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Abstract

Spatial attention is the cognitive function that coordinates the selection of visual stimuli with 

appropriate behavioral responses. Recent studies have reported that phase-amplitude coupling 

(PAC) of low and high frequencies covaries with spatial attention, but differ on the direction of 

covariation and the frequency ranges involved. We hypothesized that distinct phase-amplitude 

frequency pairs have differentiable contributions during tasks that manipulate spatial attention. We 

investigated this hypothesis with electrocorticography (ECoG) recordings from participants who 

engaged in a cued spatial attention task. To understand the contribution of PAC to spatial attention 

we classified cortical sites by their relationship to spatial variables or behavioral performance. 

Local neural activity in spatial sites was sensitive to spatial variables in the task, while local neural 

activity in behavioral sites correlated with reaction time. We found two PAC frequency clusters 

that covaried with different aspects of the task. During a period of cued attention, delta-phase/

high-gamma (DH) PAC was sensitive to cue direction in spatial sites. In contrast, theta-alpha-

phase/beta-low-gamma-amplitude (TABL) PAC robustly correlated with future reaction times in 

behavioral sites. Finally, we investigated the origins of TABL PAC and found it corresponded to 

behaviorally relevant, sharp waveforms, which were also coupled to a low frequency rhythm. We 

conclude that TABL and DH PAC correspond to distinct mechanisms during spatial attention tasks 

and that sharp waveforms are elements of a coupled dynamical process.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/)
*Corresponding author. 660 S Euclid Ave, North Medical Building, Rm 3807. St. Louis, MO, 63110, United States. 
ravi.chacko@wustl.edu (R.V. Chacko). 

HHS Public Access
Author manuscript
Neuroimage. Author manuscript; available in PMC 2019 February 11.

Published in final edited form as:
Neuroimage. 2018 July 15; 175: 111–121. doi:10.1016/j.neuroimage.2018.03.003.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://creativecommons.org/licenses/bync-nd/4.0/


Keywords

Phase-amplitude coupling; Sharp waves; Cued attention; Reaction time

Introduction

Spatial attention defines a set of cognitive mechanisms that select behaviorally relevant 

visual information while filtering out behaviorally irrelevant information (Posner 1980). 

Attention facilitates visuomotor coordination through modulation of neural activity in visual 

(Corbetta et al. 1990; Mangun and Hillyard 1988; Moran and Desimone 1985), parietal and 

prefrontal regions during visuomotor tasks (Corbetta et al. 1993; di Pellegrino and Wise 

1993; Snyder, Batista, and Andersen 1997). Phase amplitude coupling (PAC) has been 

proposed as a mechanism underlying attention (Esghaei, Daliri, and Treue 2015; Landau et 

al. 2015; Schroeder and Lakatos 2009; Szczepanski et al. 2014). PAC quantifies the 

relationship between the phase of a low frequency signal and the amplitude envelope of a 

high frequency signal. It has been hypothesized that low-frequency oscillations serve as 

temporal reference frames for higher frequency (>20 Hz) activity (Bonnefond, Kastner, and 

Jensen 2017; Canolty and Knight 2010; Lakatos et al. 2008; Mizuseki et al. 2009). These 

hypotheses are supported by evidence that stimulus perception depends on the phase of 

ongoing oscillations (Mathewson et al. 2011). However, these hypotheses have been 

challenged by evidence that non-sinusoidal, sharp waveforms containing multi-spectral 

components, result in spurious PAC between low and high frequencies (Gerber et al. 2016; 

Jensen, Spaak, and Park 2016).

Two relevant PAC experiments on cued spatial attention resulted in opposing conclusions. In 

a human cued target-detection task with distractors, Szczepanski et al. found delta-theta-

phase/high-gamma amplitude (2–5 Hz to 100–150 Hz) PAC correlated with reaction time 

(RT) in cortical sites associated with the dorsal attention network. Correlations were stronger 

when subjects attended within the receptive hemifield of recording sites (Szczepanski et al. 

2014). The authors suggest that PAC enhances spatial attention given positive interactions 

between PAC, cueing direction and reaction time. In contrast, Esghaei et al. found decreased 

PAC between low (1–8Hz) and high (30–120 Hz) frequencies when monkeys attended to the 

receptive field of area MT (Esghaei, Daliri, and Treue 2015). The authors conclude that PAC 

suppresses attention given its negative covariation with cueing direction.

Beyond differences in recording methodologies, task paradigms and species, each group 

focused on different low-frequency ranges (e.g. 2–5 Hz for Szczepanski et al. and 1–8 for 

Esghaei et al.) that may engage distinct neural circuitry. Delta (1–3 Hz) in primary sensory 

cortices has been shown to reflect rhythmically presented stimuli when attended (Lakatos et 

al. 2008). Theta (4–7 Hz) and alpha (8–13 Hz) have been associated with sustained attention 

(Clayton, Yeung, and Cohen Kadosh 2015; Sadaghiani and Kleinschmidt 2016) and 

inhibition (Mehta, Lee, and Wilson 2002; Rihs, Michel, and Thut 2007). Additional 

evidence suggests that delta and alpha play opposing roles in selective attention (Lakatos et 

al. 2016). Finally, recent investigations into the origins of PAC revealed that distinct PAC 

frequency pairs correspond to waveforms that explain different cognitive processes in a 
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memory task (Vaz et al. 2017). Given these findings, we wondered whether specific PAC 

frequency pairs corresponded to distinct cognitive elements of a spatial attention task.

In this study, we investigated PAC phenomena during a spatial attention task, and 

hypothesized that specific PAC frequency pairs correspond to distinct cognitive functions. 

Additionally, we investigated how non-sinusoidal, sharp waveforms contributed to PAC. 

Using methods defined by Tort et al. to measure PAC with the modulation index, we used a 

non-parametric cluster-based statistical approach to find behaviorally relevant PAC 

frequencies (Maris and Oostenveld 2007; Tort et al. 2010). We functionally classified 

cortical sites based on their sensitivity to spatial properties of stimuli or behavioral 

performance. We found that theta-alpha-phase/beta-low-gamma-amplitude (TABL) PAC 

scaled with reaction time while delta-phase/high-gamma-amplitude was related to cueing 

direction. Furthermore, we found that non-sinusoidal, sharp waveforms contributed to TABL 

PAC and developed computationally inexpensive methods to detect them. However, we 

found that sharp waveforms were behaviorally relevant and coupled to a low frequency 

oscillation. Our findings show that the functional characteristics of PAC depend critically on 

low frequency phase and that sharp waves are elements of a coupled dynamical process.

Materials and methods

Subjects and data acquisition

The study included six human participants, of both sexes, with treatment-resistant epilepsy 

who were undergoing invasive electrocorticography (ECoG) to detect seizure foci. None had 

vision or attention deficits. The data from three subjects were analyzed with different 

methods in a previous experiment (Daitch et al. 2013) the remaining data were not 

previously analyzed. A computer monitor was placed 20 inches away from the subject’s 

eyes. ECoG data was recorded in the subject’s hospital room from platinum clinical 

electrodes with 2.3 mm diameter and 10 mm spacing (PMT Corporation, Chanhassen, 

Minnesota). The raw ECoG signals were sampled at 1200 Hz and amplified with clinical 

bioamplifiers (Guger Technologies, Schiedlberg, Austria). We developed custom scripts for 

use with the BCI2000 software platform for task presentation and data acquisition 

(www.bci2000.org, Schalk et al. 2004).

Experimental design

Subjects participated in a modified Posner spatial cueing task previously described by 

Daitch et al. (Daitch et al. 2013). Subjects were cued with a centrally located arrow that 

pointed either left or right and appeared for 500 ms. After cue offset and an additional delay, 

the target appeared for 160 ms. An equivalent number of left and right targets were 

presented in random order. A target appeared at the cued location on 80% of trials (valid) 

and at the un-cued location on 20% of trials (invalid). All subjects engaged in sessions 

where the timing between cue offset and target was fixed. Fixed trials had a cue-target 

interval of 500 ms. Five of the six subjects alternated between sessions with fixed and 

variable cue-target interval. In variable sessions, the interval between cue offset and target 

onset varied between 500, 1000 and 1500 ms with equal probability. Variable trials were 

included to rule-out the possibility that coupling was due entirely to rhythmic task timing. 
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Once we ruled this possibility out, only fixed trials were used because they were more 

appropriate for direct comparison.

Subjects were instructed to fixate centrally throughout the task and to respond as fast as 

possible to two targets, the letters “L” and “T”, with left and right button-presses 

respectively. The experimenter reminded subjects of instructions periodically. Eye 

movements of three of six subjects were tracked using the EyeLink 1000 (SR Research, 

Ottawa, Ontario, Canada) in order to verify central gaze fixation in a previous study (Daitch 

et al. 2013). Eye tracking for all subjects was not possible due to interference caused by 

bandages covering regions surrounding the eyes. The experimenter watched subjects and 

noted trials with excess movement or breaks in visual fixation, so they could be removed 

from analyses. Additional recordings taken prior to the task, at the start of each recording 

session, served as a baseline period. We focused our study on how PAC during the cue 

period relates to spatially and behaviorally defined sites. We define the cue period as the 

period between the onset of the cue and the onset of the target. Sites were functionally 

classified by neural activity during the target period, which is defined as the first 400 ms 

after the target appears. We used a 400 ms target-locked window to avoid differences in 

signal that were unrelated to visuospatial attention.

In the target period we classified cortical sites as “spatial” or “behavioral” based on local 

neural activity that discriminated spatial task variables or behavioral responses. Spatial sites 

had high-gamma power that discriminated target location (i.e. contralateral vs ipsilateral to 

recording sites) or target validity (i.e. valid vs invalid). We classified behavioral sites based 

on significant two-tailed Spearman correlation between high-gamma power in the target 

period and RT. We removed cortical sites with both spatial and behavioral classifications 

from further analysis due to their limited number.

Digital signal processing

We performed all digital signal analysis with custom scripts in MATLAB (The MathWorks 

Inc, Natick, MA). A custom graphical user interface was developed to visually inspect 

temporal and spectral properties of every channel. Channels with abnormal amplitude (e.g. > 

±1000 mV) or power spectra (e.g. harmonic noise) were flagged. Time periods containing 

transient artifacts across groups of channels were flagged. All flagged channels and time 

periods were removed from further analysis. We performed spectral decomposition using 

Morlet wavelet convolution and estimated phase and amplitude envelopes from the resulting 

complex signals. All signals were then down-sampled to 300 Hz. All wavelet-derived 

properties (i.e. phase, amplitude and power) were generated from the whole signal, before 

trials were extracted, to avoid edge effects.

Two sets of wavelet libraries were used for phase amplitude coupling. We created these 

libraries to satisfy mathematical constraints on phase-amplitude coupling measurements. 

Specifically, the bandwidth of the frequency-for-amplitude (Fa) must be twice the 

frequency-for-phase (Fp) of interest (Aru et al. 2015). The two wavelet libraries were 

constructed as follows.
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Frequency for amplitude wavelets—We used the full width at half-maximum 

(FWHM) of the Morlet wavelet as a lower bound estimate for bandwidth. We designed Fa 

wavelets to have a FWHM of 20 Hz and used 21 wavelets with center frequencies ranging 

from 20 Hz to 150 Hz in 5Hz increments.

Frequency for phase wavelets—We designed narrow-band Fp wavelets for phase 

specificity. Higher frequency resolution was employed for phase signals to distinguish 

between delta, theta and alpha rhythms. We used 20 Fp wavelets ranging from 1 Hz to 20 Hz 

with 1Hz spacing and FWHM of 0.8 Hz.

Quantifying phase-amplitude coupling with the modulation index

We measured PAC using the modulation index (MI) (Tort et al. 2010), which quantifies the 

magnitude of coupling. MI also provides a common measurement to compare different 

forms of PAC (e.g. unimodal vs bimodal) across different frequencies. MI was calculated as 

the Kullback-Leibler divergence between the uniform distribution (i.e. pure entropy) and the 

observed probability density P(j), which describes the normalized mean amplitude at a given 

binned phase (see P(j) below). Pairwise calculation of MIs for two sequences of frequencies 

produces a comodulogram. MI is calculated as follows:

MI =
DKL(P, Q)

log(N)

DKL(P, Q) = ∑
j = 1

N
P( j)log P( j)

Q( j)

Where DKL is the Kullback-Leibler divergence, P is the observed phase-amplitude 

probability density function, Q is the uniform distribution and N is the number of phase bins. 

P follows the equation:

P( j) =

A f Aϕ f P
( j)

∑k = 1
N A f Aϕ f P

(k)

where A f Aϕ f P
( j) is the mean fA amplitude signal at phase bin j of the phase signal ϕ f P

. We 

divided phase into 18 bins of 20-degree intervals. For a review of PAC methods refer to (Tort 

et al. 2010).

To identify PAC frequency pairs of interest, we sorted trials by RT and divided them into 

quartiles (Fig. 2E–G). We used signals from the fastest and slowest quartiles to generate P(j) 
distributions of normalized amplitude per binned phase, from which we calculated the MI. 

We verified the precision of our methods with simulations using methods defined in the 
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appendix of Tort et al. (Tort et al. 2010)(Supplemental Fig. 1B–F). Specific parameters or 

MATLAB scripts used for simulations are available upon request.

Statistical analysis

We employed a non-parametric cluster-based approach to time-series and two-dimensional 

comodulograms for three reasons. First, the distributions of time-series and comodulogram 

were not normal, preventing the use of usual statistical comparisons like paired t-tests. 

Second, the large number of samples creates a multiple comparisons problem that could be 

addressed with a clustering approach. Finally, the non-parametric cluster-based approach we 

employed controls the family-wise error rate at a critical alpha-level (Maris and Oostenveld 

2007). The null hypothesis for all permutation tests was no difference between the signals or 

comodulograms being compared.

Band limited power and PAC time series comparisons

Statistical inference testing of band-limited power and PAC time series followed methods 

described by Maris and Oostenveld (Maris and Oostenveld 2007). Cluster candidates were 

generated using t-statistics to test the null hypothesis that there was no difference between 

categories at each sample. If a sample t-statistic exceeded an alpha level of 5% then the null 

hypothesis was rejected for the sample and it was considered a cluster candidate. Temporally 

adjacent cluster candidates were grouped into a single cluster and their t-statistics were 

summed to produce a clustering statistic. The clustering statistic of the observed data was 

tested against a permutation distribution. To produce the permutation distribution, trial labels 

(e.g. valid vs invalid) are shuffled and randomly reassigned 10,000 times. For each shuffle, 

cluster candidates and clustering statistics were generated as described above. The maximum 

clustering statistic from each shuffle was used to create the permutation distribution. We 

calculated p-values for observed clusters using the formula p = (r+1)/(n+1), where r is the 

number of shuffled clustering statistics greater than the observed clustering statistic and n is 

the total number of shuffled sets used (North, Curtis, and Sham 2002). We corrected for 

multiple comparisons across cortical sites with the False Discovery Rate (FDR) correction 

method.

Phase-amplitude coupling comparison

We adapted a two-dimensional non-parametric permutation test to make cluster-based 

statistical inferences on comodulograms based on the difference between fast and slow trials. 

First, we generated 1500 shuffled distributions for each cortical site by randomly reassigning 

RTs to trials, sorting, dividing into quartiles, and calculating the absolute difference in 

comodulograms for fast and slow trial quartiles as follows:

d f A f P
= MI f A f P

fast − MI f A f P
slow

We use the pooled variance in each frequency pair in the distribution of d f A f P
shuffled to determine 

the cutoff threshold specific to each frequency pair. Adjacent supra-threshold frequency-

pairs were grouped together in clusters and t-statistics were summed. We tested the null 
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hypothesis that the shuffled data was no different from the observed data using a two-

dimensional cluster based permutation test where diagonals were not considered neighbors 

(Maris and Oostenveld 2007). Due to the absolute value used to calculate d f A f P
, p-values for 

these permutation tests were calculated on a one-tailed distribution at an alpha of 5%. This 

was used for determining frequencies of interest in the comodulogram.

PAC time series were calculated using MI calculations in a 500 ms sliding window with 50 

ms increments. While this window only includes half a 1 Hz cycle, we empirically 

confirmed that the large amount of data (>250 s) used in these analyses ensured that all 

phases of the 1 Hz cycle were represented in the MI calculation. Differences between PAC 

time-series for spatial and behavioral site categories were calculated with the one-

dimensional cluster-based permutation test described above.

Inter-trial coherence and preferred phase statistics

Inter-trial coherence is the magnitude of the mean phase across trials. It reflects the phase 

consistency across trials for every time point and frequency. Preferred phases were 

calculated as the maximum phase-bin in the phase-amplitude probability density plot (see 

P(j) above). Preferred phases were calculated separately for each cortical site. The non-

uniformity of preferred phases was determined with the Rayleigh test and the equivalence of 

the circular means for spatial and behavioral sites was calculated with the Kuiper test 

(Berens 2009).

Sharp waveform detection

To detect the presence of sharp waves we employed methods from QRS detection in ECG 

analyses (Benitez et al. 2000; Mitz et al. 2017). We used the squared first differential of the 

ECoG Signal to identify periods of rapid change. The Hilbert transformation is then applied 

to the squared differential of the ECoG signal. The instantaneous amplitude (i.e. the absolute 

value) of the resultant analytic signal is the amplitude envelope of the squared differential 

(Fig. 6C, black trace). We set a threshold of one standard deviation from the mean. Any 

candidate sharp wave that did not surpass this threshold for more than 16 ms was rejected. 

Finally, we calculated the amplitude change, or height, of each candidate sharp wave and 

rejected the bottom 80% to ensure that the most prominent waveforms were being isolated.

Results

Reaction time reflects task performance

We employed a spatial cueing task to induce and measure covert shifts in spatial attention. 

Participants fixated on a central crosshair throughout the task. At the beginning of each trial 

a central arrow, or “cue”, pointed towards the most likely location of a subsequent “target”. 

Two target locations were possible. We defined these locations as “contralateral” or 

“ipsilateral”, depending on whether it was on the same side, or the opposite side, of the 

recording sites. The cue predicted the location of the target in 80% of trials (i.e. valid trials). 

In 20% of trials the target appeared opposite to where the cue pointed (i.e. invalid trials). In 

our version of the task participants were required to discriminate “L” from “T” targets that 
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were randomly rotated (Fig. 1, top). Across six participants, 26 of 5370 trials were removed 

due to transient artifacts across all channels found through visual inspection. Of the 

remaining data, 5100 of 5344 trials were completed with 92.2% correct responses. We used 

trials with correct responses for further analyses. Invalid trials incurred higher RTs than valid 

trials (medians (ms): valid = 831, invalid = 927, rank sum: 7.2e6, approximate z-value: −9.8, 

p = 1.6e-22). No differences in reaction time occurred between trials with contralateral and 

ipsilateral cues (medians (ms): contralateral = 860, ipsilateral = 863, rank sum: 5.1e6, 

approximate z-value: −1.7, p = 0.08). Higher RTs on invalid trials confirmed that the task 

induced lateralized shifts in visual attention. We focused our physiological analyses on two 

periods in the task, the “cue period” and the “target period”. We define the “cue period” as 

the time between cue onset and target onset and the “target period” as the first 400 ms after 

target onset. Cued shifts in attention occurred during the cue period. The target location and 

identity is revealed during the target period, allowing subjects to locate the target, identify it, 

and subsequently respond appropriately.

Distinct clusters of PAC correlate with RT

We identified behaviorally relevant PAC frequencies by comparing the cue periods 

preceding fast and slow RTs. After sorting trials by RT, we binned them into quartiles and 

analyzed differences in cue period PAC between the fastest and slowest quartiles. We found 

PAC differences in multiple frequency pairs (Fig. 2A, B). For visualization purposes, color-

coded low-frequency phases are projected on the high-frequency amplitude envelope 

(Supplemental Fig. 1B, D). The modulation index (MI) quantified PAC intensity, or the non-

uniformity of the phase-amplitude probability density plot (Fig. 2C, D). We calculate the MI 

for each frequency pair to generate a comodulogram. The absolute difference between slow 

and fast comodulograms averaged over all cortical sites and subjects, revealed coupling 

between delta-phase and theta-alpha-phase to higher frequency (>20Hz) amplitude 

envelopes (Fig. 2E).

Cluster-based permutation testing determined the significance of PAC while controlling for 

false positives. Permutation distributions were generated by shuffling reaction times between 

trials and calculating absolute differences in comodulograms between the slowest and fastest 

quartiles in shuffled datasets. Significant phase-amplitude frequency clusters outlined 

adjacent frequency pairs with significant t-statistics (Fig. 2F). Three clusters of frequency 

pairings explained RT variance: 1) theta-alpha-phase/beta-low gamma-amplitude (TABL) 

(Fig. 2G, red), 2) delta-phase/high-gamma-amplitude (DH) (Fig. 2G, yellow), and 3) alpha-

phase/high-gamma-amplitude (AH) (Fig. 2G, orange). We focused on comparing DH with 

TABL PAC for three reasons. First, they have unique phase and amplitude frequencies, 

unlike alpha-high gamma PAC. Second, the magnitudes of DH and TABL PAC during cued 

attention were the least correlated across all electrodes (Spearman Correlations RDH-TABL = 

0.107, RTABL-AH = 0.518, RDH-AH = 0.471). Third, TABL and DH PAC have been shown to 

underlie distinct mechanisms in human memory (Vaz et al. 2017). Therefore, we 

hypothesized that DH and TABL were most likely to show different functional 

characteristics during the spatial attention task.
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To verify precision in measuring frequency-specific PAC we modeled PAC with simulated 

signals using procedures from Tort and colleagues (Tort et al. 2010) (Supplemental Fig. 1A–

E). We also performed the cluster-permutation test for each cortical site and found clusters in 

the same locations as those shown in Fig. 2g. Subject-specific differences were apparent in 

averaged comodulograms shown alongside electrode locations on an averaged brain plots 

(Supplemental Fig. 3). Five of six subjects displayed robust TABL PAC. Most subjects had 

less DH PAC magnitude compared to TABL PAC. Interestingly, TABL PAC did not appear 

on single trials and only emerged when we calculated phase-amplitude distributions on 

multiple (>15) trials (Supplemental Fig. 2). To explore differences in TABL and DH PAC we 

returned to disparities in the motivating literature. While both Esghaei et al. and Szczepanski 

et al. found that PAC depended on spatial task variables, only the latter found that PAC 

correlated with RT (Esghaei, Daliri, and Treue 2015; Szczepanski et al. 2014). Therefore, we 

explored whether DH and TABL PAC uniquely depended on spatial variables or task 

performance (i.e. RT) by classifying cortical sites by function and comparing PAC across 

functional classes.

Functional classification of spatial and behavioral cortical sites

We classified cortical sites based on high-gamma (75–150 Hz) power as it has been shown to 

correlate with local neuronal activity (Ray and Maunsell, 2011). We classified neural activity 

in the target period for two reasons. First, this period had the most robust discriminatory 

neural responses. Second, all the information required for a correct response was made 

available in the target period. Therefore, all classifications relied on high-gamma power in 

the first 400 ms after target onset.

We defined “spatial” cortical sites based on neural activity discriminating target location or 

validity. Due to the contralateral organization of visual receptive fields, contralateral targets 

typically produced larger neural responses than ipsilateral targets. Invalid targets, occurring 

on 20% of trials, typically produced larger changes in high-gamma power than valid targets. 

We justified grouping validity sensitive sites with location sensitive sites because calculating 

a target’s validity requires the target’s location as an operand. Thus, we classified a cortical 

site as “spatial” when its high-gamma power discriminated either contralateral from 

ipsilateral targets (Fig. 3A) or valid from invalid targets (Fig. 3C), cluster permutation test 

threshold p < 0.05, FDR corrected). In contrast, we defined “behavioral” cortical sites based 

on discriminatory neural activity pertaining to RT. We call these sites behavioral because the 

RT of correct responses is the measured behavior in the task. Behavioral cortical sites had 

significant Spearman correlations between mean post-target high-gamma power and RT 

(Spearman correlation threshold p < 0.05, FDR corrected). Mean high-gamma and RT had 

log-normal distributions so we represent this as a correlation of the log of both values in 

(Fig. 3D).

We found 51 spatial and 127 behavioral sites. We removed the 13 sites classified to both 

groups and 237 classified to neither group, from further analyses (Fig. 3F). Spatial cortical 

sites were found primarily over visual cortex, parietal cortex, motor cortex and frontal 

cortex, with the distribution of dorsal parietal and posterior frontal sites roughly matching 

the dorsal attention network (Corbetta and Shulman 2002) (Fig. 3B). Behavioral cortical 
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sites were found over motor cortex, parietal cortex, and temporal cortex (Fig. 3E). We 

compared these two functional classes to investigate functional properties of TABL and DH 

PAC.

Phase and magnitude differentiate PAC clusters across functional classes

We first characterized differences in the phase preferences and coupling magnitudes of DH 

and TABL PAC. We defined preferred phases as the low-frequency phase bin with the 

greatest high-frequency amplitude. Preferred phases are independent of coupling magnitude, 

and if no coupling exists then preferred phases will be uniformly distributed on average. We 

calculated the preferred phase using all cue periods, then calculated the circular mean across 

all cortical sites within a functional class. We repeated this analysis for pseudo-trials 

generated from the rest period recorded prior to the task to ensure that coupling did not exist 

during rest. Pseudo-trials had identical length to the cue period, but were sampled randomly 

from the rest period.

During rest, preferred phases were uniformly distributed in both functional classes and 

frequency pairs (Rayleigh test, TABL PAC: spatial z = 1.5, p = 0.86; behavioral z = 0.97, p = 

0.38; DH PAC: spatial z = 0.03, p = 0.97; behavioral z = 2.86, p = 0.06; Fig. 4A, red). In 

contrast, all sites had preferred phases during the cue period. (Rayleigh test, TABL PAC: 

spatial z = 28, p = 1e-12; behavioral z = 41, p = 6e-20; DH PAC: spatial z = 37, p = 3e-9; 

behavioral z = 71, p = 4e-32, Fig. 4A, blue). Furthermore, the mean DH PAC phase 

preferences differed across spatial and behavioral sites (spatial mean = 237, std = 67, 

behavioral mean = 321, std = 69, Kuiper test, k = 1.1e5, p = 0.001, Fig. 4A, top). However, 

TABL PAC consistently showed a 180-degree phase preference in all sites (spatial mean = 

184, std = 42, behavioral mean = 178, std = 53; Kuiper test, k = 1.7e4, p = 0.10, Fig. 4A, 

bottom). Phase preferences were not affected by cue direction or reaction time. Therefore, 

the preferred phases of DH and TABL PAC during the cue period showed consistent 

differences.

We hypothesized that spatial sites were more active than behavioral sites during the cue 

period. To verify this, we compared high-gamma variance and inter-trial coherence (ITC) 

across functional classes. High-gamma power and variance were greater in spatial sites than 

in behavioral sites (power: cluster permutation test p < 0.001 (Fig. 4B, top right), variance: 

rank sum, p < 0.001 (Supplementary Fig. 4A). ITC measures the coherence over trials in 

both phase and amplitude. Again, spatial sites had greater ITC in the 1–10 Hz frequency 

range during the cue period (Supplemental Fig. 4B, C). Taken together, neural activity in 

spatial sites were more modulated by spatial cueing than behavioral sites were in both low 

and high frequencies. DH PAC paralleled these indexes of neural modulation and was higher 

in spatial sites than in behavioral sites (cluster permutation test, p < 0.001, Fig. 4B, top left). 

Furthermore, DH PAC peaked after cue onset and target onset, much like high gamma 

power. In contrast, TABL PAC was greater in behavioral sites than in spatial sites (cluster 

permutation test, p < 0.001, Fig. 4B, bottom left). This was not due to high beta or low-

gamma power, both of which were greater in spatial sites (cluster permutation test, p < 

0.001, Fig. 4B, bottom right). It was also not due to greater alpha activity in behavioral sites 

(Supplemental Fig. 4E). Finally, this was not due to baseline differences. When we applied 
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the same analysis to psuedotrials created from a baseline period recorded prior to the 

attention task, we found there were no significant differences in PAC or power across the 

functional classes. We interpreted the increased high-gamma in spatial sites to reflect 

previously described increases in firing rates of visual areas during attention tasks, which 

have been shown to occur even in the absence of stimuli (Kastner and Ungerleider 2000). 

Therefore, high TABL PAC corresponded to reduced neural modulation across the 

functional categories.

To summarize, TABL PAC and DH PAC showed a reversal in their relationship to power. 

TABL PAC was greater in behavioral sites, despite reduced power, variance and ITC. In 

contrast, DH PAC positively covaried with every measure of neural modulation we 

measured. Since there were no observed differences in PAC or power at baseline, this 

reversal was best explained by the task. Along with differences in phase preference, 

magnitude differences provided additional evidence that DH and TABL PAC dynamics 

depended on functional classifications.

Distinct PAC frequency pairs correspond to cortical function

We investigated PAC differences across spatial conditions (i.e. contralateral vs ipsilateral 

cues) and behavioral responses (i.e. RT) (Fig. 5A). We quantified differences using 

previously defined clusters (Fig. 2G). On contralateral trials, we found increased DH PAC in 

spatial cortical sites and no change in behavioral sites (sign test, spatial: z-value 2.6, p = 

0.009, behavioral: z-value = −1.8, p = 0.07; Fig. 5C). The difference between classes was 

significant (rank sum, z-value = −3.4, p = 7e-4, corrected). TABL PAC showed no changes 

across ipsilateral and contralateral cueing conditions and there were no differences between 

classes (sign test, spatial: z-value 1.05, p = 0.29, behavioral: z-value = 0.94, p = 0.34, rank 

sum, z-value = 0.15, p = 0.9, Fig. 5B). This suggested DH PAC was specific to spatial 

variables in spatial sites.

To understand which functional class drove differences between fast and slow trials we 

correlated DH and TABL PAC with RT for all sites in each functional class. Spatial sites 

showed no significant trend in correlations (t-test, DH vs RT ≠ 0: p = 0.80, TABL vs RT ≠ 0: 

p = 0.97, two-tailed) and there were no differences between Fisher transformed r-value 

distributions (t-test, DH vs RT ≠ TABL vs RT: p = 0.90, two-tailed, Fig. 5E). In contrast, 

TABL PAC was more negatively correlated with RT in behavioral sites (t-test, DH vs RT ≠ 

TABL vs RT: p < 1e-11, two-tailed, Fig. 5D). To summarize, during the cue period DH PAC 

in spatial sites varied with cue direction and TABL PAC in behavioral sites correlated with 

RT.

Coupled sharp waves correspond to TABL PAC

DH PAC has been described in prior attention literature (Esghaei, Daliri, and Treue 2015; 

Lakatos et al. 2008; Szczepanski et al. 2014), but TABL PAC has not been previously shown 

in attention tasks. It has, however, been shown to correlate with encoding and retrieval in 

memory tasks (Vaz et al. 2017). Additionally, non-sinusoidal or “sharp” wave-forms have 

been shown to produce coupling in the range of TABL PAC (Gerber et al. 2016; Vaz et al. 

2017). We hypothesized that if sharp waveforms resulted in TABL PAC, then they too will 
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correlate with RT in behavioral sites. Furthermore, we hypothesized that if these sharp 

waveforms were part of a coupled dynamical process, then the interval between sharp 

waveforms would not be random. To address these questions and characterize sharp 

waveforms, we developed methods that are less computationally expensive than traditional 

PAC measurements.

On visual inspection of the raw ECoG we found that non-sinusoidal, sharp waveforms 

temporally co-occurred with TABL PAC (Fig. 6A, B). We reasoned that the “sharpness” of 

the waveform could be used to detect these events and employed techniques previously used 

for QRS wave detection in electrocardiogram analyses (Benitez et al. 2000; Mitz et al. 

2017). This method uses the Hilbert transform of the ECoG signal’s first differential to 

identify rapid (i.e. sharp) changes in the signal (Fig. 6C). We applied this sharp wave 

detection to individual trials and displayed the results of an exemplar recording site in 30-

trial RT bins (Fig. 6D). We found that trials with fast responses (i.e. low RTs) were more 

likely to have sharp waveforms than trials with slow responses (Fig. 6E). In aggregate, sharp 

waveform correlations with RT were significantly more negative in behavioral sites than in 

spatial sites (rank sum p < 0.001, Fig. 6H), similarly to TABL PAC (Fig. 5D). Alongside the 

correlations for specific channels we used the minimum of the detected sharp wave to time-

lock waveforms and observe their shapes. We observed that detected sharp waveforms had a 

50 ms width, similar to transient neocortical beta rhythms that have been previously 

described in multiple species (Sherman et al. 2016) (Fig. 6F).

On visual inspection it appeared as if these sharp waveforms were themselves coupled to a 

low frequency oscillation, so we analyzed the intervals between sharp waves. For every trial 

with more than one sharp wave we recorded the interval between adjacent sharp waves. The 

distribution of these inter-sharp-wave intervals was not log-normal or Poisson (chi-square 

goodness-of-fit both p < 0.0001), which would be expected if intervals were randomly 

spaced. Instead, a peak of 138 ms suggested that sharp waveforms coupled to a 7.2 Hz 

oscillation (Fig. 6I).

In summary, TABL PAC associated with sharp waveforms that could be detected with 

computationally inexpensive methods. However, these sharp waves had a 50 ms width, 

corresponding to a transient beta wave, and the distribution of sharp wave intervals 

suggested that they occurred regularly within a theta-alpha range oscillation. Thus, sharp 

wave morphometry and the intervals between sharp waveform events are contributors to the 

detected TABL PAC. While characterization of these transient waveforms may require 

additional nuance, their correlations with RT across functional classes matched that of 

TABL PAC, suggesting a common origin.

Discussion

This study expands our understanding of phase amplitude coupling (PAC) in several ways. 

First, we identified an interaction between theta-alpha-phase and beta-low-gamma amplitude 

(TABL PAC) during spatial cueing that correlated with future reaction times (RTs) and is 

novel to the attention literature. Second, we characterized differences between TABL PAC 

and delta-phase, high-gamma-amplitude coupling (DH) PAC. Specifically, we found DH 
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PAC positively covaried with contralaterally cued attention in spatial sites while TABL PAC 

correlated with RT in behavioral sites. Unlike DH PAC, TABL PAC negatively covaried with 

multiple indices of neural modulation and maintained a consistent 180-degree preferred 

phase during the task. Third, we identified sharp wave correlates of TABL PAC using novel 

methods, which showed how sharp waveforms during cued attention correlated with future 

RT. Finally, we showed that behaviorally relevant sharp waveforms are also coupled with 

low frequency oscillations. Taken together, this study highlights the unique contributions of 

distinct PAC frequency clusters in a spatial attention task.

Methodological considerations for frequency-specificity in PAC analyses

The complexity of PAC analyses (Aru et al. 2015), evidence for spurious PAC (Jensen, 

Spaak, and Park 2016; Kramer, Tort, and Kopell 2008), and the novelty of TABL PAC in 

spatial attention tasks warrants a discussion of methods. We employed the modulation index 

(MI) to measure the intensity of PAC due to its advantages over other methods (for a review, 

see Tort et al., 2010). Sufficient data length was critical to resolving TABL PAC. This was 

due to the relative sparsity of transient waveforms leading to TABL PAC on single trials. 

Additionally, coupling between two frequencies (e.g. Fp and Fa) can only occur in the 

presence of two additional frequencies: the sum and the difference of the original two 

frequencies (i.e. Fa + Fp and Fa−Fp, see Supplemental Fig. 1A arrows). To account for this, 

we developed wavelet libraries independently for phase and amplitude signals. Wide band-

width amplitude filters were required to measure PAC in higher phases (Aru et al. 2015; 

Dvorak and Fenton 2014). Conversely, narrow band-widths allowed phase-specificity when 

filtering phase signals, since broadband phase estimates may include separable PAC 

components that cancel each other out.

In addition to signal processing and measurement considerations, we used reaction time to 

identify behaviorally relevant PAC frequency clusters. Furthermore, instead of shuffling 

phase and amplitude signals relative to each other, we shuffled trials between behavioral 

categories (e.g. fast and slow RT quartiles) to generate chance distributions. This guaranteed 

that our statistical inferences were made from distributions with physiologically observed 

phase-amplitude relationships. We then employed a non-parametric cluster-based 

permutation test for statistical inferences. These methods resolved behaviorally relevant PAC 

frequency clusters spanning frequency bands previously associated with attentional 

processes (Busch, Dubois, and VanRullen 2009; Buzs aki 2005; Senkowski et al. 2006; Thut 

et al. 2006).

Sharp waveforms are dynamically coupled

We propose that sharp waveforms are a behaviorally relevant, special case of PAC. This is an 

alternative to suggestions that non-sinusoidal sharp waveforms cause spurious PAC (Gerber 

et al. 2016; Kramer, Tort, and Kopell 2008). We demonstrated transient beta (50 ms) waves 

that occurred at 138 ms intervals, suggesting a coupled dynamical process. Similar 

waveforms have been shown across species (Sherman et al. 2016) and have relevance to 

human memory tasks (Vaz et al. 2017). Sharp waveforms have high frequency components 

coupled to certain phases of low frequency rhythms, which is fits the definition of PAC. 

Persistent nesting of sinusoidal oscillations is another special case of PAC, not the only 
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possibility. PAC approaches identify frequency interactions between high and low 

frequencies that can lead to a better understanding of underlying dynamics. Because PAC 

analyses are computationally expensive and sensitive to noise, we used our PAC findings to 

inform a computationally inexpensive sharp wave detection approach, which better 

described individual trials.

A theoretical framework and implications for PAC in attention

Two hypotheses are relevant to PAC and cued spatial attention (for an extensive review see 

(Bonnefond, Kastner, and Jensen 2017). The communication through coherence (CTC) 

hypothesis proposes that excitability windows of two communicating brain regions are 

temporally aligned by low frequency oscillations to promote information transfer (e.g. 

spikes) across regions (Bastos, Vezoli, and Fries 2015; Fries 2005). In contrast, the gating by 

inhibition (GBI) hypothesis proposes that low frequencies periodically suppress information 

in a neuronal population (Jensen and Mazaheri 2010).

Although we do not have evidence to assess the CTC hypothesis, we found evidence for a 

suppressive role for TABL PAC, which fits with the GBI hypothesis. First, multiple indices 

of neural modulation suggested spatial sites were more active than behavioral sites during 

spatial cueing, yet TABL PAC was greater in behavioral than spatial sites. Furthermore, 

TABL PAC consistently demonstrated a 180-degree phase preference, which meant that high 

frequency activity preferred the trough of the low frequency oscillation. This pattern of 

coupling has been shown in “pulsed-inhibition” or “gating by inhibition” models of alpha 

oscillatory activity (Jensen and Mazaheri 2010; Mathewson et al. 2011), where the peak of 

alpha oscillatory amplitude periodically suppresses higher frequency activity. Finally, the 

transient waves that cause TABL PAC have been shown in multiple species and studies to 

relate to decreased information relay (Miller et al. 2012; Sherman et al. 2016). Taken 

together these results support a suppressive function of TABL PAC during our spatial 

attention task.

Conclusions

Spatial attention enhances neural responses to attended stimuli and by filtering out unwanted 

information (Kastner and Ungerleider 2000). Prior studies differed on whether PAC 

contributes to selection (Szczepanski et al. 2014) or filtering (Esghaei, Daliri, and Treue 

2015). Here we show evidence that the functional properties of PAC depend critically on 

phase frequency. DH PAC facilitates lateralized spatial attention while TABL PAC 

contributes to behavioral performance, potentially through suppressive gating of activity. 

Furthermore, we demonstrate that sharp waves producing TABL PAC are themselves 

coupled to low frequency oscillations. While the function of these sharp waves remains 

unclear, PAC remains a useful tool in understanding the neural correlates of human attention.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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PAC Phase amplitude coupling

TABL Theta-Alpha / Beta-Low Gamma
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Fig. 1. 
Task design showing analysis periods and behavioral results. (A) Subjects participated in a 

Posner cued attention task, with the most probable target location indicated by an arrowhead 

presented at fixation prior to target onset. Phase amplitude coupling (PAC) was analyzed 

during the cue period. Functional classifications were based on high-gamma amplitude 

during the target period. Subjects responded to “L” and “T” targets with left and right mouse 

clicks. (B) Reaction times were greater for invalid than valid trials and (C) for variable than 

fixed delays.
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Fig. 2. 
Identification of distinct phase-amplitude coupling clusters. (A–B) Single trial examples of 

more coupling on fast trials than slow trials. (A) Beta (25Hz) amplitude couples to alpha 

phase (8Hz) and (B) gamma (70 Hz) amplitude couples to delta (1 Hz) phase. High-

frequency amplitude envelopes are colored with low-frequency phase. (C–D) The phase-

amplitude probability densities for two frequency pairs in a single subject. (C) Normalized 

beta amplitude at binned alpha phase and (D) Normalized gamma amplitude at binned delta 

phase. (E–G) Descriptive and inferential statistics across cortical sites from all subjects (E) 

Mean modulation indices calculated for pairwise frequencies. (F) An identical threshold was 

applied to t-statistics for observed and permuted distributions. Suprathreshold, adjacent t-

Chacko et al. Page 19

Neuroimage. Author manuscript; available in PMC 2019 February 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



statistics were summed and observed clusters were compared to maximum clusters in 

permutation distributions. (G) Three candidate clusters along with their chance probabilities.
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Fig. 3. 
Functional classification of “spatial” and “behavioral” cortical sites. Spatial cortical sites 

have high gamma (75–150Hz) activity that discriminates spatial parameters of the task. 

Exemplary mean high gamma power, with standard error bars, from two spatial cortical sites 

discriminating (A) valid from invalid targets and (C) targets that appear contralateral from 

targets that appear ipsilateral to recording sites. (B) Distribution of spatial cortical sites from 

all subjects where red dots discriminate validity and blue dots discriminate location. 

Behavioral cortical sites had high gamma activity that correlated with reaction times (RTs). 

(D) Exemplary correlation from one behavioral cortical site. (E) The cortical surface 

distribution of behavioral sites from all subjects. (F) Breakdown of electrode classifications 

for each participant (left vertical axis) and for all participants (right vertical axis).
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Fig. 4. 
Phase preferences and relative PAC magnitude distinguish coupling frequencies and 

functional classes. (A) Preferred phases differed for delta to high-gamma (DH) PAC (top 

row) and theta-alpha to beta-low-gamma TABL PAC (bottom row) across spatial (left 

column) and behavioral (right column) cortical sites. Coupling emerged in the cue period 

(blue) relative to baseline pseudo-trials (red). Arrows indicate the circular mean of preferred 

phases across all subjects and cortical sites. (B) The relationship between PAC magnitude 

(left column) and the corresponding frequency-for-amplitude power (right column) reverses 

across behavioral (red) and spatial (blue) cortical sites. Solid black lines at top of graph 

indicates clusters of samples where spatial and behavioral signals were significantly 

different at p < 0.05.
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Fig. 5. 
PAC magnitude differences across task conditions distinguish between phase frequencies 

and functional classes. (A) Shows positive comodulogram differences for behavioral (left) 

and spatial (right) sites when subtracting contralateral from ipsilateral trials (top) and fast 

from slow trials (bottom). These changes were quantified using previously identified PAC 

clusters. (B) No ipsi-contra differences were observed as a product of lateralized cued 

attention in theta/alpha-beta/low gamma (TABL) PAC at either spatial or behavioral sites. 

(C) Delta-high gamma (DH) PAC increases on contralateral vs. ipsilateral trials in spatial 

sites relative to behavioral sites. (D) TABL PAC was more negatively correlated with RT in 

behavioral than spatial sites. DH PAC showed no differences between behavioral and spatial 

sites (E).
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Fig. 6. 
Transient waves are behaviorally relevant and coupled to 7.2 Hz phase. (A) Raw ECoG 

Signal shows three sharp waves that correspond to (B) theta (6Hz)-phase, beta (25 Hz)-

amplitude coupling with a 180-degree phase preference. (C) Hilbert transform of the 

differential of the raw ECoG signal amplifies rapid (i.e. sharp) changes in the ECoG signal. 

A threshold on the Hilbert-Differential identified transient waves. (D) Single trials sorted by 

RT and grouped into 30-trial bins with median RTs below each column. Red circles 

highlight identified sharp waves, which were more likely to occur on trials with fast reaction 

times. (E) Correlation between the number of sharp waves in an RT-bin and RT. (F) The 

averaged waveform for the cortical site in (D) and (E). (H) The distribution of correlation 

coefficients for spatial and behavioral sites. (I) Distribution of inter-sharp wave intervals 

peaked at 138 ms, corresponding to 7.2 Hz.
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