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Abstract

We present an ensemble tree-based algorithm for variable selection in high dimensional datasets, 

in settings where a time-to-event outcome is observed with error. The proposed methods are 

motivated by self-reported outcomes collected in large-scale epidemiologic studies, such as the 

Women’s Health Initiative. The proposed methods equally apply to imperfect outcomes that arise 

in other settings such as data extracted from electronic medical records. To evaluate the 

performance of our proposed algorithm, we present results from simulation studies, considering 

both continuous and categorical covariates. We illustrate this approach to discover single 

nucleotide polymorphisms that are associated with incident Type II diabetes in the Women’s 

Health Initiative. A freely available R package icRSF (R Core Team, 2018; Xu et al., 2018) has 

been developed to implement the proposed methods.

Keywords

High Dimensional Data; Interval Censoring; Random Survival Forests; Self-reports; Variable 
Selection

1 Introduction

Rapid advances in biomedical technology have resulted in a rich array of data from large 

prospective studies such as the Women’s Health Initiative (WHI), including extensive 

behavioral, genotypic, metabolomic and phenotypic information. These databases are 

invaluable resources for elucidating the factors governing the etiology of complex disorders 

- but in order to use them most effectively, robust methods for accounting for measurement 

error in high dimensional datasets need to be developed. In large, prospective studies like the 

WHI, the prevalence and incidence of many diseases such as diabetes are determined by 

self-administered questionnaires, which are cost-effective and logistically feasible; however, 

self-reports are imperfect for estimating disease prevalence and incidence. In this paper, we 
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propose a novel algorithm for assessing variable importance in high dimensional datasets (p 
≫ n) in which a time to event outcome is observed with error, such as through self-reports.

Consider the onset of a silent event such as Type 2 diabetes, that can only be detected by 

administering a diagnostic test. If a perfect diagnostic test is administered repeatedly, the 

onset of the disease can be inferred to lie in the interval between the last negative and first 

positive diagnostic test - that is, the time to event is interval censored. However, due to cost 

considerations, imperfect diagnostic tests or self-reported outcomes are often used in-lieu of 

perfect diagnostic tests, especially in large-scale epidemiologic studies that follow hundreds 

of thousands of subjects. Recent studies indicate that the sensitivity of self-reported diabetes 

outcomes in the WHI can range from 45%–60% with a specificity of 99% (Margolis et al., 

2014). In these settings, analytical approaches that ignore the error in the observed time to 

event outcome can result in loss of power and an increased rate of false discovery (Gu et al., 

2015). Self-reported outcomes are frequently collected in large, observational studies and 

will likely become increasingly more frequent as more cost effective study designs are 

considered.

A rich literature exists for analyzing outcomes measured with error. Previous work in this 

area includes methods for error-prone outcomes with application to data collected from 

laboratory-based diagnostic tests, including likelihood based methods and through the 

Hidden Markov Model framework (Balasubramanian and Lagakos (2003); Jackson et al. 

(2003)). However, while all these methods account for mis-measured outcomes, none of 

them are applicable to high dimensional datasets. Estimating variable importance in high 

dimensional data settings has been an active area of research. Several algorithms have been 

proposed specifically for time to event outcomes. Lp shrinkage methods have been extended 

to accommodate time to event outcomes, by replacing the observed data likelihood by the 

Cox partial likelihood. Other approaches include the use of hierarchical clustering to reduce 

the dimensionality of the covariate space, such as the tree harvesting approach. Variance 

based methods such as supervised principal components have also been proposed. A 

comprehensive review of methods for the analysis of high dimensional data applicable to 

time to event outcomes can be found in (Witten and Tibshirani, 2010). Random Survival 

Forests (Ishwaran et al., 2008) (RSF) is an ensemble tree-based algorithm for variable 

selection in high dimensional datasets, in the presence of right-censored time to event 

outcomes. RSF enjoys all the properties of Random Forests (Breiman, 2001) including 

computational efficiency and good prediction performance with low generalization error. 

This algorithm is particularly useful in settings where the covariate space is characterized by 

complex inter-relationships including the presence of interaction effects with respect to the 

survival outcome.

In this paper, we propose an extension of the RSF algorithm (Ishwaran et al., 2008) for 

variable selection in high dimensional data settings while simultaneously accounting for a 

time to event outcome that is measured with error. Our work is motivated by self-reported 

outcomes that are routinely collected in large-scale epidemiologic studies, such as the WHI 

(Anderson et al., 1998). The methods equally apply to settings in which an imperfect, 

laboratory-based diagnostic test is utilized to assess the occurrence of a silent event. 

Examples of such data include outcomes extracted from electronic medical records which 
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can be imperfect. The proposed algorithm incorporates a formal likelihood framework that 

accommodates sequentially administered, error-prone self-reports or laboratory based 

diagnostic tests (Gu et al., 2015). The original RSF algorithm is modified to account for 

error-prone outcomes by incorporating a new splitting criterion based on a likelihood ratio 

test statistic. A new permutation based metric for variable importance is proposed. In 

Section 2, we introduce notation, form of the likelihood and present the modified RSF 

algorithm. In Section 3, we present simulation studies evaluating the performance of our 

proposed algorithm to the original RSF algorithm. Here we separately consider the setting of 

continuous covariates and categorical covariates such as in genome-wide association studies 

(GWAS). In Section 4, we apply the proposed methods to a dataset of 88,277 Single 

Nucleotide Polymorphisms (SNPs) on a subset of 9,873 women in the WHI Clinical Trial 

and Observational Study SNP Health Association Resource (SHARe). The goal of these 

analyses is to discover the subset of SNPs that are associated with incidence of type II 

diabetes. We present a discussion of future directions and potential limitations of the 

proposed methods in Section 5. The methods illustrated in this paper have been implemented 

in an R software package icRSF, which is available at the Comprehensive R Archive 

Network (CRAN) website (R Core Team, 2018; Xu et al., 2018).

2 Methods

In Section 2.1, we present notation and the form of the likelihood for time to event 

outcomes, in the presence of error-prone, self-reported outcomes. In Section 2.2, we 

describe the steps in the modified RSF algorithm and in Section 2.3, we describe the 

likelihood ratio test based splitting criterion and associated variable importance metric.

2.1 Notation, Likelihood and Estimation

Let X refer to the random variable denoting the unobserved time to event for an individual, 

with associated survival, density and hazard functions denoted by S(x), f(x) and λ(x), for x ≥ 

0 respectively. The time origin is set to 0, corresponding to the baseline visit at which all 

subjects enrolled in the study are assumed to be event-free. In other words, Pr(X > 0) = 1. 

Without loss of generality, we set X = ∞ when the event of interest does not occur. Let N 

denote the number of subjects and ni denote the number of visits for the ith subject during 

the follow-up period. At each visit, we assume that each subject would self report their 

disease status as either positive or negative. For example, at each semi-annual (WHI-CT) or 

annual contact (WHI-OS), all participants were asked, “Since the date given on the front of 

this form, has a doctor prescribed any of the following pills or treatments?” Choices 

included “pills for diabetes” and “insulin shots for diabetes”. Thus, incident treated diabetes 

was ascertained, and was defined as a self-report of a new physician diagnosis of diabetes 

treated with oral drugs or insulin.

For the ith subject, we let Ri = {Ri1,· · ·, Rini} and ti = {ti1, · · ·, tini} denote the 1 × ni vectors 

of self-reported, binary outcomes and corresponding visit times, respectively. In particular, 

Rik is equal to 1 if the kth self-report for the ith subject is positive (indicating occurrence of 

the event of interest such as diabetes) and 0 otherwise. We assume that self-reports are 

collected at pre-scheduled visits up to the time of the first positive self-report - thus, the 
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vectors of test results (Ri), visit times (ti) and the number of self-reports collected per 

subject (ni) are random. Let τ1, · · ·, τJ denote the distinct, ordered visit times in the dataset 

among N subjects, where 0 = τ0 < τ1 < ... < τJ < τJ+1 = ∞ - thus, the time axis can be 

divided into J + 1 disjoint intervals, [0, τ1), [τ1, τ2), · · ·, [τJ, ∞).

The joint probability of the observed data for the ith subject can be expressed as:

g(Ri, ti, ni) = ∑
j = 1

J + 1
Pr (τ j − 1 < Xi ≤ τ j)Pr(Ri, ti, ni ∣ τ j − 1 < Xi ≤ τ j)

= ∑
j = 1

J + 1
θ jPr(Ri, ti, ni ∣ τ j − 1 < Xi ≤ τ j)

where θj = Pr(τj−1 < X ≤ τj), τ0 = 0 and τJ+1 = ∞.

To simplify the form of the expression above, we make the assumption that given the true 

time of event Xi, an individual’s ni self-reports are independent. That is,

Pr (Ri ∣ Xi, ti) = ∏
k = 1

ni
Pr (Rik ∣ Xi, tik)

This assumption implies that the observed values of other self-reported outcomes do not 

provide additional information about the distribution of a particular self-reported outcome 

from that provided by the actual time of the event. We note that this assumption is analogous 

to the common assumption in measurement error regression models that the conditional 

distribution of the response variable, given the covariate and its proxy, is the same as the 

conditional distribution given only the covariate. It can be shown that the joint probability of 

the observed data for the ith subject can be simplified as:

g(Ri, ti, ni) = ∑
j = 1

J + 1
θ j ∏

k = 1

ni
Pr (Rik ∣ τ j − 1 < Xi ≤ τ j, tk)

= ∑
j = 1

J + 1
θ jCi j

(1)

where Ci j = [∏k = 1
ni Pr (Rik ∣ τ j − 1 < Xi ≤ τ j, tk)] (Gu et al., 2015). We assume that the 

probability of a positive self-report at the kth visit (Rik = 1) conditional on the interval 

containing the true event time and visit time can be expressed as:

Pr (Rik = 1 ∣ τ j − 1 < Xi ≤ τ j, tk) =
φ1, tk ≥ τ j

1 − φ0, tk ≤ τ j − 1
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Here, φ1 and φ0 denote the sensitivity and specificity of self-reports, respectively. Thus the 

terms Cij, for j = 1, · · ·, J + 1 in equation (1) can be expressed as a product involving the 

constants φ1 and φ0. Thus, in the absence of covariates, the log likelihood for a random 

sample of N subjects can be expressed as:

l(θ) = log (L(θ)) = ∑
i = 1

N
log ( ∑

j = 1

J + 1
Ci jθ j)

= ∑
i = 1

N
log ( ∑

j = 1

J + 1
Di jS j)

where S j = Pr (X > τ j − 1) = ∑l = j
J + 1θl. Here, the vector of interval probabilities can be 

expressed as θ = TrS, where Tr is the (J +1)×(J +1) transformation matrix and DN×(J+1) = C 
× Tr. For the special case where self-reports are perfect (φ1 = φ0 = 1), the likelihood above 

reduces to the non-parametric likelihood for interval censored observations given in Turnbull 

(1976).

In most settings, including the WHI, it is of interest to evaluate the association of a vector of 

covariates with respect to the time to event of interest. Let Z denote the P × 1 vector of 

covariates with corresponding P × 1 vector of regression coefficients denoted by β. To 

incorporate the effect of covariates, we assume the proportional hazards model, λ(x|Z = z) = 

λ0(x)ez′β, or equivalently, S(x|Z = z) = S0(x)ez′β
.

To derive the form of the log-likelihood based on the assumption of the proportional hazards 

model, we first re-parameterize the log likelihood in terms of the of the survival function, S 

= (1 = S1, S2, · · ·, SJ+1)T, where Sj = p(X > τj−1). Since S j = ∑l = j
J + 1θl, the vector of interval 

probabilities can be expressed as θ = TrS, where Tr is the (J + 1) × (J + 1) transformation 

matrix. Let C = [Cij] denote the N × (J + 1) matrix of the coefficients, Cij, and let the N × (J 
+ 1) matrix D be defined as DN×(J+1) = C × Tr. Then, the log-likelihood function for the one-

sample setting can be expressed as

l(S) = ∑
i = 1

N
log ( ∑

j = 1

J + 1
Di jS j), (2)

where S1 = 1 and S2, S3, · · ·, SJ+1 are the unknown parameters of interest.

Let 1 = S1 > S2 > ... > SJ+1 denote the baseline survival functions (i.e. corresponding to Z = 

0), evaluated at the left boundaries of the intervals [0, τ1), [τ1, τ2), · · ·, [τJ, ∞). Then, for 

subject i, with corresponding covariate vector zi, S j
(i) = (S j)

e
zi′β

. Thus, the log-likelihood 

function for a random sample of N subjects in equation (2) can be extended to incorporate 

covariates as
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l(S, β) = ∑
i = 1

N
log ( ∑

j = 1

J + 1
Di j(S j)

e
zi′β

) . (3)

The elements of the D matrix are functions of the observed data including the visit times, the 

corresponding self-reported results (ti, Ri for i = 1, · · ·, ni), and the constants φ0, φ1. 

Assuming that φ0, φ1 are known, the maximum likelihood estimates of the unknown 

parameters β1, · · ·, βP, S2, · · ·, SJ+1 can be obtained by numerical maximization of the log-

likelihood function in equation (3), subject to the constraints that 1 > S2 > S3 >· · ·> SJ+1 > 0. 

Statistical inference regarding the parameters of interest (β1, · · ·, βP, S2, · · ·, SJ+1) can be 

made by using asymptotic properties of the maximum likelihood estimators (Cox and 

Hinkley (1979)). The estimated covariance matrix of the maximum likelihood estimates can 

be obtained by inverting the Hessian matrix. Hypothesis tests regarding the unknown 

parameters can be carried out using the likelihood ratio or Wald test.

2.2 Modified Random Survival Forests (RSF)

We describe the key steps involved in implementing the modified RSF algorithm for error-

prone self-reported outcomes. The details regarding the splitting criterion and estimation of 

variable importance are described in Section 2.3.

1. Draw b = 1, · · ·, B bootstrap samples of size N from the original data. As is 

typical of the bootstrap procedure, we expect that on average 1
3  of the data will 

be excluded - this subset is denoted as the out-of-bag (OOB) sample.

2. Corresponding to each bootstrap sample, grow a survival tree. At each node of 

the tree, randomly select a user-defined number of candidate variables, p* < P. 

Among the subset of p* variables, select the variable and corresponding value of 

split that maximizes the likelihood ratio test splitting criterion (see Section 2.3). 

Split the parent node into two daughter nodes based on the selected variable and 

its splitting value.

3. Grow the tree to full size until the number of subjects in the terminal node is 

equal to or fewer than a user defined parameter, M. An additional, the user can 

specify a p value threshold (e.g. 0.1), such that splitting of nodes will stop if 

none of the randomly selected variables satisfy a likelihood ratio test p value less 

than the threshold indicating no association with outcome. In this process, the 

tree separates dissimilar subjects into distinct terminal nodes - thus, each 

terminal node will include a homogenous subset of subjects with respect to the 

distribution of the time to event of interest.

4. For each tree corresponding to each bootstrap sample (b = 1, · · ·, B), calculate 

the OOB log likelihood, lb. The value of the OOB log likelihood is used to 

calculate a permutation based variable importance metric (See Section 2.4 for 

details). Use the variable importance metric to rank variables from most to least 

important with regard to its association with the time-to-event outcome.
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2.3 Node Splitting Criterion and Variable Importance

Here we describe our proposed criterion for splitting nodes in a survival tree and an 

associated measure of variable importance.

1. Criterion for splitting nodes—As in CART, survival trees are binary trees grown by 

recursive splitting of parent nodes. At each node of a tree, subjects are assigned to one of 

two daughter nodes by a split on a variable Z and associated threshold c, such that the 

resulting daughter nodes have maximal difference in outcome. Assume that a specific node 

includes N* subjects and that p* < P variables are randomly selected as candidate variables 

for splitting the node into two daughter nodes. The process of splitting this parent node into 

two daughter nodes is based on identifying the variable and its splitting value that 

maximizes the likelihood ratio test statistic criterion described below:

For each candidate variable Zk and a corresponding splitting value ck, we defined a new 

random variable Zk
∗ = 1 if Zk < ck and Zk

∗ = 0, otherwise. We obtain the maximized value of 

the log likelihood for all N* subjects, based on the PH model including Zk
∗ as the single 

covariate, with corresponding regression coefficient βk
∗ (Equation (3)). We compare this full 

model to the null model (without Zk
∗) and obtain the value of the likelihood ratio test statistic 

for testing the null hypothesis H0: βk
∗ = 0. The random variable corresponding to the best 

split (denoted Zm
∗  with associated regression coefficient βm

∗ ) is found by searching over all p* 

candidate covariates and all possible splitting values to find that which maximizes the 

likelihood ratio test statistic. We note that for continuous covariates, this step is implemented 

by searching over a user-defined grid of possible splitting values.

Comparison to original RSF: The proposed splitting criterion differs significantly from 

that in the RSF algorithm - the randomSurvivalForest R software package includes three 

variations of the log rank splitting rule as well as a conservation of events splitting rule 

(Ishwaran and Kogalur, 2007). While these approaches are appropriate for right censored 

event times, they do not allow for error in the outcome as is characteristic of self-reports.

2. Criterion to stop splitting—Each tree is grown until the number of subjects in a node 

is fewer than a user specified threshold and/or none of the randomly selected p* variables 

have a p value less than a user defined threshold (e.g. 0.1) corresponding to their univariate 

association with the time to event outcome in a Cox PH model.

3. Variable importance—At each node, the unknown parameters ( βm
∗ , S2, S2, . . . , SJ+1) 

are estimated by maximizing the log likelihood shown in Equation (3) that incorporates the 

covariate Zm
∗ . For every survival tree in the ensemble, a value of log-likelihood based on the 

OOB sample (lb, for b = 1, · · ·, B) is calculated as follows: Subject i in the OOB sample of 

tree b is dropped down the tree and assigned a terminal node. Let lib denote the log 

likelihood contribution for subject i in the OOB sample for tree b. The value of lib is 

calculated based on the log likelihood in Equation (3), using parameters ( βm
∗ , Ŝ2, Ŝ2, . . . , ŜJ
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+1) obtained at the immediate parent of the terminal node to which subject i is assigned. The 

log-likelihood for tree b (lb) is obtained as the sum of the log-likelihood contributions of all 

subjects in the OOB sample - that is, lb = Σi∈OOBlib.

We obtain a measure of variable importance for each variable Zk by permuting its values, 

while all other variables remain as in the original dataset. Following a random permutation 

of variable Zk, the value of the OOB log-likelihood l̃bk is calculated, for every tree b = 1 · · · 

B based on the OOB sample. The variable importance for Zk is calculated as:

VIMPk = ∑
b = 1

B
max (lb − l

∼
bk), 0 (4)

Average values of VIMPk are reported for each covariate k, by averaging over multiple 

permutations of Zk. Larger values of VIMPk indicate that the covariate Zk has strong 

association with the outcome. In Section 3.1 of the Supplement, we illustrate the 

performance of the proposed variable importance metric in a simulated dataset.

Comparison to original RSF: In the original RSF algorithm, variable importance for each 

variable x is obtained as the difference between the average prediction error of the ensemble 

based on randomized x assignments from the prediction error of the original ensemble. 

Prediction error is calculated from the Harrell’s concordance index corresponding to the 

cumulative hazard function estimated for each subject in the dataset.

3 Simulation

—To motivate the proposed algorithm, we illustrate the degradation in the variable selection 

performance of the original RSF algorithm, with increasing error in the self-reported 

outcomes (See Supplement, Section 2). In Sections 3.1 – 3.3, we present results from three 

simulation studies considering different variable types to compare the performance of our 

proposed modified RSF algorithm to the original RSF algorithm proposed by Ishwaran, H. 

et al. (2008).

Simulation set-up: Each simulated dataset included N = 100 subjects and P = 100 

covariates, of which the first five (Z1, · · ·, Z5) were assumed to be true biomarkers. We 

assumed that the true time to event followed an exponential distribution and that the set of 

five biomarkers influenced the outcome through a proportional hazards model. We note that 

the exponential distribution assumption is only used to set the values of the parameters S2, · · 
·, SJ+1 and is not an assumption of the proposed approach. Let λ0 denote the hazard 

corresponding to the reference group (corresponding to Z1 = · · · = Z5 = 0). Under the 

proportional hazards model, the hazard for a subject with arbitrary values of the covariates 

Z1, · · ·, Z5 is given by λZ1,Z2,Z3,Z4,Z5 = λ0eβ1Z1+β2Z2+β3Z3+β4Z4+β5Z5. The regression 

coefficients β1, · · ·, β5 were all assumed to be equal and set to 2. The hazard function for the 

reference group λ0 was varied such that the cumulative incidence rates during the four year 

follow-up period were 0.1 and 0.3, respectively. We assumed that the duration of follow-up 

was 4 years and that there were annual visits at which self-reported outcomes were 

Xu et al. Page 8

J Comput Graph Stat. Author manuscript; available in PMC 2019 August 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



collected. We considered four settings of (sensitivity, specificity) for self-reported outcomes: 

(1.00, 1.00), (0.75, 1.00), (0.61, 0.995), (1.00, 0.9) as well as two study designs - the first, in 

which there were no missed visits; the second, in which no further visits are scheduled 

following the first positive self-report. For each subject i, binary self-reported outcomes at 

each visit at years 1–4 (Ri1, · · ·, Ri4) were simulated by assuming specific values for the 

sensitivity and specificity of self-reports. For example, assume that the time-to-event for 

subject i is Xi = 2.5 years, the sensitivity and specificity of self-reported outcomes are φ1 = 

0.9 and φ0 = 0.7, respectively. Then, the self-reported outcomes at visits 1–4 are simulated 

according to P(Ri1 = 1 | Xi = 2.5, ti1 = 1) = P(Ri2 = 1 | Xi = 2.5, ti2 = 2) = 1 − φ0 and P(Ri3 = 

1 | Xi = 2.5, ti3 = 3) = P(Ri4 = 1 | Xi = 2.5, ti4 = 4) = φ1.

The datasets were analyzed using the original RSF, using the R package randomForest-SRC 
(Ishwaran and Kogalur, 2015) and the modified RSF algorithm assuming a 1000 trees and 

user defined threshold no fewer than 10 subjects in a terminal node. The 100 variables were 

ranked from most to least important based on: (1) variable importance from RSF; and (2) 

variable importance from modified RSF. The top five ranking variables by each metric were 

considered as “discovered biomarkers”. The average proportion of datasets in which each of 

the five true biomarkers was discovered (p̂) and its associate standard error 

( SE = 1.96 ∗ p(1 − p)
100 ) was calculated for each metric.

3.1 Simulation: Continuous covariates

The 100 covariates per subject were simulated as independent, Gaussian random variables 

with mean 0 and unit variance. Table 1 presents the average proportion of datasets in which 

the five true biomarkers were ranked among the top five variables, by each variable 

importance metric. We present results for both study designs, that is (1) No missing data; 

and (2) Missing all data following the first positive self-report.

When there is no missing data and when specificity is close to perfect (φ0 = 0.99, 1.00), the 

proportion of datasets in which the true biomarkers are discovered by RSF is comparable to 

that by the modified RSF algorithm. Figure 1(a) shows a bar plot of the average variable 

importance (across 100 datasets) by modified RSF, for the setting in which 1 − SJ+1 = 0.10, 

φ1 = 0.61, φ0 = 0.995 and no missed visits,. The average variable importance for each of the 

five true biomarkers is more than six times larger than that of a covariate not associated with 

outcome (noise).

On the other hand, when specificity is low, our proposed algorithm achieves significantly 

better performance when compared to RSF. For example, when the cumulative incidence is 

10%, sensitivity is 1.00 and specificity is 0.90, each of the top five biomarkers is discovered 

by the original and modified RSF algorithms with probabilities 0.52 (SE = ±0.05) and 0.76 

(SE = ±0.04), respectively. A similarly improved performance by the modified RSF 

algorithm was observed when the cumulative incidence was larger (1 − SJ+1 = 0.30). 

However, when we assumed that no follow-up data are collected following the first positive 

self-report, the modified RSF algorithm did not achieve any statistically significant 

improvement in variable selection performance when compared to the original RSF 

algorithm. This highlights the loss of information that occurs when data collection ceases 
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following the first positive self-report, in settings where the specificity is less than perfect. In 

all settings considered, the average probability of being “discovered” for one of the 95 non-

biomarkers did not exceed 0.03 (SE = ±0.02) and was comparable between both the original 

and modified RSF algorithms.

3.2 Genome-wide Association Study (GWAS)

To incorporate the structure of data observed in a GWAS study, we fixed the 100 × 100 

design matrix of covariates to equal a randomly sampled subset of the GWAS data in the 

WHI Clinical Trials and Observational Study SHARe. We randomly selected 100 out 10,832 

subjects and 100 out of 909,622 SNPs available in the dataset. Of the 100 selected SNPs, 53 

SNPs had Minor Allele Frequencies (MAF) values ≤ 0.35 and 47 had MAF (0.35, 0.50]. For 

computational efficiency, each SNP was converted into a binary variable by coding the ’AA’ 

genotype as 0 and the ‘ Aa’ and ‘ aa’ genotypes as 1. In each simulation, five of the 100 

SNPs were randomly selected to be the true biomarkers with β = 1. Tables 2 and 3 present 

the average proportions of simulated datasets in which the five true biomarkers were 

‘discovered’, for the settings of (1) No missing data and (2) Missing all data following the 

first positive self-report, respectively. In each table, we separately report the results for 

biomarkers (SNPs) with MAF in the ranges (0.00, 0.35] and (0.35, 0.50].

As expected, across all settings both algorithms were better able to discover biomarkers that 

have a higher MAF when compared to biomarkers with lower MAF. As in the simulations 

with the continuous covariates, when no follow-up data are collected following the first 

positive self-report, the modified RSF algorithm and the original RSF algorithm achieve 

similar performance with respect to the probability of discovering true biomarkers. Figure 

1(b) shows a bar plot of the variable importance metric by modified RSF for a representative 

simulated dataset, for the setting in which 1 − SJ+1 = 0.10, φ1 = 0.61, φ0 = 0.995 and no 

missed visits - the variable importance metrics were not averaged across simulations as the 

identity of the five true biomarkers varied randomly between simulated datasets. ’Blue’ 

indicates true biomarkers with MAF ∈ (0.35, 0.50] and ‘red’ indicates true biomarkers with 

MAF ∈ (0.00, 0.35]. As expected, true biomarkers with MAF ∈ (0.35, 0.50] were more 

likely to rank higher than true biomarkers with MAF ∈ (0.00, 0.35].

However, when there is no missing data and when specificity is less than perfect (φ0 = 0.90), 

we observed significantly improved performance by the modified algorithm when compared 

to the original algorithm. For example, when the cumulative incidence of events is 10%, φ0 

= 0.90 and φ1 = 1.00, and biomarkers have MAF in the range (0, 0.35], each biomarker is 

discovered by the original and modified RSF algorithms with probabilities 0.34 (SE = 

±0.047) and 0.56 (SE = ±0.050), respectively. When biomarkers have MAF in the range 

(0.35, 0.50], each biomarker is discovered by the original and modified RSF algorithms with 

probabilities 0.44 (SE = ±0.050) and 0.70 (SE = ±0.046), respectively.

3.3 Cardiovascular Disease Omics Study

We incorporated data from a cardiovascular disease ‘omics’ study that was conducted to 

discover prognostic biomarkers in blood plasma for near-term cardiovascular events. 

Subjects were selected from the CATHGEN project, which collected peripheral blood 
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samples from consenting research subjects undergoing cardiac catheterization at Duke 

University Medical Center from 2001 through 2011. 68 cases were selected from among 

individuals who had a major adverse cardiac event (MACE) within two years following the 

time of their sample collection. In a 1:1 matched study design, 68 controls were selected 

from individuals who were MACE-free for the two years following sample collection and 

were matched to cases on age, gender, race/ethnicity and severity of coronary artery disease. 

High-content mass spectrometry and multiplexed immunoassay-based techniques were 

employed to quantify 625 proteins and metabolites from each subject’s serum specimen. 

Comprehensive metabolite profiling of the individual samples was based on a combination 

of four platforms employing mass spectrometry (MS) based techniques to profile lipids, 

fatty acids, amino acids, sugars and other metabolites. Proteomic analysis was based on a 

combination of targeted methods using a quantitative multiplexed immunoassay technique as 

well as a comprehensive protein profiling strategy based on tandem mass spectrometry. A 

detailed description of the mass spectrometry based platforms and proteomics analysis can 

be found in a previous publication (Guo and Balasubramanian, 2012).

To incorporate the structure of observed data, we selected a random subset of 100 out the 

625 covariates for all 136 subjects - of these, 5 were selected to represent the set of ‘true’ 

biomarkers, each with β = 1. Each of the 100 covariates were standardized to render them 

with mean 0 and unit variance. The 
100
2  pairwise Pearson correlations between covariate 

pairs ranged from −0.54 to 1.0 (IQR [−0.07, 0.16]), exhibiting the complex dependence 

structure commonly observed in ‘omics’ datasets (Figure 4 of Supplement). The pairwise 

correlations between the five true biomarkers ranged from −0.22 to 0.20. Each of the five 

biomarkers also exhibited varying marginal distributions, as seen in Figure 5 of the 

Supplement. Table 1 in the Supplement presents the average proportions of simulated 

datasets in which the five true biomarkers were ‘discovered’, for the settings of (1) No 

missing data and (2) Missing all data following the first positive self-report, respectively. As 

in previous simulations, when no follow-up data are collected following the first positive 

self-report, the modified RSF algorithm and the original RSF algorithm achieved similar 

performance. When there is no missing data and when specificity is less than perfect (φ0 = 

0.90), we observed significantly improved performance by the modified RSF algorithm 

when compared to the original RSF algorithm. For example, when the cumulative incidence 

of events is 10%, φ0 = 0.90 and φ1 = 1.0, the average probability of being discovered by the 

original and modified RSF algorithms were 0.46 (SE = ±0.05) and 0.70 (SE = ±0.05), 

respectively. Figure 1(c) shows a bar plot of average variable importance, when 1 − SJ+1 = 

0.10, φ1 = 0.61, φ0 = 0.995 and there are no missed visits. The bars corresponding to the first 

five variables shown in red correspond to the true biomarkers. Average variable importance 

for the five biomarkers varied considerably, reflecting the differences in the shapes of their 

marginal distributions.
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4 Application: Women’s Health Initiative Clinical Trials and Observational 

Study SHARe

Data from the WHI Clinical Trial and Observational Study SHARe, which includes data on 

909,622 SNPs on 10,832 African American and Hispanic women. Prevalent and incident 

Type 2 diabetes were determined by self-reports collected at annual (WHI Observational 

Study) or semi-annual (WHI Clinical Trials) visits. Incident treated diabetes was ascertained 

by a positive self-report of a new physician diagnosis of diabetes treated with oral drugs or 

insulin. No further information was collected with regard to a new diabetes diagnosis 

following the first positive self-report. We illustrate the application of our proposed 

algorithm using this dataset to identify SNPs associated with incident diabetes. The data 

used in this analysis can be obtained by submitting a research use statement and associated 

supplemental documentation as described in the Women’s Health Initiative Clinical Trial 

and Observational Study SHARe dbGaP website. See WHI SHARe dbGaP.

Data pre-processing

Individuals who self-reported diabetes at baseline were excluded (N=959). The analysis 

dataset included 9,873 subjects from the following race/ethnicity groups - African 

Americans (N=6,704), Hispanic Americans (N=3,169). We included follow-up until 2013, 

resulting in a median duration of follow-up of 12 years including 108,197 person-years of 

total follow-up. During the course of follow-up, 20.34% of women self-reported incident 

diabetes.

We follow a multi-step procedure to filter the GWAS dataset that included 909,622 SNPs. 

First, SNPs that meet at least one of the following criteria were excluded from our analysis: 

1) greater than 1% of missing values (68,176 SNPs); 2) MAF below 5% (63,019 SNPs); 3) a 

Hardy-Weinberg equilibrium test p-value less than 0.05 (467,735 SNPs). We carried out a 

set of univariate analyses to test the association of each remaining SNP with incident 

diabetes, while adjusting for population substructure. To quantify the extent of genetic 

variability that is explained by race/ethnicity, we carried out a principal components analysis 

and extracted the top two principal components that accounted for 1.88% and 0.48% of the 

total variability, respectively (Price et al., 2006). The association of each SNP with incident 

diabetes was evaluated by fitting a model based on the likelihood in equation (3) (Gu et al., 

2015). P values from a likelihood ratio test were calculated and SNPs with p > 0.20 were 

excluded from analysis (222,415 SNPs). Following these filtering procedures, we included 

88,277 SNPs in our analysis.

Methods

The analysis dataset included 88,277 SNPs on 9,873 subjects. The analyses were run by 

allowing three levels for each SNP, that is, ‘ AA’, ‘Aa’, ‘aa’. All missing entries are imputed 

assuming the major allele. The analysis adjusted for the top two principal components to 

correct for population stratification and included the following potential confounders: 

smoking status, alcohol intake, age, education, WHI study, BMI, recreational physical 

activity, dietary energy intake, family history of diabetes, and hormone therapy use. The 
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baseline characteristics of the 9,873 subjects is described in Table 2 in the Supplement. (Gu 

et al., 2015). The ranking of individual SNPs was assessed by the following methods:

1. Univariate Cox Proportional Hazards (PH) model: Statistical significance of each 

SNP is assessed individually, while adjusting for population stratification and 

other confounders. The time to event was calculated as the time between the 

enrollment date and the date of the first positive self-report (observed event), or 

the date of last contact (censored observation). The SNPs were ranked according 

to the Wald test p-value of the null hypothesis of no association between the SNP 

and incident diabetes.

2. RSF: This multivariable analysis was based on the original RSF algorithm 

(Ishwaran et al., 2008) using the R package randomForestSRC (Ishwaran and 

Kogalur, 2015). The input to the algorithm included the set of 88,277 SNPs as 

well as the top two principal components (to adjust for population stratification) 

and potential confounders. The time to event outcome is defined as in the Cox 

PH model. A survival forest of 1000 trees was built with a node splitting 

criterion based on the log rank test. SNPs were ranked according to a variable 

importance metric obtained as the difference in the cumulative hazard function 

before and after permutation.

3. Modified RSF: This multivariable analysis was based on the proposed algorithm 

using the R package icRSF (R Core Team, 2018; Xu et al., 2018) based on the 

input of the set of 88,277 SNPs as well as the top two principal components (to 

adjust for population stratification) and potential confounders. The sensitivity 

and specificity of self-reported diabetes were assumed to be 0.61 and 0.995, 

respectively (Margolis et al., 2014; Gu et al., 2015). A survival forest of 1000 

trees was built and the minimum terminal node size was fixed at 5 subjects. 

SNPs were ranked according to a variable importance metric obtained as the 

difference in the OOB log-likelihood before and after permutation.

Results

Figure 6 in the Supplement shows a bar plot of the variable importance of each SNP (1 

through 88,277) resulting from the analysis based on the proposed algorithm - the horizontal 

dashed line indicates the variable importance threshold separating the top 10 SNPs from the 

rest. SNPs that were found to rank among the top 10 most important by at least one of the 

above analyses are shown in Table 4. Each SNP is annotated with its host gene (if known) 

and the left and right flanking genes. A total of 27 SNPs were identified in the top 10 by at 

least one of the three strategies, while simultaneously adjusting for population stratification 

and potential confounding by other factors. We examined the degree of linkage 

disequilibrium (LD) between all pairs of the 27 SNPs in Table 4 - only 1 pair of SNPs was 

found to have r2 values of 0.05 or larger.

Three SNPs (rs16997235, rs10126793, rs16917265) were ranked among the top 50 by all 

three strategies. Three SNPs (rs639724, rs2805429, rs10859620) were ranked among the top 

50 by two strategies. In addition, several SNPs among the top 10 by the modified RSF 

algorithm were not detected among the top 1000 by the other two approaches. For example, 
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the top SNPs identified by the modified RSF algorithm (rs10777370, rs7187364, 

rs16983007) had ranks above 1000 by RSF. The left gene of SNP rs10777370 (DCN) and 

host gene of rs7187364 (WWOX) have both previously been implicated as a risk allele for 

Type 2 diabetes (Bolton et al., 2008; Sakai et al., 2013). The host gene of rs17627111 

(ESRRG) has been previously shown to be associated with type 2 diabetes in African 

Americans (Murea et al., 2011). Several other genes that either contain or flank the SNPs 

identified among the top 10 by at least one analysis have been previously found to be 

implicated in Type 2 diabetes (Table 3 in the Supplement).

5 Discussion

In this paper, we propose an ensemble tree based algorithm for variable selection in high 

dimensional datasets, in settings where a time to event outcome is observed with error. The 

models developed in this paper are motivated by imperfect, self-reported outcomes of 

incident type 2 diabetes collected in the Women’s Health Initiative. The proposed methods 

apply to other settings in which the event of interest is diagnosed using an imperfect 

laboratory-based diagnostic test that is given at prescheduled times during follow-up. For the 

special case in which the diagnostic tests are perfect, the likelihood incorporated into the 

algorithm reduces to the Turnbull non-parametric estimator for interval censored outcomes 

(Turnbull, 1976).

We presented results from simulations, considering different data types and a variety of 

settings with regard to cumulative incidence of event during the study and sensitivity/

specificity of the self-report (or imperfect diagnostic test). We compared the performance of 

our proposed algorithm to RSF (Ishwaran et al., 2008), which assumes that outcomes are 

observed without error. We considered datasets in which continuous variables are measured 

as well as datasets typically seen in GWAS studies. When studies collect self-reports or test 

results according to a predetermined schedule and when specificity is less than perfect, our 

proposed algorithm has a significantly better performance with regard to variable selection 

when compared to the original RSF algorithm. In studies where collection of self-reports or 

diagnostic test results ceases after the first positive result, our modified algorithm no longer 

performs better than RSF. We applied the proposed algorithm to data from the WHI Clinical 

Trial and Observational Study SHARe. Several genes associated with top ranking SNPs 

were found to be related to the risk of type 2 diabetes in the literature (Table 3 in the 

Supplement).

The proposed algorithm assumes that the values of sensitivity and specificity of the self-

reported outcomes/diagnostic tests are constant. In some applications, these could depend on 

demographic variables and change over time. In other settings, the sensitivity/specificity 

parameters could be unknown and require estimation. For these applications, it would be 

useful to extend the proposed methods. Another direction for future work includes variable 

selection algorithms for recurrent events (e.g. stroke) identified by self-reports or error-prone 

procedures. In this setting, one could consider an observed data likelihood based on a 

Hidden Markov Model framework. In this setting, the observed data correspond to different 

states that are assumed to be subject to misclassification of the true underlying disease state 

of the individual (Macdonald and Zucchini, 1997; Jackson, 2011).
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Figure 1. Variable importance from modified Random Survival Forests
Barplot of variable importance for each of 100 covariates, considering the setting in which 1 

− SJ+1 = 0.10, φ1 = 0.61, φ0 = 0.995 and there are no missed visits. (a) Continuous covariates 

- average variable importance over 100 simulated datasets is shown, where the first five 

(shown in red) represent the true biomarkers. (b) GWAS data - variable importance for a 

representative simulation is shown (results are not averaged as the identity of the true 

biomarkers varies between simulations). ’Blue’ indicates true biomarkers with MAF ∈ 
(0.35, 0.5] and ‘red’ indicates true biomarkers with MAF ∈ (0, 0.35]. (c) Omics data - 

average variable importance over 100 simulated datasets is shown, where the first five 

(shown in red) represent the true biomarkers.
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