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Abstract

Ionizing radiation is a valuable tool in many spheres of human life. At the same time, it is a 

genotoxic agent with a well-established carcinogenic potential. Progress achieved in the last two 

decades has demonstrated convincingly that ionizing radiation can also target the cellular 

epigenome. Epigenetics is defined as heritable changes in the expression of genes that are not due 

to alterations of DNA sequence but consist of specific covalent modifications of chromatin 

components, such as methylation of DNA, histone modifications, and control performed by non-

coding RNAs. Accumulating evidence suggests that DNA methylation, a key epigenetic 

mechanism involved in the control of expression of genetic information, may serve as one of the 

driving mechanisms of radiation-induced carcinogenesis. Here, we review the literature on the 

effects of ionizing radiation on DNA methylation in various biological systems, discuss the role of 

DNA methylation in radiation carcinogenesis, and provide our opinion on the potential utilization 

of this knowledge in radiation oncology.
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I. INTRODUCTION

Ionizing radiation (IR) remains a pillar of the care and cure of many cancer patients 

worldwide. At the same time, the carcinogenic potential of IR has been recognized for over 

a century since the first radiation-induced skin cancers and leukemia in occupationally 

exposed workers were reported.1–4 These studies were followed by a plethora of 
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epidemiological studies, including long-term follow-up studies on A-bomb survivors,5–7 as 

well as reports on occupational, accidental, and environmental exposures8–10 and on patients 

exposed for various diagnostic and treatment purposes.11–14 Those studies, together with the 

number of studies that utilized cellular and animal models, highlighted the universal 

carcinogenic potential of IR, which was shown to cause cancers “in most tissues of most 

species and at all ages.”15

The major mechanisms of radiation carcinogenesis are linked to DNA damage associated 

with it misrepaired DNA lesions and the induction of mutations, our knowledge of which is 

summarized in excellent reviews elsewhere.1,15 In addition to these mechanisms, the 

development of radiation-induced genomic instability, a multifactorial phenomenon 

exhibited as an increased frequency of mitotically heritable genetic alterations observed in 

the progeny of irradiated cells multiple generations after exposure,16–18 suggests that there 

are other mechanisms that may be implicated in radiation carcinogenesis. The observed 

frequency of genetic instability induced by IR exposure is substantially higher than that 

observed for gene mutations at a similar dose; therefore, the latter is considered highly 

unlikely to be the initiating mechanism.15,19 In this regard, epigenetic alterations are of 

particular interest.18,20

II. EPIGENETIC MECHANISMS THAT REGULATE THE EXPRESSION OF 

GENETIC INFORMATION

Epigenetics is the study of heritable changes in gene expression that are not associated with 

alterations in the underlying DNA sequence—in other words, changes in phenotype without 

actual changes in genotype. The epigenetic mechanisms that regulate the expression of 

genetic information include DNA methylation, post-translational histone modifications, and 

nucleosome positioning along DNA. These covalent marks that ensure the proper structure 

and function of the epigenome are applied by specific enzymes: DNA and histone 

methyltransferases, the so-called “writers.” The “readers,” proteins that recognize these 

marks, in turn modulate the gene expression at particular genomic loci. Conversely, the 

“erasers” are the enzymes that guarantee the reversibility of the previously applied covalent 

marks, underlining the plasticity of the epigenome.21

Epigenetic mechanisms are critical during development, as well as for the maintenance of 

cellular homeostasis. Regarding epigenetic mechanisms, the expression of genetic 

information is regulated in a cell-, tissue-, and sex-specific manner.22,23 Epigenetics also 

plays a key role in controlling the expression of repetitive elements (REs), which occupy 

more than 50% of mammalian genomes.24

DNA methylation, the most studied and characterized epigenetic modification, is a covalent 

addition of a methyl group to the fifth position of carbon. This process is enabled by a 

complex interplay among the DNA methyltransferases, methyl-CpG-binding proteins, and 

the recently characterized protein ubiquitin-like with PHD and RING finger domains 1 

(UHRF1). More than 50% of eukaryotic genes, as well as a mosaic palette of REs, contain 

CpGrich regions (also known as CpG islands, or CGIs). Depending on the location of CGIs, 

DNA methylation can have differential regulatory functions. For instance, methylation of 
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DNA at CGIs located within the gene promoter/transcription start site is usually associated 

with gene silencing.25 However, it remains unknown whether this mechanism is repressive 

by nature or is simply a lack of activation.26 Conversely, DNA methylation of gene bodies 

(introns and exons) is not associated with gene silencing and either leads to stimulated 

elongation and splicing or prevention of initiation of aberrant transcription from alternative 

transcription start sites.22,27,28

Alterations in DNA methylation may lead to cellular epigenetic-based reprogramming, 

resulting in altered gene and RE expressions, genomic instability, and the development of 

pathological states, including cancer. In the 1970s and early 1980s, epigenetic mechanisms 

were proposed to be involved in carcinogenesis, with the loss of global DNA methylation 

being reported as the first epigenetic alteration detected in several human cancers.29,30 These 

studies were followed by the identification of DNA hypermethylation at the promoter 

regions of tumor-suppressor genes in cancerous tissue.31–33 Further studies have 

demonstrated that these alterations in global and gene-specific DNA methylation can often 

be detected at early stages of carcinogenesis, leading to the development of the hypothesis 

that epigenetic mechanisms may serve as drivers of carcinogenesis.34–38

III. EPIGENETIC MECHANISMS OF CARCINOGENESIS

Today, several decades since the first report of global DNA hypomethylation in cancerous 

tissue,29,30,39 virtually all human cancers have been characterized by this epigenetic 

alteration. Currently, it is generally accepted that global genomic hypomethylation is a 

recognized hallmark of cancer.40,41 Loss of global genomic methylation is usually 

associated with the hypomethylation of REs, many of which, such as the LINE-1 and Alu 
elements, are retrotransposons by nature.42 Retrotransposons are mobile DNA elements that, 

during evolution had heavily populated mammalian genomes due to their ability to 

propagate via the “copy-paste” mechanism.43 DNA hypomethylation in retrotransposons 

may lead to the loss of epigenetic control over those REs, resulting in their reactivation and 

subsequent retrotransposition. The latter is usually exhibited as insertional mutagenesis, in 

which the retrotransposon randomly inserts its copy at a different genomic location, often 

leading to a shifted open reading frame of the protein-encoding genes.24

It remains unclear whether the retrotransposition is a carcinogenesis-driven event or merely 

the consequence of the overall genomic instability observed in cancer cells. However, 

LINE-1 retrotransposition has been reported recently in numerous human cancers.44–46 

Increased retrontransposition may also result in another unwanted effect, genomic 

amplification, which may further have a negative effect on genome stability.

Even without the subsequent reactivation of retrotransposons, DNA hypomethylation may 

have substantial influence on carcinogenesis. For instance, it has been shown that the MET 
oncogene has evolutionary acquired a LINE-1 insertion within its gene body together with 

the CGI containing an alternative transcription start site. Loss of DNA methylation from this 

CGI results in aberrant transcription and increased MET copy numbers and is usually 

associated with a poor prognosis and rapid development of distant metastasis.47,48
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DNA hypermethylation, which is observed in a number of tumor-suppressor genes, is 

another frequently observed epigenetic alteration in cancer cells. Often, promoter DNA 

hypermethylation in such genes as cyclin-dependent kinase 2A (CDKN2A, also known as 

P16INK4A), O6-methylguanine-DNA methyltransferase (MGMT), and phosphatase and 

tensin homolog (PTEN), to name a few, is associated with their transcriptional silencing in 

the tumor. The latter effect, however, remains controversial because a number of studies 

reported on gene silencing preceding DNA hypermethylation, as well as a lack of influence 

of promoter DNA methylation on gene and RE expression.22,28,49

It is becoming increasingly recognized that both genetic and epigenetic alterations in concert 

contribute to the process of carcinogenesis. For instance, a number of recent studies have 

convincingly demonstrated that the vast majority of human cancers harbor mutations in the 

genes that belong to the epigenetic machinery (i.e., DNA methyltransferases).50,51 

Alterations in the expression of those genes may compromise the cellular epigenome, 

subsequently leading to altered gene expression and genomic instability.21,25,52 Conversely, 

epigenetic alterations may further predispose to mutations because DNA hypermethylation-

mediated silencing of the critical DNA repair gene MLH1 has led to the development of new 

mutations due to inefficient DNA repair.53

IV. DNA methylation in radiationinduced cancers

In 2004, Belinsky et al. reported DNA hypermethylation of the p16INK4A gene in lung 

adenocarcinomas of plutonium-exposed workers at the Russian nuclear enterprise MAYAK.
54 Interestingly, the levels of p16INK4A DNA hypermethylation were 3.5-fold higher in the 

adenocarcinomas of exposed workers compared with non-IR worker controls (confidence 

interval = 1.5–8.5; p = 0.001). The investigators also reported that the increased probability 

for gene-specific methylation approximated a 4-fold increase in relative risk for 

adenocarcinoma in workers exposed to plutonium.54 In another study, Su et al. detected 

DNA hypermethylation of the P16INK4A (z = 2.844, p = 0.005) and MGMT (z = 3.034, p = 

0.002) genes in the sputum of uranium miners.55 The degree of DNA hypermethylation in 

the promoter of p16 and MGMT significantly correlated with the cumulative doses of radon 

exposure, with the cumulative exposure dose range of 12 ± 6 to 294 ± 132 (z = 3.859, p = 
0.0001). Interestingly, a recent study using a mouse model also identified DNA 

hypermethylation of p16INK4A and its transcriptional silencing in radiation-induced thymic 

lymphoma.56

Other studies performed with the cohort of MAYAK workers diagnosed with lung 

adenocarcinoma demonstrated hypermethylation of GATA5, a gene that plays a critical role 

in cellular differentiation.57 The investigators have also acknowledged the higher incidence 

of DNA hypermethylation in adenocarcinomas from MAYAK workers, in whom at least one 

of five investigated genes was hypermethylated in 93% of cases, whereas in non-IR workers, 

this effect was observed in only 66% of cases. However, it must be emphasized that, to date, 

no radiation-specific DNA hypermethylation signatures were reported.
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Results from epidemiological studies suggested that epigenetic alterations, aberrant DNA 

methylation in particular, may be involved in radiation carcinogenesis, which inspired the 

investigation of effects of IR on DNA methylation in experimental systems.

A number of studies showed that exposure to IR may substantially affect the cellular 

epigenome and result in the loss of global DNA methylation, especially in organs and 

systems known to be sensitive to radiation-induced carcinogenesis. For instance, 

Giotopoulos et al. reported loss of DNA methylation in bone marrow of mice exposed to 3 

Gy of IR.58 Similar losses of DNA methylation were observed in other cancer-prone tissues 

such as the thymus, mammary gland, and spleen,59–61 but not in the lung or muscle tissues.
62 Importantly, those effects could be detected at extended time points after irradiation, even 

when the radiation-induced DNA damage was long since repaired.59 These effects were also 

detectable in the organ and systems not directly exposed to IR.63 A decrease in global DNA 

methylation was reported in a rat model shortly after irradiation,61 as well as in rats with 

radiation-induced mammary tumors,64 further establishing a link between radiation-induced 

global genomic hypomethylation and carcinogenesis. Another important finding from those 

studies was that the IR-induced changes in DNA methylation primarily stem from REs 

rather than from individual genes.42,63,65,66

Given the abundance of REs in mammalian genomes and their extensive DNA methylation, 

the effects of IR on DNA methylation on a global scale can be detected with a high degree of 

reproducibility. Conversely, studies investigating IR-induced gene-specific DNA methylation 

often present controversial results. The introduction of next-generation approaches into 

DNA methylation analysis promises to shed more light on the effects of IR at the level of 

single-gene resolution.

In one of the pioneering studies, Antwih et al., using the 450 K methylation array approach, 

observed substantial changes in gene-specific DNA methylation in human breast cancer cell 

lines.67 Interestingly, gene ontology analysis revealed that a large fraction of affected genes 

belonged to radiation response pathways. Similarly, radiation-induced changes in DNA 

methylation were reported by Bae et al., who investigated the response in HCT116 human 

colorectal cells.68 Conversely, two studies performed on normal human fibroblasts reported 

a lack of radiation-induced changes in DNA methylation.69,70 The results of these studies 

clearly demonstrated that the IR-induced effects on DNA methylation critically depend on 

the cell/ tissue type. For example, even in one of the most sensitive organs to IR exposure, 

the bone marrow, clear patterns of cell specificity regarding the magnitude of response were 

observed.71,72 The observed changes were primarily detected in genetically unstable cancer 

cells and cell lines with compromised DNA repair, which may explain the considerably 

higher degree of changes in DNA methylation after irradiation. Other contributing factors 

may also be associated with different doses, quality of radiation, time points after irradiation 

at which DNA methylation was evaluated, and differences in the approaches for data 

analysis.66,73,74 Furthermore, in vitro systems do not represent the whole organismal 

response and lack the influence of other important factors that may predetermine the tissue/

cell epigenetic response. For instance, it has been shown that male C57BL/6J mice 

exhibiting a robust IR-induced epigenetic response have a clear lack of this response when a 

gonadectomy is performed.75
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V. ARE THE OBSERVED EPIGENETIC EFFECTS DRIVERS OR 

PASSENGERS?: HIGH-LINEAR ENERGY TRANSFER (LET) RADIATION AS 

A MODEL TO STUDY THE EPIGENETIC MECHANISMS OF RADIATION 

CARCINOGENESIS

It is becoming increasingly recognized that alterations in DNA methylation are not just the 

passive bystanders in the process of carcinogenesis or consequences of neoplastic 

transformation and, very possibly, they are the active players that shape the tumor landscape. 

Indeed, as discussed above, altered DNA methylation can be detected very early during the 

process of carcinogenesis and may influence numerous biological processes. It is also 

becoming increasingly recognized that both genetic and epigenetic alterations in concert 

contribute to carcinogenesis. However, one of the most challenging aspects of investigating 

the role of epigenetic alterations in genotoxic carcinogenesis is determining the truly 

epigenetically driven mechanisms. For instance, the loss of DNA methylation that is 

observed in the vast majority of cases after exposure to doses of 1 Gy and above may be also 

mediated by the substantial damage to DNA or preoccupation of DNA methylatransferases 

(DNMT1) and DNA methylation accessory protein (UHRF1) in recruiting the repair 

complexes to the sites of damaged DNA instead of a direct response in the maintenance of 

DNA methylation. One could thus consider that the genotoxic effects of IR simply 

predetermine the epigenetic alterations.

In this regard, of particular interest are the model systems that utilize exposure to low mean 

absorbed doses of high-LET radiation, such as protons and heavy ions, types of IR that are 

dominant in the space environment. The necessity of understanding the effects of IR 

exposure during the space missions and the introduction of high-LET radiation into clinical 

practice have triggered the investigation of biological and molecular mechanisms of 

response to high-LET radiation.76–78

Studies in in vitro and animal experimental systems clearly indicate that exposure to heavy 

ions results in clustered DNA damage compared with low-LET terrestrial radiation.76,79–81 

This more complex DNA damage is frequently irreparable and usually promotes apoptosis 

via p53 at the S/G2 checkpoint, leading to greater relative biological effectiveness.82

Cytogenetic studies report a much higher complexity of chromosomal rearrangements 

caused by exposure to heavy ions compared with sparsely ionizing IR.83,84 The complexity 

of these rearrangements, however, determines the lethality of the vast majority of them. Both 

in vitro and in vivo studies have reported a very low number of complex rearrangements 

within a short time after irradiation.79,85 Furthermore, it has been shown that the levels of 

chromosomal aberrations in astronauts with a total time of 2 years spent in space were not 

substantially higher than the background measurements taken before the first flight.86

Despite the lack of detectable DNA damage and chromosomal aberrations, studies in 

experimental animal models have shown that heavy ions are not only potent carcinogens, but 

can induce cancers at much lower doses and even in organs that are not known to be the 

classical organs for IR-induced carcinogenesis.87–94 For instance, leukemogenesis studies in 
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mice demonstrate that exposures to as low as a 0.4 Gy mean absorbed dose of heavy iron 

ions (56Fe) were enough to increase the levels of leukemia, whereas doses above 1 Gy of 

low-LET irradiation were needed to cause the same effect. Other studies also reported lung 

tumors in mice exposed to 56Fe or protons,89 as well as enhanced intestinal tumor 

multiplicity in APCmin mice.90,91 In addition, high-LET radiation was shown to be a very 

potent inducer of liver tumors, a site that is not common for radiation carcinogenesis.

Studies using the exposures to low-mean absorbed doses of high-LET IR may aid in better 

understanding the driving potential of epigenetic mechanisms in radiation-induced 

carcinogenesis. For instance, in a study assessing the dose-dependent effects of total body 

irradiation to low-mean absorbed doses of 56Fe, Miousse et al. demonstrated an absence of 

detectable DNA damage, as well as no increases in reactive oxygen species, senescent cells, 

or apoptotic events in the hematopoietic stem and progenitor cells 1 and 5 months after 

exposure.71 At the same time, changes in DNA methylation of transposable elements 

LINE-1 and SINE B1 (corresponding to Alu elements in humans) and DNA methylation 

machinery were detected in the pool of hematopoietic stem and progenitor cells after 

exposure to leukemogenic (0.4 Gy, 1 A GeV), but not lower doses of 56Fe. Importantly, 

those changes were still evident 5 months after exposure and also resulted in reactivation of 

LINE-1 elements that may further lead to LINE-1 insertional mutagenesis, genome 

amplification, and the development of genomic instability. The persistence of epigenetic 

alterations considered as a hallmark of cancer (loss of global and RE-associated DNA 

methylation paralleled by reactivation of the LINE-1 retrotransposon) in the absence of 

detectable DNA damage and other cellular and molecular alterations suggests that epigenetic 

reprogramming may serve as one of the driving forces in IR-induced carcinogenesis. Further 

studies are clearly needed to confirm this hypothesis and to prove the causative role of 

epigenetic alterations and DNA methylation related to radiation-induced carcinogenesis.

VI. TARGETING THE CANCER EPIGENOME FOR RADIOSENSITIZATION: 

CONSIDERATIONS FOR ONE-CARBON METABOLISM RELATED EFFECTS

Given that IR is capable of inducing stable alterations to DNA methylation and that there is a 

higher degree of IR-induced epigenetic responses in the cancerous cell, it seems reasonable 

to expect that tumor radiosensitization could be achieved by mod-ulation of the tumor cell 

epigenome. This notion is strengthened by the finding that DNA methylation levels can 

regulate the cancer cell response to radiotherapy. Kim et al., using the radiosensitive (H460) 

and radioresistant (H1299) human non-small-cell lung cancer cell lines, demonstrated the 

differential DNA methylation patterns in 747 genes.95 The investigators have further shown 

that silencing of SERPINB5 and S100A6 can mediate radioresistance in H460 cells.

The DNA methylation status of LINE-1, the most abundant and usually heavily methylated 

RE, is becoming a valuable tool in the prognosis of tumor response to therapy. It is generally 

recognized that a lower degree of LINE-1 DNA methylation is associated with a poor 

prognosis, advanced metastasis, and weak tumor response to treatment.42 Some studies 

indicate that the DNA methylation status of LINE-1 may also serve as a predictor of tumor 
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response to radiotherapy96; however, more basic and clinical research is needed to confirm 

these findings.

The potential of DNMT inhibitors such as nucleoside analogs (5-azacytidine, decitabine, and 

zebularine) in tumor radiosensitization is becoming increasingly recognized. Those drugs 

were first introduced into clinical practice several decades ago, but were only shown to 

improve the blood cell count and survival in patients with myelodysplastic syndrome and 

acute myeloid leukemia after dose optimization was achieved in recent years.97,98 At the 

same time, the results of the clinical trials in patients with solid tumors were less promising.
99

A series of in vitro studies demonstrated increased sensitivity to radiotherapy in gastric, 

glioblastoma, head and neck, colorectal, and nasopharyngeal cancer cell lines when treated 

with these nucleoside analogs.100–104 Emerging evidence also exists on the success of 

combined nucleoside analog/ radiotherapy treatment in glioblastoma U251 and 

nasopharyngeal carcinoma xenograft models.100,104

Another promising and still unexplored avenue in tumor radiosensitization is via targeting 

one-carbon metabolism, one of the major biochemical pathways in living organisms that 

affects nearly all cellular functions and more than 100 specific biomethylation reactions. 

One-carbon metabolism involves the reactions that surround the transfer of the methyl group 

from S-adenosylmethionine (SAM) to acceptor molecules and the regeneration of SAM. The 

latter ties together gene regulation, amino acid synthesis, purine and pyrimidine synthesis, 

antioxidants, and four vitamins. One of the central molecules involved in one-carbon 

metabolism is the essential amino acid methionine. Methionine is critical for a number of 

vital processes, including the synthesis of SAM, a universal donor of methyl groups for 

DNA, RNA, protein, and lipid methylation. Methionine is also needed for the synthesis of 

glutathione and is indispensable for protein synthesis.

Interestingly, there is a remarkable difference in the needs for methionine between normal 

tumor cells; rapidly proliferating cancer cells require much higher levels of methionine to 

maintain function. Therefore, as would be expected, tumor cells are extremely sensitive to 

methionine restriction. Although the normal cell has a capacity for re-methylation and 

further utilization of methionine from homocysteine, the cancer cell is incapable of proper 

synthesis and utilization of endogenous methionine.105 For instance, it has been shown that 

plating normal fibroblasts and tumor cells together in methionine-deficient homocysteine-

supplemented medium results in cell cycle arrest and apoptosis of tumor cells, whereas 

normal fibroblasts grow abundantly.106

Although the potentiation of the chemotherapy effect of methionine deprivation has been 

investigated both in vitro107 and in vivo108,109 and even in clinical trials,110,111 the potential 

combination of methionine dietary deprivation with radiotherapy has yet to be addressed. 

Accumulating evidence indicates that cancer cells are radiosensitized by the deprivation of 

other methyl group donors,112,113 suggesting that methionine deprivation combined with 

radiotherapy may have beneficial effects for cancer treatment.
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Whereas the potential of this approach seems clear, several critical issues need to be 

addressed due to the toxicity associated with long-term methionine restriction. Classical 

cancer therapy regimens, chemotherapy or radiotherapy, are usually a lengthy process over 

several months. Long-term methionine deficiency is associated with substantial weight loss 

both in rodent models and in clinical trials, as well as thrombocytopenia, neutropenia, and 

the development of hepatosteatosis.110,111,114,115 Recent advances both in tumor imaging 

and radiation techniques, as well as the development and widespread implementation of 

stereotactic body radiation therapy regimens into clinical practice116–118 may, along with 

improved local tumor control, significantly decrease the duration of treatment and thus allow 

for effective and safe methionine dietary interventions.
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ABBREVIATIONS:

CDKN2A cyclin-dependent kinase 2A

CGI CpG island

DNMT DNA methyltransferase

IR ionizing radiation

LET linear energy transfer

LINE-1 Long Interspersed Nucleotide Element 1

MGMT O6-methylguanine-DNA methyltransferase

PTEN phosphatase and tensin homolog

RE repetitive element

SAM S-adenosylmethionine

SINE B1 Short Interspersed Nucleotide Element B1

UHRF1 ubiquitin-like with PHD and RING finger domains 1
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