )e ten tests performed with NAO robot
(Figure 5(b)) showed a proper correction in the acquisition
phase, the after-effect at the beginning of the extinction
phase, and a good extinction in the last trials. As expected,
the Webot simulator performed slightly better than NAO
robot, with smaller variance. However, the performance
obtained with the NAO robot was still similar, with a good
error reduction and similar physiological behaviour. Given
the higher variability with the NAO robot, it would be even
more difficult to notice differences between the perfor-
mances of a SNN equipped with the cortical plasticity or
with multiple plasticities.

3.3. Transfer Learning Performances. We wanted to test the
transfer learning capabilities of the proposed SNN con-
troller; we thus challenged the optimized SNN with three
different ideal and perturbed trajectories (Figures 6(a), 6(d),
and 6(g)). For each trajectory, we have adapted the gain
values proportionally to the maximum error of every joint.
)en, we tested the different shapes in Webot simulator
(Figures 6(b), 6(e), and 6(h)) and in the NAO robot
(Figures 6(c), 6(f), and 6(i)).

In theWebot simulator tests, comparing the error trends
over time with the one obtained using the original trajectory,
it is possible to notice a slightly higher variability exhibited
by the oval trajectory, while the infinite and square trajec-
tories performances were similar to the one obtained with
the original perturbation. However, in all the cases, the
overall performances were similar to the one achieved with
the training trajectory.
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Figure 3: Cortical plasticity optimization. (a) Cost function resulting from the gross exploration of LTP1 and LTD1 parameters.
Darkest values represent low values of the cost function, therefore the best combinations of the two plasticity parameters. )e
parameter space further explored in the finer search (b) is identified by the red square. Blue and green crosses identify two examples
parameters giving bad performances (c). (b) Cost function resulting from the finer exploration of LTP1 and LTD1 parameters. )e
red square identifies the global minimum, therefore the chosen combination of LTP1 and LTD1. (c) )ree examples of RMSE
performance across the 30 trials of the protocol. )e red line represents a good performance, with a reduction of the RMSE during
the acquisition phase and a good extinction in the last 5 trials. )e blue line represents the combination of LTP1 � 0.0 and
LTD1 � 0.0; therefore, no correction happened in the acquisition phase, leading to a high cost function value. )e green line
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In the NAO robot tests, differently from what was ob-
tained with theWebot simulator, the worst performance was
obtained with the infinite trajectory. )is result is justified
being the infinite trajectory, the one with the lower angular
errors, with values more affected by the overall noise.
)erefore, the SNN was less efficient and could not perform
as well as in the other trajectories.

3.4. Network Enhancement. One of the limits of the SNN
used so far is the low number of output cells (DCN) which
limits the resolution of the correction. As a result, the
cerebellar correction on the joint angular values was jerky.
To compensate for this effect, we tested a larger version (ten
times larger) of the same network. All parameters have been
kept the same as the ones used with the normal-sized
network, and the gain has been reduced by a factor ten to
match the increased number of output cells. A side effect of
the increased size of the network is the loss of the real-time
property, due to a larger number of spikes to be processed.
)erefore the larger network was tested with both Webot
simulator (Figure 7(a)) and NAO robot (Figure 7(a)) for a

single test, instead of the usual 10 tests. )e main im-
provements with respect to the normal-sized network were
the initial error in the baseline phase, which remains around
zero, and the lower and more stable RMSE in the acquisition
phase. )e other difference is in the extinction phase where
the higher correction produces a higher overcompensation
effect, and it requires more time to return to the initial state
with respect to the normal-sized network.

)e transfer learning capabilities were maintained in the
larger SNN, also in these cases with smoother andmore stable
corrections of the joint errors in all the three additional
trajectories. It is possible to notice that the enhancement of
the SNN, augmenting the resolution of the network, made it
slower in the adaptation processes. However, the parameter
tuning carried out using the original SNN could be reused in
the larger SNN, without having to rerun the optimization
process (which would be unfeasible, given the extended
computational loads of the larger SNN).

3.5. Neural Behaviour. We have also evaluated the network
activity. )e spikes generated by all the cells have been
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recorded during the testing phases and they could be ana-
lysed to verify how the errors affected the activity of the
neuronal populations over the trials.)eMFs kept an almost
constant frequency over all the trials, with values comprised
between 44 and 47Hz. )e GrCs were also almost constant
with a frequency between 6 and 7Hz; given the high number
of these cells, their monitoring was quite challenging, and
therefore their spike data were not collected in all the tests.
PCs, IO, and DCN are the cells that explain the behaviour of
the network, and from their variation in frequency, we can
evaluate the physiological similarity of our system with a real
biological one.

For every test, we recorded the ideal and real joint values,
together with the actual Cartesian trajectory performed by
the robot hand. Here, we report the network activity and the

relative Cartesian and angular trajectories for the circle
trajectory perturbed by an additional load application at the
robot hand using the NAO robot and the enhanced SNN.
Analyzing the salient trials of the protocol (see also the video
provided as Supplementary Materials (available here)), it is
possible to notice how the network activity shapes the robot
behaviour and vice versa.

In the first trial of the baseline phase (Figure 8(a)), the
robot is performing a correct trajectory, therefore IO activity
is low, and the PCs are firing without restrictions. As a result,
the output from the DCN is almost null.

In the first trial of the acquisition phase (Figure 8(b)), the
robot hand is deviated by the additional load attached. )e
increased joint errors trigger the IO activity which rises
consistently, although the IO population has a generally low
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Figure 5: RMSE in different testing conditions. (a) Mean and SD of the RMSE computed for 10 tests with only the cortical plasticity
optimized (in red) and after the optimization of the cortical and nuclear plasticities (in magenta). (b) Mean and SD of the RMSE computed
for 10 tests after the optimization of the cortical and nuclear plasticities (in magenta) and after the optimization of the gain (in black). (c)
Mean and SD of the RMSE computed for 10 tests after the optimization of the gain withWebot simulator (in black) and with NAO robot (in
orange).
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frequency (<10Hz). However, PC activity is still high,
inhibiting the DCN. In the course of the trials the consistent
activity of the IO reduces the PC’s activity, reaching a point
in which the DCN is free to fire as in the last trial of the
acquisition (Figure 8(c)) where the PCs are selectively silent
and the control signal generated by the DCN rises to
compensate for the errors. From the Cartesian trajectories,
the effect of the compensation in both the higher and the
lower-left parts of the circumference is visible.

In the first trial of the extinction phase (Figure 8(d)), the
additional load is removed, but the SNN network is still
compensating for the error learned. )is behaviour, gen-
erating errors in the opposite direction with respect to the

acquisition phase errors, is proper of the cerebellar ad-
aptation and it is called after-effect. In the last trial of the
extinction phase (Figure 8(e)), we can observe that the
after-effect has been canceled, and the performed trajectory
is nearer to the desired one. However, observing the neural
activity, it is possible to notice a nonphysiological be-
haviour. Normally, one would expect the change in sign
from the IO to trigger the LTP effect on the PC thus
inhibiting again the DCN cells. Here, however, there is a
further inhibition of the PCs, this time of the opposite sign,
which triggers the response of the DCNs of opposite sign,
which were not firing until the beginning of the extinction
phase. As a result, the absence of correction is caused by the
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Figure 6: Transfer learning performances. (a, d, g) Ideal (blue) and perturbed (yellow) Cartesian trajectories in three cases: square, oval, and
infinite, respectively. (b, e, h) Mean and SD of the RMSE computed for 10 tests with Webot simulator for the respective trajectories. (c, f, i)
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cancellation of two opposite effects instead of a return to
the initial DCN silence.

)is unexpected result is probably due to the brevity of
the protocol (only 20 acquisition trials) and to the cost
function used for the parameter tuning, which rewarded
higher values of LTD1 with respect to LTP1 for the cortical
plasticity. )is is visible from the steep slope of the RMSE
in the first acquisition trials (Figure 3(c)). )e low LTP1
values are not enough to restore the initial state of the
network with only 5 trials for the extinction phase, and
therefore the optimization process rewarded a configu-
ration where LTD1 compensated for the error in opposite
sign with the activity of the DCN of opposite sign (an-
tagonist activity) instead of decreasing the current (ago-
nist) DCN activity. )is effect led to the nullification of the

agonist and antagonist neuron activity, with a net output
near zero (i.e., near the desired network output during the
extinction phase). )is result suggests that even with an
imbalance in the cortical LTP/LTD ratio, a system can be
still able to learn and extinguish a motor adaptation. )is
hypothesis should be tested by ad hoc experiments where
cortical LTP mechanisms have to be blocked or impaired
(similar to what was done with mutant mice by Schone-
wille et al. [37]).

4. Conclusions

In this work, we aimed at the integration of a bioinspired
SNN in a NAO robot controller. In particular, the cere-
bellum has been chosen as the neural structure to emulate

0 5 10 15 20 25 30
Trial

0

0.2

0.4

0.6

0.8

RM
SE

 n
or

m
al

iz
ed

1

Webot
Webot ×10

(a)

0 5 10 15 20 25 30
Trial

0

0.2

0.4

0.6

0.8

RM
SE

 n
or

m
al

iz
ed

1

NAO ×10
NAO robot

(b)

0 5 10 15 20 25 30
Trial

0

0.2

0.4

0.6

0.8

RM
SE

 n
or

m
al

iz
ed

1

Infinite
Oval
Square

(c)

Figure 7: RMSE with the enhanced SNN. (a) Mean and SD of the RMSE computed for 10 tests with Webot simulator with the standard
network (in black) and a single test with the enhanced tenfold SNN (in grey). (b) Mean and SD of the RMSE computed for 10 tests with NAO
robot with the standard network (in orange) and a single test with the enhanced tenfold SNN (in light orange). (c)Mean and SD of the RMSE
computed for three single tests performed with Webot simulator and with the three additional trajectories: square (light grey), oval (grey),
and infinite (black).
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Figure 8: Cartesian and joint trajectories with the associated network activity for salient trials. Each row corresponds to a specific salient trial
of the protocol: (a) Trial 1, when the test and the baseline phase starts; (b) Trial 6, when the acquisition phase starts; (c) Trial 25, the last trial
of the acquisition phase; (d) Trial 26, the first trial of the extinction phase; (e) Trial 30, the last extinction trial and the last trial of the test. In
each row, the first column represents the Cartesian trajectory in the y-z plane, where the blue line is the ideal trajectory (without per-
turbation, as in Trial 1) and the red line is the actual trajectory performed during that trial. )e second column represents the three joint
trajectories (joints 1–3 in black, grey, and light grey, respectively) performed during the trial. )e third column represents the raster plots of
the neural spikes produced by the SNN during that trial (MFs, PCs, DCNs, and IOs in blue, green, black, and magenta, respectively).
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for its critical role in motor learning task. )e integration of
a cerebellar structure in a robot could help in developing
new paradigms and ways to perform robotic control in
different motor tasks.

Our workwas based on previous ones; here, we introduced
a larger version of the network, able to control simultaneously
three DoFs instead of a single one.)is allowed the robot to be
tested in a more complex task, using the SNN in an adaptation
of the upper limb perturbed reaching protocol, usually used to
test the cerebellar learning properties.

We obtained positive results, and the SNN performed well
when tested with different trajectories, showing the cerebellar
property of transfer learning (i.e., generalizability). )e
possibility to adapt to different motor task is a fundamental
property for the aim of bioinspired robot controllers which
will have to deal with different kinds of motor tasks.

One of the main limitations of our network was the low
resolution in the output control signal. Tests carried out with
a larger network (ten-fold). With this network, the larger
number of DCN could produce a smoother output and deal
better with small errors.

Further investigation on this network can be performed
with the other typical cerebellar paradigms. As in [12], this
SNNmaintains a general purpose for other cerebellar related
tasks. )erefore it would be possible to adapt both the
network and the robot to Pavlovian conditioning or
vestibulo-ocular reflex protocols.

)e increase in the number of controlled joints as well as
the good performances obtained with our test, suggests that
a larger network would be ideal to tackle this kind of motor
tasks. )is is especially true if the SNN has to control a real
system, in a world rich of unpredictable errors that lowered
network performances. )e real-time simulation of such
large-scale SNN, to develop a real bioinspired controller for a
physical robot, could be obtained uniquely by means of
highly parallel computing (e.g., GPU) or neuromorphic
hardware. )is could help in the developing of better
strategies of robot control, capable of motor learning and
event correlation that would meet practical use in many
fields, from the industry to artificial intelligence applications.
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