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The explosive growth in citizen science combined with a re-
calcitrance on the part of mainstream science to fully embrace
this data collection technique demands a rigorous examination of
the factors influencing data quality and project efficacy. Patterns
of contributor effort and task performance have been well reviewed
in online projects; however, studies of hands-on citizen science are
lacking. We used a single hands-on, out-of-doors project—the Coastal
Observation and Seabird Survey Team (COASST)—to quantitatively
explore the relationships among participant effort, task performance,
and social connectedness as a function of the demographic character-
istics and interests of participants, placing these results in the context
of a meta-analysis of 54 citizen science projects. Although online pro-
jects were typified by high (>90%) rates of one-off participation and
low retention (<10%) past 1 y, regular COASST participants were
highly likely to continue past their first survey (86%), with 54% active
1 y later. Project-wide, task performance was high (88% correct spe-
cies identifications over the 31,450 carcasses and 163 species found).
However, there were distinct demographic differences. Age, birding
expertise, and previous citizen science experience had the greatest
impact on participant persistence and performance, albeit occasion-
ally in opposite directions. Gender and sociality were relatively incon-
sequential, although highly gregarious social types, i.e., “nexus people,”
were extremely influential at recruiting others. Our findings suggest
that hands-on citizen science can produce high-quality data especially if
participants persist, and that understanding the demographic data of
participation could be used to maximize data quality and breadth of
participation across the larger societal landscape.
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Citizen science, defined broadly as the free choice participa-
tion of the nonexpert public in the practice of science with

the programmatic goal of scientific outcomes (1), is an rapidly
expanding area of science (2, 3), science literacy (4), and science
communication (5). Since its creation in 2009, the citizen science
clearinghouse SciStarter has grown to more than 2,100 projects
listed on the site (SI Appendix, Fig.S1), with the greatest absolute
number and relative growth in hands-on projects, or those with
activities requiring the physical presence and work of the project
participants. Online citizen science, or projects conducted via the
World Wide Web, is also growing. The number of projects
hosted by the online citizen science platform Zooniverse has
grown at a steadily increasing rate (SI Appendix, Fig. S1) to more
than 140 projects in disciplines as diverse as astronomy and en-
vironmental conservation. This platform now accounts for the
majority of online citizen science registrants in the world (1.75
million) (6). Collectively, hands-on and online citizen science
translates into dozens of scientific advancements (measured as
peer-reviewed publications) annually (7), and billions of in-kind
dollars (8, 9). In the ideal, citizen science provides a way to
achieve massive data collection and data processing needs while
elevating the awareness, knowledge, and understanding of the

nonscience public about the practice of science and the relevance
of scientific outcomes.

Participant Persistence and Project Retention. Within citizen sci-
ence, scientific and societal goals are dependent, at least in part,
on the amount of time and effort that individual participants put
toward a given project. Sauermann and Franzoni (8) point out
that, even though the collective contribution of online volun-
teerism in crowdsourced image classification projects is vast,
individual-level contributions follow a classic Pareto curve: most
contributors complete only a single task, and relatively few
(∼10%) contribute the majority (∼80%) of the work. Online
projects are not the only type of citizen science displaying a steep
fall-off in effort and retention. Boakes et al. (10) characterized
participant contribution in sensor/sampling projects (defined
here as hands-on projects requiring the participant to collect
samples, often with specific sensor technology) as falling into
three statistically derived volunteer engagement profiles: dab-
blers, or those who sample science lightly; enthusiasts, or those
who perform the vast majority of the work; and steady volun-
teers, or those individuals in between. Dabblers formed the vast
majority of the participant corps (67–84%) whereas enthusiasts
were vanishingly rare (1–4%), even though this latter group ac-
complished a proportionally large fraction of the observations.
Dabbling may thus define a large portion of the citizen science
corps, although a comprehensive examination of hands-on pro-
jects is lacking.

Participant Performance and Data Quality. Whether nonexpert
participants are successful in contributing to the science out-
comes of a citizen science project is certainly dependent on the
number of participants and how long they persist, but also on
how accurate these contributors are at whatever task(s) they
perform. One of the strongest criticisms of citizen science leveled
by the mainstream science community is of a lack of rigor in data
collection (11, 12). The relationship between how good a par-
ticipant is at mastering a task and how long they have been
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performing the task has been shown to be a function of the
complexity of the task (8), the type of training (13), and the
amount and type of feedback participants receive when they
begin to collect data (14).
In online projects, individual performance or accuracy can be

relatively inconsequential, as crowdsourcing (i.e., multiple, in-
dependent contributors or players performing the exact same
task) across a large participant base can optimize results. For
example, most online classification or transcription projects (e.g.,
projects in the Zooniverse) feature relatively simple tasks such as
counting the number of, and/or identifying the type(s) of, objects
in an image. These are easily mastered with short tutorials and
minimal practice (15). When a task has been completed by the
requisite number of contributors (usually 5–10, depending on
project), algorithm voting routines can allow the return of a col-
lective answer rivaling that of expert opinion (16). By contrast, in
online gaming projects (e.g., Foldit), the majority of the partici-
pants are relegated to a nonessential role as expert players with
“winning” or optimal solutions to the task at hand emerge from
the crowd (17). In both of these designs, data returned by one-off
dabblers can be useful in generating scientific outcomes (15).
By contrast, in hands-on citizen science, mastering the neces-

sary skills to return high-quality data may take time, requiring
repetitive task performance over multiple data collection ses-
sions to achieve the necessary precision and/or accuracy (18).
For some hands-on projects, the data collection accuracy of in-
coming participants may already be high. Hobbyists or amateur
experts who have learned and honed their craft are attracted to
and/or preferentially recruited into projects affording them
demonstration of their prowess. Birders and amateur astrono-
mers are exemplars (19). However, projects hoping to recruit a
broader participant base must rely on participants persisting
through to some threshold of performance after which the
project can credibly use their data. Thus, there is a theoretical
trade-off between the amount of time or effort required “in
practice” to attain the minimum scientific standard of the project
and the retention curve described by the participating pop-
ulation. If the majority of the recruited population are dabblers,
these projects will not succeed in delivering the “science at scale”
promised by citizen science.

Averages Do Not Describe the Everyman. From the perspective of
science, citizen science should optimize retention and data col-
lection accuracy. What attracts and retains participants is a
central issue within citizen science (20, 21), as is whether and
how participants learn (4, 19). At a fundamental level, alignment
between the interests of the participant and the mission of the
project undergirds the motivation to persist (22). Aspects of
personal experience can predispose individuals toward partici-
pation, and may also correlate with subsequent performance,
including but not limited to gender (23), age (24), hobbies (19),
and the tendency to work with others or gregariousness (25).
Whether any/all of these participant attributes influence per-
formance, and specifically the relationship between persistence
and learning, is unknown.
In this paper, we restrict the definition of citizen science to

those projects explicitly delivering data and requiring the active
mental participation of contributors (i.e., active citizen science)
(26). We quantitatively explored the intersections among par-
ticipant persistence, participant performance, and project design
in active citizen science, with an in-depth analysis of a single
hands-on, out-of-doors citizen science project, the Coastal Ob-
servation and Seabird Survey Team (COASST). We frame this
case study with a meta-analysis of the retention characteristics of
54 citizen science projects across the hands-on, online contin-
uum. Our analyses provide a comparison of contributor effort
across the landscape of citizen science. Within hands-on projects,
our work suggests that attempting to optimize retention, data

collection accuracy, and social connectedness selects against top
performers in favor of a broader participant base. We discuss
these findings in light of claims that citizen science can return
high-quality science and participant learning and self-fulfillment
for the majority of the nonexpert public (1, 3), thus providing a
path toward the democratization of science (27).

Results
COASST is an active citizen science project recruiting residents
of coastal communities along the northwest coast of the conti-
nental United States as well as Alaska (28). After an in-person,
expert-led training session, attendees who sign up to participate
begin to conduct standardized, effort-controlled surveys of
“their” beach at least monthly, searching for beach-cast carcasses
of marine birds. For all carcasses found, participants record meristic
(e.g., number and arrangement of toes) and morphometric (e.g.,
wing measurement) data before using these same pieces of evidence
to make a taxonomic identification with the aid of a project-specific
field guide. All carcasses are uniquely tagged, photographed, and
left in place. Taxonomic identifications are independently verified
by experts via submitted measurement and photographic data.

The Retention Landscape. On average, 71% of COASST partici-
pants (n = 2,511) persisted after their first survey, and 40%
continued past 1 y (Fig. 1A). If guests are excluded from this
sample (i.e., only regular participants remain), retention past 1 y
exceeded 50% (Fig. 1A), with 14% still active in the project 5 y
later. Not surprisingly, these long-term participants sustained
a larger fraction of total effort, measured as surveys performed
(R2 = 0.39; SI Appendix, Fig. S2A). However, this time/effort
relationship broke down when effort was assessed as carcasses
found (R2 = 0.09), with a wide range of cumulative carcass
counts across the participant population (SI Appendix, Fig. S2B).
That is, many individuals persisted for years in surveying even
when they repeatedly found few to no birds. Fully one third
(34%) of long-term participants never found a carcass, and 11%
found only one (SI Appendix, Fig. S2C). Thus, retention in
COASST does not appear to be related to effort-based rewards
(e.g., finding birds) more typical of hobbyist projects.
To put the COASST retention statistics into perspective, we

explored the larger patterns of contributor effort defined by
active citizen science projects reporting the percentage of par-
ticipants who dabbled (defined as completing a single task, sur-
vey, or observation) and/or the percentage who were still active in the
project 1 y later (Fig. 1B). We used literature- and project-reported
values (project names and data sources are provided in SI Appendix,
Table S1) to examine four project classes: (i) online crowdsourcing
projects recruiting multiple participants to independently classify or
transcribe digital information, (ii) online crowdsourcing projects in-
viting participants to compete for optimal solutions to a problem set
within a gaming framework, (iii) hands-on projects asking participants
to collect digital or real-world samples, and (iv) hands-on projects
asking participants to collect deductive data, or conclusions based on
in situ evidence, including COASST.
Online projects, and especially image classification projects,

attracted a high proportion of dabblers, ranging from 50% to ≥90%
of registered participants, and had uniformly low retention past 1 y
(<10%). For some of these projects, participant turnover at 1 y was
total. By contrast, hands-on projects had extremely wide ranges of
dabbling and retention past 1 y (hereafter simply “retention”).
Within this group, three subsets emerged, including high-dabbler,
low-retention projects intensively recruiting for a single, local event
(e.g., bioblitzes) (29). At the other extreme were low-dabbler, high-
retention projects. These included hobbyist projects passively
recruiting skilled amateurs (e.g., birders to Breeding Bird Surveys)
(19, 30) as well as projects actively recruiting individuals with a high
interest in the mission of the project (e.g., sense of place associated
with local environmental monitoring) (31). Between these poles
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were a range of projects offering participants the chance to develop
and hone activity-specific skills over multiple data collection op-
portunities, from national- to global-scale projects with Web-based
training and feedback [e.g., Nature’s Notebook (NN), Community
Collaborative Rain Hail and Snow Network (CoCoRaHS), Reef

Environmental Education Foundation (REEF); SI Appendix, Table
S1] to local- to regional-scale projects with in-person training and
personalized feedback (e.g., Virginia Master Naturalists,
COASST; SI Appendix, Table S1). Because all projects repre-
sented in the retention landscape have been successful over
multiple years (even decades), and range from hundreds to
hundreds of thousands of participants annually, our analysis
suggests that fundamental differences may arise as a function of
design, and secondarily implicate particular types of partici-
pants, at least in the highest-retention projects.

Practice Makes (Nearly) Perfect. Although COASST does not post
the highest rates of retention (Fig. 1B), it also recruits a large
proportion of self-defined beginners (31), making it a useful
exemplar of the design tension between retention and data col-
lection accuracy when the participant base is broad in terms of
skill. The ability of COASST participants to correctly identify a
carcass to species (hereafter “accuracy”) is central to the expe-
rience of the individual and the data quality of the project (28).
Becoming good requires practice. For participants who did en-
counter carcasses, it is clear that incoming participants (<10
carcasses found) displayed an extreme range of variability in
identification skill (calculated as accuracy across all birds found
by a given individual; Fig. 2A). However, participants logging higher
numbers of carcasses quickly boosted their cumulative accuracy,
and some individuals were truly exceptional (>95% correct).
Learning, operationally defined as an increasing likelihood of

deducing the correct species of carcass encountered, happened
continuously, from survey to survey and even from bird to bird.
At the survey level, accuracy was affected by the prior experience
of the survey team [model Akaike information criterion (AIC) =
8,973, D2 = 10.1%; SI Appendix, Table S2], as well as by carcass
abundance and taxonomic diversity, all of which displayed as-
ymptotic relationships (SI Appendix, Fig. S3). In other words, the
opportunity to sample more carcasses on a survey improved team
performance, regardless of the inherent experience of its mem-
bers (ΔAIC = 553; SI Appendix, Fig. S3B and Table S2). How-
ever, this effect was dampened by species diversity (ΔAIC = 367;
SI Appendix, Fig. S3C and Table S2); that is, it was easier to
identify 10 examples of the same species than single examples of
10 different species. Because many participants do the survey
with partners (∼50% of all surveys), we also modeled accuracy at
the carcass level, at which the identification was credited only to
the most experienced survey team member (Fig. 2B). The re-
sultant “learning curve” had an intercept at 78% (95% CI, 75.4–
80.5%) and an asymptote at 89% (95% CI, 88.2–89.6%), al-
though achieving this level took time. For example, the average
participant surveying Pacific Northwest outer coast beaches
would be within 2% of the asymptote after ∼43 carcasses or
∼1.25 y (15 surveys).
Taken together, these analyses indicate that participants in

COASST can become highly adept at species identification if
they persist long enough. We modeled the shape of that trade-off
“frontier” between persistence and accuracy by using Pacific
Northwest outer coast participants as an example (Fig. 2C). If
COASST required extremely high levels of accuracy (e.g., >90%)
before participant data would be accepted, the project would
collapse, as achieving this theoretical level of performance is be-
yond the duration of even the most persistent participant.
Relaxing accuracy requirements to 75% would allow COASST to
capture data from the entire participant population. Thus,
knowledge of the shape of the trade-off frontier gives project
managers information about what they are gaining (or losing) by
applying a particular stricture and/or information on where to
apply additional training to boost participant acumen.

All Participants Are Not the Same. Because individual participants
are not described by project-level averages, we explored the
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centage of the contributing population remaining active in the project past
1 y (n = 39). Projects with total turnover at 1 y are in the bar below zero.
Histograms are binned counts of all projects for which the relevant data
were obtainable; scatterplot points represent projects for which both met-
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trade-off between retention and accuracy further by categorizing
participants by demographic and interest factors cited by others
as potentially influential (19, 23–25). Initially, the highest re-
tention rates (>90% participation beyond the first survey) were
associated with participants who had previously been involved in
other citizen science projects, already had some expertise in
identifying birds, and were older than 40 y of age when they
joined (SI Appendix, Fig. S4). One year later, these patterns had
become more pronounced. After 5 y, age and prior bird identi-
fication skill were the only influential demographic characteris-
tics affecting retention. The highest levels of accuracy were
achieved by younger participants, followed by middle-aged (40–
60 y) participants and those with birding expertise (SI Appendix,
Fig. S4). Gender was the least influential demographic charac-
teristic in retention or accuracy, although males were marginally
more persistent than females as a function of time (one survey,
0.9%; 1 y, 2.5%; 5 y, 3.6%; SI Appendix, Fig. S4).
Fig. 3 demonstrates the trade-offs between rates of retention

and accuracy, as participant subpopulations move from their
initial status (after one survey and one bird) to their “seasoned”
status 1 y later, or two snapshots along the trade-off frontier (i.e.,
Fig. 2C). Across all demographic groups, initial spread in re-
tention (81–94%, Δ = 12.3) was approximately half of what it
reached at 1 y of surveying (43–64%, Δ = 21), whereas the
pattern in accuracy was the opposite (initial Δ = 15%; seasoned
Δ = 8.7%). Thus, attempting to manipulate the target audience
as a function of demographic characteristics should have a larger
influence on retention than on accuracy. Some demographic
characteristics consistently predicted better performance and
higher retention (e.g., involvement in other citizen science pro-
jects, birding experience) whereas others displayed trade-offs
(e.g., age). For instance, older individuals (>60 y) began as the least
accurate age class and had become the most accurate by 1 y,
although all age classes improved (Fig. 3).
A profiling approach (e.g., ref. 32) would suggest that favoring

older individuals (>40 y) with at least intermediate experience in
identifying birds who also had previous citizen science experi-
ence would deliver the highest levels of retention and accuracy at
1 y. This approach would also suggest that overall project sta-
tistics could be improved by avoiding younger individuals lacking
bird or citizen science experience, even though younger indi-
viduals will eventually become the most accurate performers (SI
Appendix, Fig. S4G). In fact, the single largest demographic
subpopulation in COASST (7.6%) is older (>60 y) females with
previous citizen science experience and little to no birding ex-
pertise: neither the most persistent or accurate group nor the
least. We suggest that in-depth knowledge of participant de-
mographic characteristics is a double-edged sword. Knowing the
relative performance of each demographic- and/or interest-based
subpopulation can be used to tune project design toward favor-
ing best-performing individuals (i.e., high grading) or toward
providing more interaction and project support to increase the
performance of all classes to project-acceptable levels.

Science as a Social Enterprise. To understand the distribution and
influence of social relationships on project statistics, we catego-
rized participants surveying for ≥6 mo (n = 1,815) according to
their expressed preferences as to the number and identity of
survey partners. Individuals joining COASST are asked to survey
in pairs, and the majority of participants (51%) did so, although
many had more than one partner over time (Figs. 4 and 5).
“Loners” were the second most prevalent social category (24%),
and 36% of those surveyed exclusively alone. We classified the
remaining 25% of participants as “gregarious” (Fig. 4). By and
large, these individuals also surveyed as pairs, but with many
more unique partners. When categorized dichotomously as loner
or social, being social had no apparent influence on participant
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retention or accuracy (SI Appendix, Fig. S4 E and J). Thus, so-
ciality appears to have no overt influence on program statistics.
However, when COASST is examined as a social network,

whereby individuals are connected to other individuals with
whom they have surveyed, a different picture emerges. The
majority of participants belonged to networks of ≥4 people, with
the largest network exceeding 500 individuals (Fig. 5 and SI
Appendix, Fig. S5). These people are not all known to each other;
in COASST, social networks are built over time. That is, par-
ticipants recruited guests, some of whom become regular part-
ners, with some of those eventually starting their own survey sites
and inviting others to participate. Just more than 2% of partic-
ipants were classified as “nexus” people, a subset of gregarious
people defined by having >10 unique partners (Fig. 4). By def-
inition, nexus people were the most well-connected, falling
principally in the largest networks (Fig. 5 and SI Appendix, Fig.
S5). On average, nexus people each recruited nine other indi-
viduals (maximum, n = 30), compared with loners and pairs
(averaging <0.5 recruits per participant) and other gregarious
individuals (2 recruits). Nexus people were not necessarily en-
thusiasts, in the sense of conducting the vast majority of the work
themselves (sensu; ref. 10), nor were they extraordinary per-
formers, in the sense of hobbyists (sensu; ref. 19) or top players
(sensu; ref. 33). Demographically, they largely mirrored the
overall COASST population, with the exception of significantly
fewer young individuals compared with the wider COASST pop-
ulation (5.4% observed vs. 19.6% expected; P = 0.024). In sum,
the additional value of nexus participants and, to a lesser extent,
all gregarious individuals was in their ability to bring new people
into the project.

Discussion
It’s About Design.Our results extend the work of others suggesting
that the pattern of contributor effort in crowdsourced, online
citizen science projects follows a Pareto curve (8, 33, 34) by re-
vealing that this “peak” in the active citizen science retention
landscape is only one of several locations (Fig. 1B). Translated
into participant numbers, even though online projects may re-
cruit thousands of participants annually, they may retain only a
few hundred, whereas a high-retention, hands-on project may
need to recruit only 100 participants because almost all will be
retained. However, successful, stable hands-on projects ran the
gamut of retention, from extremely high-retention projects to
those in which the majority of contributors were dabblers. We
suggest that the retention landscape emerges from a variety of
project designs beyond the online vs. hands-on division, in-
cluding but not limited to blitzes, opportunistic surveys, and
standardized, regular monitoring. Fleshing out the landscape
with many more projects and linking retention to performance at
individual and project levels will facilitate a more comprehensive
and systematic examination of the intersections among project
design, optimization of scientific achievement, and benefits to
the participating individual.
Studies of motivation in environmental volunteerism have

long suggested that certain activities recruit individuals who
come to the project with a high level of expertise developed over
a lifetime of practice. Although these amateur experts may
contribute to a citizen science project out of a desire to assist in
and/or be part of science (24), they also clearly regard content-
relevant projects as providing an opportunity to extend their
hobby (35). As a result, projects designed to take advantage of
outdoor national pastimes may attract a ready supply of near-
professionals who, finding their functional requirements fulfilled
(22), maintain their involvement for years. Given the dramatic
shifts in human populations toward urban environments (36) and
online activities (37), it is an open question whether these classic
naturalists will persist in numbers sufficient to fuel this end of the
retention landscape continuum. Alternately, emergent shifts in
society toward online activity may be producing future generations
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of cyber-savvy individuals who are poised to contribute to the
emergent set of online citizen science opportunities (38), including
the burgeoning number of projects focused on environmental and
conservation science (39).
The other end of the hands-on retention continuum appears to

be projects intentionally focused on one-off involvement, ex-
emplified by blitzes (29), in which a large number of individuals
are recruited to come together and simultaneously engage in a
task. Although blitzes may be characterized by high rates of
dabbling and low retention, these programs can return significant
scientific results when targeted toward specific issues (e.g., range
extension of invasive species) (40). Because hands-on blitz projects
and other one-off events are spatially centralized, they lend

themselves to highly attractive institutions that are also tightly
rooted in place, including parks, zoos and aquariums, and mu-
seums. For instance, 300 million people annually visit US na-
tional parks, and therefore park-centered blitz projects may act
as an entrée to further public involvement in science (5). Our
results from the COASST project indicate that prior participa-
tion in citizen science had a significantly positive impact on re-
tention (Fig. 3 and SI Appendix, Fig. S4), hinting that a “career
progression” of project participation (sensu 8) could start with
dabbling and move toward more sustained involvement.
Hands-on projects between these poles demonstrate perhaps

the best potential to realize scientific outcomes on the part of
project organizers and personal learning and other types of
functional fulfillment on the part of the individual participants
(2), as contributors have the opportunity to practice skills learned
within the context of the project while also gaining understanding
and awareness of scientific pattern, process, and function beyond
what any single individual could experience (31). It is also in this
space that the trade-offs between retention and task performance at
the project level—or persistence and learning seen from the par-
ticipant’s perspective—emerge most strongly (Figs. 2 and 3 and SI
Appendix, Fig. S4). Although individual learning curves are no
doubt project-specific, retention/accuracy trade-offs are, by
definition, a general feature of hands-on deductive data col-
lection projects. We suggest that knowing the shape of the
trade-off frontier (e.g., Fig. 2C) between these two basic met-
rics of citizen science, both over all participants and by sub-
population, can be invaluable in focusing design effort where it
is needed (i.e., groups with lower performance and/or shorter
retention times) and, more broadly, in understanding how the
project effectively favors some individuals over others, at the
very least via differential retention. Clearly, more programs
need to delve into the relationships among demographic
characteristics, interests, and program statistics, including re-
tention and metrics of participant accuracy directly related to
data quality.

Can Learning Happen at All Participant Levels? If learning is truly
lifelong, do all participants in citizen science reap this benefit? In
COASST, even self-rated experts posted accuracy gains over
their first year (Fig. 3 and SI Appendix, Fig. S4), a finding echoing
online (8) and hands-on (41) studies. At the other end of the
spectrum, the question remains open whether dabblers are able
to experience measurable learning gains.
Conceptually, low-dabbler, high-retention projects should

afford an opportunity to push the majority of the participant
corps up the learning curve, as most individuals conduct tasks
repeatedly. Continuing participants can certainly assimilate
content knowledge and associated skills specific to a project
(15), and some are able to demonstrate practices of science in
the absence of prompting (42, 43). Although several studies
have examined participant proficiency in hands-on citizen
science projects, usually relative to an expert population (e.g.,
ref. 44), relatively few have examined shifts in data collection
accuracy through time, or the learning curve (e.g., ref. 41).
Our study is one of the first to report measured performance
over time in the participant population, and our results sug-
gest that all participants who persisted past one survey gained
in their ability to correctly identify carcasses to species re-
gardless of their starting point or demographic characteristics
(Fig. 3).
However, it is also the case that participants started, on av-

erage, at 78% accuracy (Fig. 2B), a rate suggesting that they were
already experts. In fact, this is exactly the case, albeit not because
carcass identification has been learned elsewhere, as the majority
of participants (51%) self-rated as novice birders at joining (31).
Furthermore, the sheer number of species recorded by the pro-
gram (>150 species) belies the hypothesis of prior expertise.
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Rather, we assert that this level of performance at taxonomic
identification is the effect of training (28) and project design.
Breaking the scientific process down into multiple simple
tasks is a successful strategy for returning high-quality results
(8). In COASST, the process of taxonomic identification has
been effectively disarticulated into the collection of evidence
and comparative analysis using these data, resulting in par-
ticipant deductions that are based on fact rather than hunch
(28). This suggests that citizen science participants can quickly be-
come competent such that high-quality datasets can be reliably
produced even by relatively novice nonexperts if the underlying
science process is explicitly, and project-specifically, revealed.

Citizen Science for Everyone. As science seeks to truly open the
doors to participation, citizen science holds an additional promise
as a free-choice learning experience contributing to the public’s
understanding of science and the scientific process (45). Individ-
uals are attracted to projects and remain as long-time contributors
because their interests and motivations match those of the project
(20). In this idealized worldview, everyone has the potential to be
a part of the science team, contributing to scientific outcomes that
are meaningful to them and to science (46).
To date, efforts to understand the diversity of participants in

citizen science have principally focused on relative contributor
effort and abilities, touching only lightly on demographic dis-
parities and social dimensions. Are there “optimal personas” in
citizen science? Certainly “enthusiasts” and “top players” may be
people with particular skills and unique ways of thinking bene-
ficial to project success (10, 33). Although the COASST results
point to some demographic combinations as persistent and
highly accurate data collectors (Fig. 3), a combination certainly
advantageous at the project level, they also indicate both trade-
offs and synonymies over time (SI Appendix, Fig. S4). For in-
stance, older participants started as the age class least accurate
at identifying carcasses to species, became the most accurate
within 1 y, and then lost that status again to younger individuals
by the 5-y mark. These results suggest that a profiling approach
may be difficult, if not fruitless, for projects retaining individ-
uals over years. Finally, our finding that the most socially in-
fluential people in terms of recruiting others into the project
(i.e., nexus people; Figs. 4 and 5) were not necessarily the
highest-performing individuals suggests that an optimal per-
sona—long-lasting, highly accurate at data collection, and
highly efficient at recruiting others to sustain the program—

may be a myth.
Pandya (21) points to the lack of underrepresented and un-

derserved peoples in citizen science. Cooper and Smith (23)
suggest that the inclusion, and exclusion, of women as citizen
science participants may be tied to the designed sense of mem-
bership (female-dominant) vs. competitiveness (male-dominant)
across projects. Ganzevoort et al. (24) suggest that out-of-doors,
nature-based citizen science appeals predominantly to older in-
dividuals. Clearly, there are reasons why specific instantiations of
citizen science may drive people away from the opportunity
rather than toward it. Understanding motivations to join, as well
as not to join, as a function of participant identity is a funda-
mental part of intentional project design.
Although each project will have a different spread of retention

and task performance across the participating population, our
results suggest that a profiling approach might increase data col-
lection accuracy in COASST by <10 percentage points but depress
participation to potentially unsustainably low numbers. Con-
versely, attention to the factors resulting in the relatively lower
rates of retention and/or accuracy of younger participants, and
those without previous citizen science experience or bird identifi-
cation expertise (e.g., Fig. 3, lower left of the 1-y cluster) could
significantly improve project statistics and might increase project
attractiveness to a wider population base. Thus, although we are in

favor of a demographic approach to the study of retention and
performance, we argue that its use for inclusive design is statisti-
cally prudent and socially responsible.

Conclusions: Serendipity and Emergence. Citizen science across the
continuum from online to hands-on involves millions of people
in discovery and actionable science (SI Appendix, Fig. S1). This
burgeoning science team creates an opportunity for serendipity
and emergence. The sudden discovery of a new star formation,
or a new species, or a new protein structure: these saltatory
advancements appear to take actions of the many to produce.
And the actions of the many also allow realization of patterns in
space and time unknowable by the individual (27): shifts in the
timing of spring flowering, changes in migratory pathways, con-
tinental spread of a disease, or climate-induced massive mor-
tality. Such “big science” requires big data. The COASST case
study clearly indicates that persistent nonexperts can become
highly accurate at making complex deductions (i.e., species
identification) from directly collected evidence (e.g., foot
type, measurements). Additional studies on the patterns of,
and trade-offs between, participant retention and data col-
lection accuracy in hands-on citizen science are essential to
address the skeptical among the mainstream scientific com-
munity (12). We suggest that high-quality data can be suc-
cessfully produced by appropriately designed citizen science
projects. We envision a future in which all of the public are
included in these efforts, and we pose the question: what
advancements might we collectively realize?

Materials and Methods
Data on 3,286 COASST participants (1999–2018) were obtained from the
COASST database. Demographic and interest information are voluntarily
provided by participants upon joining with their informed consent for
future use under University of Washington Institutional Review Board
(IRB) protocols 37516 and 47963. We defined regular participants (n =
2,356) as those who attended an expert-led COASST training and/or who
were trained on the beach by others and subsequently began monthly
surveys. Guests (n = 930) were defined as individuals recruited by regular
participants to fill in as occasional partners, but who did not survey reg-
ularly, logging no more than five surveys. COASST staff, interns, agency
partners, and individuals conducting surveys as part of their job (e.g.,
tribal biologists, National Park Service Rangers) were excluded from
this analysis.

We coded the social status of all regular participants who surveyed for at
least 6 mo (n = 1,815) as follows: loners, ≥50% of their surveys alone and <5
unique partners; and pairs, <50% of their surveys alone and <25% of their
surveys with multiple partners, with <5 unique partners. All remaining par-
ticipants were termed gregarious. Within that category, nexus individuals
were defined as those participants with >10 unique partners and >60 surveys.

Details on themeasures used and statisticalmodels constructed are provided in
SI Appendix, Supplementary Text. Unless otherwise stated, all analyses were
carried out by using R version 3.3.4 (47). All COASST data not protected by IRB
regulation are available in summarized form on our website (www.COASST.org),
and are available in raw form on request and with a signed data sharing
agreement.
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