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Citizen science has proved to be a unique and effective tool
in helping science and society cope with the ever-growing data
rates and volumes that characterize the modern research land-
scape. It also serves a critical role in engaging the public with
research in a direct, authentic fashion and by doing so promotes
a better understanding of the processes of science. To take full
advantage of the onslaught of data being experienced across
the disciplines, it is essential that citizen science platforms lever-
age the complementary strengths of humans and machines. This
Perspectives piece explores the issues encountered in designing
human–machine systems optimized for both efficiency and vol-
unteer engagement, while striving to safeguard and encourage
opportunities for serendipitous discovery. We discuss case stud-
ies from Zooniverse, a large online citizen science platform, and
show that combining human and machine classifications can effi-
ciently produce results superior to those of either one alone
and how smart task allocation can lead to further efficiencies
in the system. While these examples make clear the promise of
human–machine integration within an online citizen science sys-
tem, we then explore in detail how system design choices can
inadvertently lower volunteer engagement, create exclusionary
practices, and reduce opportunity for serendipitous discovery.
Throughout we investigate the tensions that arise when design-
ing a human–machine system serving the dual goals of carry-
ing out research in the most efficient manner possible while
empowering a broad community to authentically engage in this
research.

citizen science | machine learning | human computing interaction |
physical sciences | biological sciences

The 1968 Cybernetic Serendipity exhibition (www.
studiointernational.com/index.php/cybernetic-serendipity-

50th-anniversary) was an early imagining and exploration of
computer-aided creative activity, play, and interplay. The exhibit,
curated by Jasia Reichardt at the Institute of Contemporary Arts
in London, examined the role of cybernetics in contemporary art
and included robots; algorithmically generated movies, poetry,
and music; painting machines; and kinetic interactives. Several
of the works featured chance as an important ingredient in the
creative process, reflected in the priority given in the exhibition’s
emphasis on machine-enabled serendipity. It is useful to reflect,
50 y later, whether machines have indeed enabled serendip-
itous discovery, albeit in the realm of science rather than
the arts.

We consider this concept in the context of online citizen sci-
ence projects. These projects, which massively share the task
of data analysis among a crowd of volunteers, in many ways
exemplify the promise of those early ideas, providing a com-
pelling modern example of the transformative power of the
integration of human and machine effort. Online citizen sci-
ence not only is a powerful tool for efficiently processing our
growing data rates and volumes (the “known knowns”), but
also can function as a means of enabling serendipitous discov-
ery of the “known unknowns” and the “unknown unknowns”

in large, diverse datasets. In this Perspectives piece, we describe
our recent efforts and future considerations for designing a
human–machine system optimized for “happy chance discov-
ery” (a definition of serendipity that provided guidance for the
Cybernetic Serendipity exhibit) that best takes advantage of the
efficiencies of the machine while acknowledging the complexity
of human motivation and engagement.

What is now called citizen science—the involvement of the
general public in research—has a long history. An early example
is Edmund Halley’s study of timings during the 1715 total
solar eclipse, which included observations from a distributed,
self-organized group of observers (1). Works by refs. 2 and
3, among others, have linked modern-day efforts to their
19th century antecedents, for example, highlighting the role
played by amateur networks of meteorological observers in
establishing that field of study (i.e., by 1900, more than 3,400
observers were contributing data to a network organized by
George Symons, producing data on a scale that could not be
matched by the professional efforts of the time). In recent
decades, citizen science has gained renewed prominence,
boosted in part by technological advances and digital tools
like mobile applications, cloud computing, and wireless and
sensor technology which have enabled new modes of public
engagement in research (4) and facilitated research projects
that investigate questions from data at scales beyond the
professional research community’s resource capacity (5).
Professional citizen science organizations have been created in
Europe, Australia, and the United States. In the United States,
the Crowdsourcing and Citizen Science Act of 2015 was
introduced to encourage the use of citizen science within
the federal government and, that same year, the first Citizen
Science Association (CSA) conference was held (although
some consider the 2012 European Space Agency side event
on citizen science the first CSA gathering). CitizenScience.gov
(https://www.CitizenScience.gov) currently lists over 400 active
citizen science projects. Participation in citizen science today
ranges from hands-on data collection, tagging, analysis, and
research projects [e.g., iNaturalist.org (https://www.iNaturalist.
org) (research grade observations: https://www.gbif.org/dataset/
50c9509d-22c7-4a22-a47d-8c48425ef4a7), eBird.org (https://
www.eBird.org) (6), and CitSci.org (https://www.CitSci.org) (7)]
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to contributing in-person data and participating in hands-on data
analysis [e.g., the Denver Museum of Science Genetics of Taste
Laboratory (8)] to a growing number of cocreated environmen-
tal monitoring projects using low-cost sensors with community
members working in collaboration with researchers [e.g., the LA
Watershed Project (https://www.epa.gov/urbanwaterspartners/
diverse-partners-brownfields-healthfields-la-watershed)] to on-
line data-processing efforts, described in more detail below.
There has also been an explosion of citizen science efforts
carried out in classroom settings; for example, Sea-Phages
(9), Small World Initiative (10), and the Genomic Education
Partnership (11) provide standardized curricula for under-
graduate students to collect soil and other samples from their
local environments, isolate the bacteria in them, annotate the
genomes, characterize them, and upload their results into
national databases. Over 300 universities participate annually in
these recently launched efforts, with dozens of peer-reviewed
articles to date and a major impact on these fields of study (e.g.,
ref. 12).

Online citizen science, which has become a proven method of
distributed data analysis, enables research teams from diverse
domains to solve problems involving large quantities of data,
taking advantage of the inherently human talent for pattern
recognition and anomaly detection. For example, the Eterna
(13) online gaming environment [the next generation of the
FoldIT platform (14)] challenges players to design new ways to
fold RNA molecules to find solutions for diseases like tuber-
culosis. These new molecular structures are then synthesized
and tested in Stanford’s medical laboratories. Other examples
of online citizen science include Eyewire (15) and Cosmoquest
(https://cosmoquest.org), among others. There are also a grow-
ing number of online crowdsourced transcription efforts in the
humanities, including From the Page (https://fromthepage.com),
Veridian (16), Smithsonian Transcript Center (https://siarchives.
si.edu/collections/siris sic 14645), and Transcribe Bentham (17).
See CitizenScience.gov and SciStarter.org (https://SciStarter.
org) for comprehensive listings of citizen science projects
and platforms. Technological advances have also enabled a
parallel track of “volunteer/distributed computing” efforts,
like SETI@Home (https://setiathome.berkeley.edu), which har-
ness computing resources for distributed computing and/or
storage.

Numerous studies have outlined the positive impacts of public
participation in scientific research, including increases in long-
term environmental, civic, and research interests (e.g., ref. 18 and
references therein); the empowerment of communities to influ-
ence local environmental decision making (18, 19); the increased
representation of women and minorities in the scientific pro-
cess (20); and increases in confidence (21–24), scientific literacy
(25–28), domain knowledge (23, 29), and understanding that
scientific progress is a collective process (30).

Zooniverse (https://www.zooniverse.org), which we focus on in
the remainder of this paper, is the largest platform for online
citizen science, host to over 120 projects with 1.7 million regis-
tered participants around the world. It is unique among online
citizen science platforms as a result of its (i) shared open-
source software, experience, expertise, and input from users
across the disciplines; (ii) reliable, flexible, and scalable appli-
cation programing interface (API), which can be used for a
variety of development tasks; (iii) free, do-it-yourself (DIY)
“Project Builder” (also known as the Project Builder Platform)
capabilities as described below; and (iv) the scale of its exist-
ing audience. Zooniverse partners with hundreds of researchers
across many disciplines, from astronomy to zoology, cancer
research to climate science, and history to the arts. At a time
when citizen science is gaining prominence across the world,
Zooniverse has become a core part of the research infras-
tructure landscape. Since the launch in 2007 of the Galaxy

Zoo project (31, 32), Zooniverse projects have led to over
150 peer-reviewed publications, enabling significant contribu-
tions across many disciplines (see zooniverse.org/publications
for the full list), e.g., in ecology (33–36), humanities (37, 38),
biomedicine (39), physics (40, 41), climate science (42, 43), and
astronomy (31, 32, 44–46). These projects have established a
track record of online citizen science producing quality data
for use by the wider scientific community. This paper pro-
vides a compilation of lessons learned and questions raised
around the integration of machine learning into online citi-
zen science based on the experiences from myriad projects on
the Zooniverse platform. With each Zooniverse project high-
lighted, we reference the specific project URL and the relevant
citations.

The number of projects supported by Zooniverse has recently
experienced rapid growth, an acceleration which is a result of
the launch in July 2015 of the free Project Builder Platform
(https://www.zooniverse.org/lab) which enables anyone to build
and deploy an online citizen science project at no cost, within
hours, using a web browser-based toolkit. The Project Builder
supports the most common types of interaction including classi-
fication, multiple-choice questions, comparison tasks, and mark-
ing and drawing tools. The Project Builder front end is a series of
forms and text boxes a researcher fills out to create the project’s
classification interface and website. All Project Builder projects
come with a landing page; a classification interface; a discus-
sion forum; and “About” pages for content about the research,
the research team, and results from the project. Fig. 1 displays
screen shots from the Project Builder front end. The Project
Builder is transformative; before its development a typical online
citizen science project required months to years of professional
web development time. Zooniverse went from launching 3–5
projects per year to launching 26 in 2016, 44 in 2017, and over 50
in 2018.

Early Lessons in Design for Cybernetic Serendipity—Finding
the Unexpected
From its first project Galaxy Zoo (https://GalaxyZoo.org) (31,
32), the Zooniverse platform has encouraged and enabled
serendipitous discovery, taking advantage of having so many
eyes on the data and our innate human ability to notice the
unusual and unexpected. Just as amateur scientists in the 19th
century defined new lines of scientific inquiry based on their
observations, volunteer participants on modern citizen science
platforms have more often than not adventured far beyond
the original framework of a given project to flag an unusual
object of interest and/or work on research questions they came
up with themselves, typically based on something they noticed
while performing the prescribed main classification task (47).
The Zooniverse “Talk” discussion forums have been central to
these citizen-led investigations. Talk provides a space for a wide
range of information sharing and ideas exchange between vol-
unteers and researchers, enabling serendipitous collaboration
and facilitating social community building. The interactions in
Talk range from the purely social to goal driven and collab-
orative, benefiting the project both directly, in their question-
answering function and as an enabler of novel discoveries,
and indirectly, as a means to attract interest and long-term
engagement (48).

The serendipitous discoveries made by Zooniverse volunteers
over the years have transformed frontier fields of research.
For example, the discovery of Galaxy Zoo’s “Green Peas” (49)
pushed our theoretical understanding of the formation and
evolution of galaxies. These compact green galaxies are low
mass, low metallicity galaxies with high star formation rates.
They were a surprise because despite their low metallicity (which
indicates that they are young), they are not very far away. Their
discovery highlights the power of Talk (50). A few volunteers
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Fig. 1. Screenshots of Zooniverse’s free Project Builder Platform (https://www.zooniverse.org/lab). As the user inputs content into the Project Builder
interface (Left), he or she can immediately view changes in the associated public-facing website (Right). Here we have displayed the “Workflow” section of
the Project Builder (in which the user sets the classification task the volunteer will carry out) and the associated “Classify” page within the project’s actual
website that it creates. Through the tabs located along the left-hand side of the Project Builder interface, project leads upload all of the necessary content
and data for their crowdsourced research project, from inputting information about their research goals and why they need volunteers’ help in the About
tab to uploading their subjects that need classifications in the “Subject Sets” tab to exporting the raw classifications provided by the volunteers through the
“Data Exports” tab. The Project Builder is democratizing access to online citizen science as a tool for research and has enabled the accelerated expansion of
the Zooniverse. Since its launch in July 2015, the Zooniverse has gone from launching 3–5 projects each year to launching over 50 in 2018.

had noticed the strange, compact, green blobs while classifying
and had started a Talk discussion forum thread humorously
titled “Give peas a chance.” The researchers worked alongside
the volunteers (who referred to themselves as the “Peas Corps”)
to refine the collection of objects, ultimately identifying 250
Green Peas in the million-galaxy dataset. Even if the researchers
had managed to examine 10,000 of the images, they would
have only come across a few ‘Green Peas’ and would not have
recognized them as a unique class of galaxies (49). Numerous
other examples of serendipitous discovery pepper Zooniverse’s
history—from Hanny’s Voorwerp, the ghost remnant of a
supermassive black hole outflow, offset from its central Galaxy
Zoo galaxy and of which only a few dozen other examples
have been observed (51), to the discovery of a group of 19th
century female scientific illustrators and writers [a volunteer
noticed the name “Mabel Rhodes” while annotating 19th
century scientific journal pages as part of the Science Gossip
project (https://www.ScienceGossip.org) and spurred a cohesive
search and collection effort and a new research direction for
the project (https://talk.sciencegossip.org/#/boards/BSC0000004/
discussions/DSC00004s8)].

Experiments in Machine Integration
As we enter an era of growing data rates and volumes [e.g.,
the 30 TB of data each night that will be produced by astron-
omy’s Large Synoptic Survey Telescope (52) or the thousands
of terabytes produced by ecology projects annually], Zooniverse
has been moving toward a more complex system design, one
that takes better advantage of the complementary strengths of
humans and machines, integrating these efforts to optimize for
both efficiency and volunteer engagement, while striving to safe-
guard and encourage opportunities for serendipitous discovery.
Below we provide a few examples of early efforts to integrate
humans and machines.

In its simplest form, a number of projects have used vol-
unteer classifications to generate training sets for automated
methods to efficiently classify all remaining data. For exam-
ple, an early project on Zooniverse, Galaxy Zoo: Supernova
(53), using data from the Palomar Transient Factory, retired
from the system after the volunteer classifications provided a
large enough training set for the researchers’ machine-learning

algorithms to automatically process the remaining data with
confidence.

Combining Human and Machine Classifiers. The current Supernova
Hunters project (https://www.zooniverse.org/projects/dwright04/
supernova-hunters) provides an illustrative example of the addi-
tional power that comes from combining human and machine
classifications. Each week, thousands of new Pan-STARRS tele-
scope images are flagged by machine-learning routines as con-
taining potential supernovae candidates. Subjects which the
model deems unlikely to be a supernova are automatically
rejected and the remaining subjects (∼5,000 each week) are
uploaded for our volunteers to classify. Ref. 54 found that
the human classifications and machine-learning results in Pan-
STARRS were complementary; the human classifications pro-
vide a pure but incomplete sample while the machine classifica-
tions provide a complete but impure sample. By combining the
aggregated volunteer classifications with the machine-learning
results, they are able to create the most pure and complete
sample of new supernovae candidates.

Transfer Learning, Cascade Filtering, and Early Retirement. The
Camera CATalogue project (https://www.zooniverse.org/
projects/panthera-research/camera-catalogue) further took ad-
vantage of the different strengths in human–machine integration
to more efficiently classify new data. Through this project,
the Panthera conservation organization harnesses the power
of the crowd to tag different species in camera trap images.
The researchers first used a transfer learning technique (55)
to train a model specific to South Africa based on the much
larger Snapshot Serengeti (https://www.SnapshotSerengeti.org)
dataset. The images were then passed through the logic of
“cascade filtering” wherein the task is broken into a sequence
of simple “yes/no” questions (e.g., ‘blank/not blank’) which
volunteers could easily do through the Zooniverse mobile app.
Furthermore, instead of requiring a default of five volunteer
classifiers to classify each image, the project used new Zooni-
verse system infrastructure to automatically retire an image if
only one to two volunteers agreed with the model prediction.
This combination of human–machine classifiers reduced hu-
man effort by 43% while maintaining overall accuracy and
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demonstrated the utility of transfer learning for our smaller
camera trap projects.

Near Real-Time Integration. Zooniverse has begun to explore
the next level of sophistication in the human–machine system
through near real-time integration of the two. For example, ref.
56 ran a series of experiments with the Galaxy Zoo 2 dataset of
200,000 galaxy images. Zooniverse volunteers classified on the
Galaxy Zoo 2 project for over 1 y (from 2010 to 2011) to retire the
full dataset. In contrast, in the ref. 56 simulations, an off-the-shelf
machine-learning algorithm started training in near real time on
day 8. The machine was fully trained by day 12 and retired over
70,000 images on its first application. By day 30, through online
learning alongside the human classifications, the machine had
retired the entire 200,000 galaxy-image dataset. Had this system
been deployed on the live project, it would have produced over
a factor of 8 decrease in time compared with the 400+ d it took
human volunteers to complete the dataset alone.

Intelligent Task Assignment. Additional progress has stemmed
from a growing body of theoretical work and practical applica-
tion, often using data from Zooniverse projects, demonstrating
that efficiencies exist through judicious task assignment to vol-
unteers, greatly reducing the total number of classifications
needed (e.g., refs. 57–59). Each of these studies used clas-
sification data to derive estimates of volunteer performance
or ability and used this information to improve allocation.
For example, task assignment studies within the Space Warps
project (https://SpaceWarps.org) demonstrated that false nega-
tives (images wrongly classified as containing no gravitational
lenses) could be eliminated if at least one volunteer with high
measured skill reviewed those images (45). For other examples
of this type, see refs. 60 and 61.

Design Tensions
Efficiency and Engagement. The above examples outline the
promise of human–machine integration within an online citi-
zen science system. In the following, we hope to convey the
tensions that exist when designing for efficiency in a human–
machine system. For example, ecology camera trap projects
like Snapshot Wisconsin (https://SnapshotWisconsin.org) auto-
matically remove a certain fraction of “blank” subjects (those
containing no animals) before upload into their Zooniverse
project. Naively it would seem best to remove all known “blanks”
to increase the efficiency of the system. However, ref. 62 found
that removing all blanks decreased volunteer engagement as
measured by number of classifications, a phenomenon which
we suggested is related to game design and the psychology of
slot machines, where effort is invested for intermittent rewards.
This simple experiment highlights how optimizing for user expe-
rience, not efficiency, is critical if each volunteer’s potential
for contribution is to be maximized. This is just one experi-
ment, but it is clear that volunteers’ behavior in systems which
involve them in scientific tasks is likely to be complex and dif-
ficult to predict. This is especially so for volunteers who may
have a complex relationship with science and who may or may
not view their participation as contributing to research (24,
27, 63–66).

As another example, in our discussion above of early machine-
learning integration, we cited an example of a Zooniverse project
(the first Supernova Hunters project) that was able to retire from
the system once humans had provided a large enough training
set for the machines to reliably process the remainder of the
data. For the Zooniverse web development team and (most of)
the volunteers, retiring a project because machines can take over
is a victory, allowing us to focus human effort where it is truly
needed. An important nuance worth noting, though, is that for
those volunteers who become deeply engaged in and attached

to a particular project (e.g., searching for supernovae), their
experience of its retirement from the system can be difficult,
especially if data are still coming in but are now being processed
by machines.

Efficiency and Inclusion. The current Supernova Hunters proj-
ect (https://www.zooniverse.org/projects/dwright04/supernova-
hunters) provides a different lens through which to consider the
impact of design choices. Each week the researcher uploads the
new subjects on a Tuesday morning and sends out the weekly
announcement shortly after. Volunteer classification activity pre-
cedes the weekly announcement and the project averages over
20,000 classifications in the first 24 h. Within 48 h enough clas-
sifications are submitted to retire that week’s data. There is a
heightened sense of competition due to the legitimate possibility
of being the first person to discover one of the ∼12 super-
novae candidates likely present in the small amount of new data
released each week, but this opportunity relies on beating other
volunteers to the data. Given the extremely high level of dedi-
cated volunteer engagement in this project, it might seem a good
idea to recommend that other projects adopt a similar format of
incremental data release (even to the point of creating artificial
scarcity) to encourage engagement.

Even when data are plentiful, one might imagine operating
in a mode where artificial scarcity is used to drive classification
activity. However, ref. 67 cautions that perceived scarcity and
competition have effects beyond motivating volunteers to inter-
act with a project more frequently. For example, the Supernova
Hunters volunteer community has a strong age and gender bias,
being most popular among males in the oldest age group (65+).
In contrast, Zooniverse projects overall are 45% female with
a flat age distribution from 18-y olds to 75-y olds. In addition
to the demographics bias, Supernova Hunters is currently the
most unequal Zooniverse project in terms of volunteer classifi-
cation contributions; the majority of the classifications are made
by a small cohort of highly dedicated volunteers. We note that
it is possible these trends could be alleviated simply by a more
judicious timing of the data release (i.e., not in the middle of
the week during work hours) when a broader distribution of the
population could participate. More importantly, however, the
example provides the opportunity to examine the potential for
tension when serving the occasionally opposing goals of carry-
ing out authentic research in the most efficient manner possible
(scientific efficiency) and empowering a broad community to
engage in valued and meaningful ways with real research (social
inclusivity).

Ref. 67 explores how the relationship between these two
aims, social inclusivity and scientific efficiency, is nuanced. For
example, there may be instances where a project is more sci-
entifically efficient if it is more exclusive. Although designing
projects for efficiency via exclusivity is not ideal, it is not clear
whether the alternative, of reducing scientific efficiency in the
name of inclusivity, is preferable. For example, in the Supernova
Hunters project, social inclusivity could have been enhanced
through providing greater opportunity to classify by artificially
increasing the number of classifications required for each image.
However, this would not only represent a wasteful use of volun-
teer time and enthusiasm, but also undermine one of the most
common motivations of volunteers—to make an authentic con-
tribution. If volunteers want to complete only tasks that directly
contribute to research, but do more work if shown images
for which classifications are not needed, the contradiction is
apparent.

Strategies for the Future
Machine Integration with “Leveling Up.” The Gravity Spy project
(https://www.GravitySpy.org) (41, 68–72) suggests one way for-
ward in integrating humans and machines into the system and
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optimizing for both efficiency and engagement. Through Grav-
ity Spy, the public helps to categorize images of time-frequency
representations of gravitational wave detector glitches from the
Laser Interferometer Gravitational Wave Observatory (LIGO)
into preidentified morphological classes and to discover new
classes that appear as the detectors evolve. This is one of our
most popular projects, with over 12,000 registered participants
having provided over 3 million classifications, and has led to the
accurate classification of tens of thousands of LIGO glitches and
the identification of multiple prominent and previously unknown
glitch classes (73, 74). This popularity has been a surprise given
that the images are not particularly “pretty” and the goal is to
categorize noise (not to directly discover a new gravitational
wave signal). The project’s success is a good reminder to not
make assumptions on what will or will not prove engaging to
the public.

In parallel with the human effort in Gravity Spy, a deep-
learning model with convolutional neural network (CNN) layers
is used to categorize images after being trained on human-
classified examples of the morphological classes. The system also
maintains a model of each volunteer’s ability to classify glitches
of each class and updates the model after each classification
(i.e., increasing its estimate of the volunteer’s ability when he
or she agrees with an assessment and decreasing it if he or she
disagrees). When the volunteer model shows that a volunteer’s
ability is above a certain threshold, the volunteer advances to the
next workflow level, in which he or she is presented with new
classes of glitches and/or glitches with lower machine-learning
confidence scores. Volunteers progress through five levels within
the Gravity Spy system, choosing from 22 different glitch classes
in Level 5. In addition, images which neither the volunteers
nor the machine confidently classify as a known glitch class are
moved from one workflow level to the next through the “None of
the Above” category. The volunteers, in concert with machine-
learning efforts, are now working to create new glitch categories
from these None of the Above images. Fig. 2 shows the Gravity
Spy human–machine system architecture and the flow of images
through that system.

Gravity Spy thus uses machine learning alongside a leveling-up
infrastructure to guide the presentation of tasks to newcomers
to help them more quickly learn how to do the image classi-
fication task while still contributing to the work of the project.

A recent study by ref. 75 finds that volunteers who experienced
the machine-learning scaffolded training performed significantly
better on the task (an average accuracy of 90% vs. 54%), con-
tributed more work (an average of 228 classifications vs. 121
classifications), and were retained in the project for a longer
period (an average of 2.5 sessions vs. 2 sessions). The project also
exemplifies how curious citizen scientists are well situated for
serendipitous discovery of unusual objects. Gravity Spy volun-
teers have identified a number of new glitch categories, including
the discovery of the “Paired Doves” class which has proved sig-
nificant in LIGO detector characterization endeavors, as this
glitch resembles signals from compact binary inspirals and is
therefore detrimental to the search for such astrophysical signals
in LIGO data (73, 74).

Machine Integration with Intelligent Task Assignment. Another
example of the potential for thoughtful integration of machines
within online citizen science systems comes from the Etch-a-
cell project (https://www.zooniverse.org/projects/h-spiers/etch-a-
cell). Here volunteers provide detailed tracings of the boundaries
of cellular components such as the nucleus, as seen in extremely
high-resolution microscopy. Modern instruments can slice a cell
to produce a stack of thousands of such images, and the Etch-
a-cell project aims to assemble 3D representations from these
segmentations. At present, this is achieved by having volunteers
work through each image in the stack separately and combin-
ing the results. One can easily imagine using machine learning to
determine where user intervention is really required; this could
be via simple change detection or something as complex as a
recurrent neural network (RNN). The net effect would be to save
volunteer effort while increasing the variety of the experience.
This kind of intervention, which increases both the effective-
ness of volunteer contributions and the variety of the task, is, we
suggest, more likely to produce successful projects.

Such strategies are likely to be easiest to find for highly
ordered datasets. For others, such as those which draw their
data from modern astronomical surveys, this may be more prob-
lematic. It is also clear that any attempt to direct effort in a
classification task more efficiently reduces the possibilities for
serendipitous discovery, a key motivation for human classifica-
tion in many projects. In cases where the discovery is in the
background, or otherwise tangential to the main task (as in the

Fig. 2. Gravity Spy system architecture and data flow through the interconnected, interdisciplinary components of the project. Each day, LIGO detects
∼2,000 perturbations with a signal-to-noise ratio greater than 7.5 and sends them to the Gravity Spy system. To maximize the gravitational wave detection
rate, glitches must be identified and removed from this dataset. The Gravity Spy project couples human classification with machine-learning models in a
symbiotic relationship: Volunteers provide large, labeled sets of known glitches to train machine-learning algorithms and identify new glitch categories,
while machine-learning algorithms “learn” from the volunteer classifications, rapidly classify new glitch signals, and guide the training provided to the
volunteers. In parallel, LIGO engineers work to identify and isolate the physical cause(s) of the identified glitches and, if possible, eliminate them. If they
cannot be physically eliminated, the glitches are flagged and removed as part of the LIGO data processing pipeline. See ref. 41 for details.
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case of the Galaxy Zoo’s Green Peas and Hanny’s Voorwerp),
the odds of such a discovery being made are presumably roughly
proportional to the amount of time spent looking at images.
There is thus a clear tension between efficiency for classifica-
tion and designing for serendipity, which has not been evident
in projects carried out to date.

Machine Integration with Clustering. A potential solution exists
in using machine learning not for classification, but for cluster-
ing. Ref. 76 demonstrated that galaxy classification (albeit with
color as well as morphology included in the classification) can
be approached with a completely unsupervised clustering algo-
rithm, sorting data from the Cosmic Assembly Near-infrared
Deep Extragalactic Legacy Survey (CANDELS) previously clas-
sified by Galaxy Zoo (77) into roughly 200 separate categories.
The data in Gravity Spy have also been subject to a similar clus-
tering analysis (Fig. 3), with tools being built to allow volunteers
to explore these clusters. If clusters produced by such an anal-
ysis are uniquely separate groups, then it is easy to see that
volunteer classification of just a small number of objects can be
leveraged to classify the whole dataset. Even if they are strongly
contaminated—for example, blurring several morphological cat-
egories in the case of Galaxy Zoo—they can still simplify the
task presented to volunteers. In such a hybrid system, it might be
expected that truly unusual objects will form their own categories
which can then be investigated by volunteers.

Summary
The efforts described above serve as signposts for what a full
human–machine system (what would once have been called
cybernetic serendipity) might be like. We have shown that effi-
cient combination of human and machine classification can

produce results superior to either one on its own, and while the
performance of modern deep learning might be expected to con-
tinue to improve as further training data become available, the
scarcity of many objects of interest makes us believe that human–
machine systems will remain competitive for many years to come.
However, even the simple experiments carried out so far make
clear the tension inherent in such projects, which emerges as
complex interventions are considered.

First, we noted that complex task assignment might reduce the
willingness of volunteers to participate in tasks rendered increas-
ingly monotonous. Using an automated classifier to identify and
remove the animal-free images in the Snapshot Serengeti project
seems an obvious way to increase efficiency, yet the resulting loss
of variety reduced user engagement as measured by time spent
on the site. This tension is especially important when scientific
aims—classifying the data—are combined with goals relating to
engagement or changing attitudes and which therefore depend
on extended time spent in the project.

The loss of variety seen in this intervention is not necessar-
ily a feature of intelligent task assignment. One could artificially
alter the frequency of interesting images (selecting the most
beautiful or inserting boring images which do not need clas-
sification), but this has ethical implications in projects which
offer “authentic” engagement with science rather than a manip-
ulated experience. It is better to consider user experience when
designing interventions.

We also explored the tensions that arise in serving the dual
goals of carrying out authentic research in the most efficient
manner possible (scientific efficiency) and empowering a broad
community to engage in valued and meaningful ways with real
research (social inclusivity). Through the example of the Super-
nova Hunters project, we noted that incremental (in this case,

Fig. 3. t-stochastic neighbor embedding (t-SNE) mapping of the Gravity Spy training set in the Deep DIscRiminative Embedding for ClusTering (DIRECT)
feature space. DIRECT is an unsupervised machine-learning algorithm using deep neural networks developed by ref. 71 for use with Gravity Spy data. The
symbols indicate the different known glitch classes, as well as subjects that fall in the None of the Above category. This view shows the clustering along two
of many possible dimensions. The Gravity Spy team is building tools that use the results of these clustering analyses to support volunteers in identifying new
glitch classes. See ref. 71 for details on Gravity Spy clustering efforts to date and ref. 78 for background on the t-SNE mapping method used.
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weekly) data release with the potential for discovery encourages
high levels of engagement. Yet the perceived scarcity and compe-
tition have also resulted in a skewed volunteer base (in this case,
the majority of the classifications are made by a small cohort of
highly dedicated volunteers, the vast majority of whom are male
and 65+ y in age).

We then discussed strategies for addressing these design ten-
sions and thoughtfully attempting to optimize for both efficiency
and engagement, while leaving space for serendipitous discovery.
The leveling-up model explored through the Gravity Spy project
provides one such opportunity. In this project, machine learn-
ing guides the presentation of tasks to newcomers to quickly
train them in the image classification task while still contribut-
ing work to the project. Volunteers are promoted from one
level to the next as they pass certain thresholds of classifica-
tion counts and quality. In parallel, images that do not conform
to an existing class are passed through the levels and eventu-
ally retire as None of the Above. The volunteers, in concert
with machine-learning efforts, then identify new classes through
visual inspection, clustering analyses, and a combination of
the two.

There also exist possibilities for more creative uses of machine
learning, which become apparent once one’s design goal switches
from trying to replace humans with machines to one of build-
ing complex “social machines” that involve both sorts of worker.
Examples of such opportunities detailed above include the abil-
ity to use machine effort to direct attention in datasets where

classification subjects are highly linked. The example given is
in layered microscopy, but this solution holds potential for a
range of projects, e.g., planet hunting where the task is change
detection. The most extreme machine/human hybrid classifier
introduced in the previous section is the use of machine clus-
tering to dramatically reduce the need for human classification;
the success of such a scheme is likely, however, to depend on the
purity of clusters that can be achieved without significant manual
intervention.

Despite the increasing sophistication and complexity of many
deployed citizen science systems, therefore, it is clear that there
is much more to do in project design. Keeping open the pos-
sibility of volunteer serendipitous discovery with the largest of
all upcoming datasets will require the development of new and
flexible tools for interacting with sorting algorithms. However,
the performance of experiments carried out to date gives us
confidence that we can succeed, and we should expect citizen sci-
entists to be experiencing cybernetic serendipity for many years
to come.
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