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Abstract
Background Existing universal and procedure-specific
surgical risk prediction models of death and major com-
plications after elective total joint arthroplasty (TJA) have
limitations including poor transparency, poor to modest

accuracy, and insufficient validation to establish perfor-
mance across diverse settings. Thus, the need remains for
accurate and validated prediction models for use in pre-
operative management, informed consent, shared decision-
making, and risk adjustment for reimbursement.
Questions/purposes The purpose of this study was to use
machine learning methods and large national databases to
develop and validate (both internally and externally) par-
simonious risk-prediction models for mortality and com-
plications after TJA.
Methods Preoperative demographic and clinical variables
from all 107,792 nonemergent primary THAs and TKAs in
the 2013 to 2014 American College of Surgeons-National
Surgical Quality Improvement Program (ACS-NSQIP)
were evaluated as predictors of 30-day death and major
complications. The NSQIP database was chosen for its
high-quality data on important outcomes and rich charac-
terization of preoperative demographic and clinical pre-
dictors for demographically and geographically diverse
patients. Least absolute shrinkage and selection operator
(LASSO) regression, a type of machine learning that opti-
mizes accuracy and parsimony, was used for model de-
velopment. Tenfold validation was used to produce
C-statistics, a measure of how well models discriminate
patients who experience an outcome from those who do
not. External validation, which evaluates the generalizability
of the models to new data sources and patient groups, was
accomplished using data from the Veterans Affairs Surgical
Quality Improvement Program (VASQIP). Models pre-
viously developed from VASQIP data were also externally
validated using NSQIP data to examine the generalizability
of their performance with a different group of patients out-
side the VASQIP context.
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Results The models, developed using LASSO regression
with diverse clinical (for example, American Society of
Anesthesiologists classification, comorbidities) and de-
mographic (for example, age, gender) inputs, had good
accuracy in terms of discriminating the likelihood a patient
would experience, within 30 days of arthroplasty, a renal
complication (C-statistic, 0.78; 95% confidence interval
[CI], 0.76-0.80), death (0.73; 95% CI, 0.70-0.76), or a
cardiac complication (0.73; 95% CI, 0.71-0.75) from one
who would not. By contrast, the models demonstrated poor
accuracy for venous thromboembolism (C-statistic, 0.61;
95%CI, 0.60-0.62) and any complication (C-statistic, 0.64;
95% CI, 0.63-0.65). External validation of the NSQIP-
derived models using VASQIP data found them to be ro-
bust in terms of predictions about mortality and cardiac
complications, but not for predicting renal complications.
Models previously developed with VASQIP data had poor
accuracy when externally validated with NSQIP data,
suggesting they should not be used outside the context of
the Veterans Health Administration.
Conclusions Moderately accurate predictive models of
30-day mortality and cardiac complications after elective
primary TJA were developed as well as internally and
externally validated. To our knowledge, these are the most
accurate and rigorously validated TJA-specific prediction
models currently available (http://med.stanford.edu/s-
spire/Resources/clinical-tools-.html). Methods to improve
these models, including the addition of nonstandard inputs
such as natural language processing of preoperative clinical
progress notes or radiographs, should be pursued as should
the development and validation of models to predict longer
term improvements in pain and function.
Level of Evidence Level III, diagnostic study.

Introduction

Substantial effort has gone into developing prediction
models of total joint arthroplasty (TJA) outcomes for use
in preoperative management, informed consent, shared
decision-making, and risk-adjusting reimbursement pro-
grams [5-7, 13, 18, 28]. However, despite these efforts, no
accurate and internally and externally validated risk pre-
diction models for short-term outcomes of TJA currently
exist [18]. The American College of Surgeons-National
Surgical Quality Improvement Program (ACS-NSQIP)
universal surgical risk calculator has good overall accu-
racy averaged across procedures [3], but studies of its ac-
curacy for specific procedures, including TJA, are limited to
single-site studies and have had fair to poor results [7, 26].
Multisite validation studies in more diverse contexts are
needed to better evaluate the performance of the ACS-
NSQIP calculator for TJA applications. Other universal risk
prediction models that recently were developed using ACS-

NSQIP data have excellent to good accuracy across
specialties and when internally validated with a sample of
orthopaedic procedures (C-statistics: 0.93 and 0.81 for
30-day mortality and morbidity, respectively) [19, 20].
However, these models have not been internally or exter-
nally validated for elective TJA, which likely has little or no
variability on several key predictors (such as emergency
operation, primary surgeon specialty, ventilator-dependent,
work relative value unit). Thus, it is currently unknown if
these universal risk models retain their reported accuracy
when applied to patients undergoing elective TJA.

A recent review of TJA-specific preoperative risk pre-
diction models noted they too have serious limitations [18],
most importantly poor or unknown performance on internal
or external validation. No model coefficients or accuracy
metrics were originally reported for the American Joint
Replacement Registry Risk Calculator (https://teamwork.
aaos.org/ajrr/SitePages/Risk%20Calculator.aspx) [4],
which estimates risk for 90-day mortality and 2-year pros-
thetic joint infection. We recently conducted an external
validation study of the calculator with a sample ofMedicare-
eligible patients from the Veterans Health Administration
(VHA) and found very poor accuracy for 30-mortality
(C-statistic = 0.62) [13]. Other TJA-specific preoperative
risk prediction models also have poor accuracy [21, 23] or
cannot be used preoperatively because they include as
predictors intraoperative or index stay characteristics (for
example, lowest intraoperative heart rate) [2, 21, 27].
Established comorbidity indices such as the Charlson and
Elixhauser have been found to be predictive of 90-day and
1-year mortality after elective primary TJA [15]. How-
ever, these results have not been internally or externally
validated nor have these indices been associated with
other TJA outcomes.

Members of our team recently developed and internally
validated prediction models for 30-day mortality and com-
plications after TJA for VHA patients with osteoarthritis
(OA) [12]. Over 70,000 patients diagnosed with OA who
received primary TJA in the VHA were included. Accuracy
of the models was highest for cardiac complications
(C-statistic, 0.75; 95% confidence interval [CI], 0.71-0.79)
and 30-day mortality (C-statistic, 0.73; 95% CI, 0.66-0.79)
[12]. Although the accuracies of the cardiac complications
and mortality models are currently the highest reported for
TJA-specific predictions, the generalizability of these
models to samples outside the VHA, where patients and
clinical context are not representative, are unknown.

Thus, in this study, we sought to develop and validate
(both internally and externally) accurate prediction models
for mortality and major complications after elective TJA
that can be used to inform preoperative discussions and
decisions in diverse healthcare settings. In this study, we
used a machine learning regression strategy, least absolute
shrinkage and selection operator (LASSO) regression, to
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develop and internally validate prediction models derived
from elective TJAs represented in ACS-NSQIP data. To
assess the generalizability of these models outside of the
context of hospitals participating in ACS-NSQIP, we also
conducted external validation using data from the Veterans
Affairs Surgical Quality Improvement Program (VASQIP)
where the patient demographics and clinical profiles are
different. Finally, to assess the generalizability of models
we previously developed and published from VASQIP
data [12], we conducted external validation using ACS-
NSQIP data.

Patients and Methods

Definitions

Machine learning is an umbrella term that refers to diverse
methods for classification, in this case patients who do or
do not experience death or a complication after TJA. Ma-
chine learning algorithms iteratively “learn” from patterns
in data to determine the best rules for classifying new
observations and assigning probabilities of those classi-
fications being correct. LASSO regression is a machine
learning method to select which variables are most im-
portant to include in a prediction model and how much
weight to assign them. The goal is to optimize accuracy
with the fewest number of predictors. In this context,
minimizing the number of predictors is essential for ease
of use and future implementation. An accessible demystifi-
cation of machine learning can be found here: https://
hackernoon.com/machine-learning-is-the-emperor-wearing-
clothes-59933d12a3cc.

As we recently described in more detail [12], discrimi-
nation, calibration, and internal/external validation are
terms that are foundational to assessing the performance of
predictive models.

Discrimination, quantified by the C-statistic, is the
ability of a model to distinguish patients who experience an
outcome of interest from those who do not. Discrimination
is the probability that a patient who experienced the out-
come has a higher predicted probability than a randomly
selected patient who did not experience the outcome [22].
In general, C-statistics can be interpreted as excellent
(0.9–1), good (0.8–0.89), fair (0.7–0.79), poor (0.6–0.69),
or fail/no discriminatory capacity (0.5–0.59) [9, 14].

Calibration compares predicted and observed outcomes
across the entire range of the data and is typically visually
assessed by plotting observed versus predicted outcomes.
Calibration is considered good if prevalence of outcomes
tracks monotonically with the predicted probabilities from
the model.

Models can be overfit, meaning that the reported accu-
racy only applies to the data used to develop them, but not

to new observations. Validation is essential in assessing
model accuracy when applied to new patients from the
same data source used to develop the models (internal
validation) and when applied to data from different con-
texts or times (external validation). Internal and external
validation is critical to understanding real-world model
accuracy and generalizability.

Study Design and Setting

Data Sources

As a result of our focus on developing tools for informing
decisions before elective surgery, all nonemergent primary
THAs and TKAs included in the 2013 and 2014 ACS-
NSQIP data were used for model development and internal
validation (N = 107,792). External validation of the ACS-
NSQIP-based models was accomplished using all non-
emergent primary TJAs represented in 2005 to 2013
VASQIP data (N =70,569). The methodologies for data
collection and limitation of the database are described
elsewhere [1, 8, 16, 17]. Definitions of model inputs and
outcomes are described in the data dictionary included in
the ACS-NSQIP 2014 PUF User Guide (https://www.fac-
s.org/;/media/files/quality%
20programs/nsqip/nsqip_puf_userguide_2014.ashx). The
ACS-NSQIP database was chosen for this project because
it contains high-quality data on important outcomes and
rich characterization of candidate preoperative de-
mographic and clinical predictors for a very large and
geographically diverse sample of patients. Although the
ACS-NSQIP data are demographically similar to the gen-
eral US adult surgical population, participating hospitals
(435 in 2013, 517 in 2014) need to have the infrastructure
for participation and therefore overrepresent larger teach-
ing facilities and practices that have a quality improvement
infrastructure [1].

Candidate Predictors

All variables included in ACS-NSQIP data that might be
known during preoperative decision-makingwere included
as candidate predictors (Table 1). Preoperative laboratory
values, although available in ACS-NSQIP data, were not
considered because of substantial missing data, concerns
that these data were not missing at random thereby pre-
cluding multiple imputation methods, and empiric work
showing that they do not meaningfully improve the accu-
racy of riskmodels [19]. Missing data were minimal (< 1%;
Table 1) on all predictor variables except race-ethnicity,
which was unknown or missing for 14.8% of TJAs. For this
and other categorical variables with any missing data, we
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included “missing” as a category so that all observations
could be used.

Outcomes

Prediction models were developed for 30-day mortality,
cardiac complications, central nervous system-cardiovascular
system complications, respiratory complications, surgical
wound infection, deep incisional surgical site infection,
sepsis, return to the operating room, renal complications
(failure or insufficiency), venous thromboembolism (deep
vein thrombosis + pulmonary embolism), and the occur-
rence of any of the aforementioned complications, all as
defined by the ACS-NSQIP [8].

Model Development and Internal Validation

The primary model development strategy was LASSO re-
gression [10, 25]. LASSO regression is an iterative machine
learning approach that optimizes accuracy and simplicity.
LASSO regression is especially helpful when candidate
predictors are highly correlated, which is the case in this
context. Once the model tuning (complexity) parameter is
selected using a portion of the data, a 10-fold bootstrap
validation process iteratively estimates model parameters
using 9/10th of the data and estimates prediction error and
other performancemetrics by applying themodel to the held-
aside data. This process is repeated 10 times and the final
model and validated performance metrics are determined by
pooling across these analyses [24]. The LASSO coefficients
can be used to calculate a patient’s risk score by multiplying
the patient’s values (for example, 1 = factor present, 0 =
factor absent for binary variables) by the coefficients and
summing the products. The risk score can then be translated
to a predicted probability of an adverse event (AE) with the
formula Prob(AE) = exp(score)/(1 + exp[score]).

Table 1. Candidate predictor variables for 107,792 elective
total joint arthroplasty cases

Variable
Number/
mean Percent/SD

Hip procedure 41,973 38.9%

Knee procedure 65,819 61.1%

Gender

Female 64,039 59.4%

Male 43,753 40.6%

Race-ethnicity

White 78,048 72.4%

Black 7428 6.9%

Hispanic 3388 3.1%

Asian or Pacific Islander 2401 2.2%

Native American or Alaska Native 599 0.6%

Unknown/missing 15,928 14.8%

Age (years; mean, SD) 65.7 10.47

BMI (kg/m2; mean, SD) 31.8 7.24

Underweight (< 18.5 kg/m2) 495 0.46%

Normal (18.5 to < 25 kg/m2) 14,828 13.76%

Overweight (25 to < 30 kg/m2) 31,782 29.48%

Obese (30 to < 40 kg/m2) 47,031 43.63%

Very obese (> 40 kg/m2) 13,241 12.28%

BMI missing 415 0.39%

ASA class

I: No disturbance 3252 3.0%

II: Mild disturbance 56,563 52.5%

III: Severe disturbance 46,009 42.7%

IV: Life-threatening 1851 1.7%

V: Moribund 4 0.0%

Missing 113 0.1%

Functionally health status

Dependent 1662 1.5%

Independent 105,339 97.7%

Missing 791 0.7%

Medication and treatment

Steroids 4172 3.9%

Hypertension 66,403 61.6%

Dialysis 210 0.2%

Renal failure 32 0.0%

History of diseases and
conditions

CHF 286 0.3%

COPD 4023 3.7%

Dyspnea

At rest 190 0.2%

Moderate exertion 5328 4.9%

None 102,274 94.9%

Pneumonia 19 0.0%

Table 1. continued

Variable
Number/
mean Percent/SD

Smoking 11,335 10.5%

> 10% loss of body weight 170 0.2%

Disseminated cancer 200 0.2%

Open wound/wound infection 315 0.3%

Diabetes 16,594 15.4%

Sepsis (48 hours before surgery) 243 0.2%

Bleeding disorders 2736 2.5%

BMI = body mass index; ASA = American Society of
Anesthesiologists; CHF = congestive heart failure; COPD =
chronic obstructive pulmonary disease.
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External Validation

To assess the generalizability of these models outside of
the context of hospitals participating in ACS-NSQIP, we
applied the ACS-NSQIP-derived models to a sample of
70,569 VHA primary TJAs represented in 2005 to 2013
VASQIP data. Secondarily, we applied the NSQIP data to
our previously published models, which were developed
and internally validated with VASQIP data [12]. Aspects
of this investigation related to ACS-NSQIP data were
determined by the Stanford institutional review board to
be nonhuman subject research as a result of the use of
publicly available and deidentified data. Analysis of the
VASQIP data was approved by the VHA central in-
stitutional review board.

Results

Internal Validation of the NSQIP TJA Model

Using diverse demographic and clinical predictor variables
(Table 1), the LASSO regression models had good accuracy
in terms of discriminating the likelihood a patient would
develop a renal complication (C-statistic, 0.78; 95% CI,
0.76-0.80), die within 30 days of arthroplasty (0.73; 95% CI,
0.70-0.76), or experience a cardiac complication (0.73; 95%
CI, 0.71-0.75) from one who would not. The frequency and
incidence of each outcome aswell as the C-statistics from the
bootstrapped internal validation of the models were calcu-
lated (Table 2). A simple calculator that uses the coefficients
(Table 3) from the three most accurate models to calculate
risk probabilities for specific patients can be accessed
here: http://med.stanford.edu/s-spire/Resources/clinical-
tools-.html.

For the ACS-NSQIP sample, the mortality model pre-
dicted risk of death between 0.066% and 27.06% (that is,
predicted probabilities from 0.00066 to 0.27060). Ideally,
actual risk increases monotonically as model-derived pre-
dicted probabilities increase (calibration). For the mortality
model, most of the observed events occur within the
highest decile of predicted probability (Fig. 1). This fact
should guide interpretation and use of the models. Notably,
observed risk of death does not appear to increase linearly
throughout the range of predicted probabilities, but jumps
substantially in the highest decile of predicted probability
(range, 0.0015-0.27060).

The predicted risks of cardiac complications ranged
from 0.03% to 13.74% (that is, predicted probabilities
from 0.0003 to 0.1374). Observed risk of cardiac com-
plications increases slowly and linearly throughout most
of the range of predicted probabilities (Fig. 2), but jumps
within the highest decile of predicted probability, which
in this case ranged from 0.0043 to 0.1374 (that is, 0.43%
to 13.74%).

External Validation of the NSQIP Model Using
VASQIP Data

External validation of the NSQIP-derived models using
VASQIP data found them to be robust in terms of predictions
about mortality (C-statistic, 0.69; 95% CI, 0.66-0.74) and
cardiac complications (C-statistic, 0.72; 95% CI, 0.68-0.75),
but not for predicting renal complications (C-statistic, 0.60;
95% CI, 0.57-0.63). Thus, two of the three NSQIP-derived
models retain almost all of their predictive validity when
applied to new data from a sample of patients with very
different characteristics receiving TJA in different health-
care contexts.

Table 2. Outcome event rates and internal crossvalidation C-statistics and confidence intervals

Complication/outcome Events Incidence Mean C-statistic 95% CI Lower limits Upper

Renal 172 0.0016 0.777 0.758 0.796

Death 137 0.0013 0.733 0.704 0.762

Cardiac 290 0.0029 0.730 0.711 0.750

CNS-CVA 92 0.0008 0.696 0.669 0.724

Sepsis 305 0.0028 0.692 0.680 0.704

Wound infection 544 0.0050 0.664 0.652 0.676

Deep incisional SSI 234 0.0022 0.661 0.643 0.679

Respiratory 1042 0.0097 0.639 0.627 0.652

Return to OR 1611 0.0149 0.650 0.641 0.659

VTE (DVT + PE) 1236 0.0115 0.613 0.608 0.617

Any complication 3768 0.0350 0.638 0.630 0.646

CI = confidence interval; CNS-CVA = central nervous system-cerebrovascular accident; SSI = surgical site infection; OR = operating
room; VTE = venous thromboembolism; DVT = deep vein thrombosis; PE = pulmonary embolism.
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External Validation of VASQIP-derived TJA Models
Using NSQIP Data

The mortality and cardiac complication models previously
developed with VASQIP data [12] had poor discrimination
when externally validated using the ACS-NSQIP data (C-
statistics, 0.61; 95% CI, 0.47-0.74 and 0.61; 95% CI,
0.51-0.67, respectively). These results signify a substantial

reduction of model accuracy for the models developed with
VHA data when applied outside of the VHA context.

Discussion

To address the substantial limitations of existing universal
and procedure-specific surgical risk prediction models [3,
5, 18, 20], we sought to develop and validate accurate
models of death and major complications after elective
primary TJA. The ability to accurately predict these out-
comes could improve the quality of preoperative manage-
ment, informed consent, shared decision-making, and risk
adjustment for reimbursement. We were able to use
ACS-NSQIP data to develop and validate fairly accurate
predictive models of 30-day mortality and cardiac com-
plications after elective primary TJA. To our knowledge,
these are currently the most accurate, rigorously validated,
and broadly generalizable TJA prediction models available
(http://med.stanford.edu/s-spire/Resources/clinical-tools-
.html). Furthermore, our mortality and cardiac complica-
tion models require fewer than half of the patient variables
that the ACS-NSQIP model requires [3]. Using the model
coefficients and performance metrics specific to elective
TJA that we report here, other researchers can test these
models on new samples to assess generalizability for dif-
ferent TJA patient populations. Our results may also
suggest that the higher reported accuracy of the generic
ACS-NSQIP models across procedures and specialties [3],
and even generic orthopaedic models [19], may be overly
optimistic for elective TJA.

Several issues and limitations should be considered in
interpreting these results. Although the ACS-NSQIP Par-
ticipant Use Data File contains high-quality data on im-
portant outcomes and preoperative predictors for a very
large and geographically diverse sample of patients, it is
limited to sampled TJAs from participating hospitals,
therefore overrepresenting larger teaching facilities and
practices that have quality improvement infrastructures.
Validating these models with TJAs from nonparticipating,
smaller practices is critical before assuming they generalize
to those contexts. Also, these data do not contain complete
information on comorbidities or other patient and setting
factors that may be predictive of outcomes. The future in-
clusion of these currently unavailable data, for example
comorbidity severity or facility complication rates, might
improve accuracy of the models.

Although the ACS-NSQIP-derived models performed
almost as well when applied to VHA data, our previously
published VHA-derived models [12] suffered a loss of
discrimination when applied to ACS-NSQIP TJAs. These
results highlight the importance of conducting external
validation to understand the generalizability of reported
model performance metrics in new contexts, especially

Table 3. LASSO regression coefficients for three outcomes

Variable Death Cardiac Renal

(Intercept) -7.3590 -8.3159 -6.8686

Surgery (hip)

Age 0.0079 0.0363

Male gender 0.0298 0.2350

Race-ethnicity

Hispanic

Black 0.3536

Asian or Pacific Islander

Native American or
Alaska Native

BMI category

Very obese 0.1899

ASA class

II: Mild disturbance -0.0572 -0.3498 -0.4563

III: Severe disturbance

IV: Life-threatening 1.5325 0.6845 1.2534

Functional health status
Dependent

1.2119

Preoperative conditions

Bleeding disorders 0.5524 0.8865

Diabetes 0.1446

Dialysis 1.6620 1.5366

Disseminated cancer 0.4977

Dyspnea at rest

Dyspnea moderate exertion 0.1021 0.3020

History of CHF 0.8679 0.2381

History of COPD 0.4171

Hypertension medication 0.0415 0.4054

Sepsis (48 hours surgery) 2.4311

History of renal failure 0.5478

Pneumonia 2.6248

Smoking status

Steroids medications

Open wound/wound infection

> 10% loss of body weight 1.5788 1.3607 0.0439

LASSO = least absolute shrinkage and selection operator; BMI
= body mass index; ASA = American Society of Anesthesiol-
ogists; CHF = congestive heart failure; COPD = chronic
obstructive pulmonary disease.
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when the underlying populations and healthcare delivery
system are notably different.

Similar to our previous work using VHA data, we were
unable to produce accurate ACS-NSQIP-derived models
for other complications such as return to the operating
room or deep infection, again highlighting the difficulty of
predicting rare outcomes with preoperative patient data
[12]. Several factors likely contribute to this difficulty.
First, in contrast to patients undergoing emergency sur-
gery, patients undergoing elective TJA have already been
screened for risk by the operating surgeons. Therefore, the
variability in risk that is needed to build predictive models
is lower. Second, many of the predictor variables are di-
chotomized (for example, diabetes: yes/no), rather than
indicative of severity, which might reduce accuracy [22].
Third, it is likely that some important complications most
commonly arise from situations that occur intraoperatively

or postoperatively. For example, some cases of peri-
prosthetic infection may occur from an undetected breach
of sterility at the time of the operation that may have little to
do with the preoperative patient characteristics used to
build current predictive models. Occurrences during the
intraoperative or postoperative course of the patient’s care
will differentially affect certain postoperative complica-
tions, and it is unrealistic to expect that all complications
are predictable with preoperatively available data. There is
likely an upper bound to the predictability of various
complications based solely on preoperatively available
data.Where this upper bound resides for each complication
of interest is unknown. Fourth, there are preoperatively
available data that are not easily incorporated into these
models. Complex anatomy that will increase the length and
complexity of the surgery is preoperatively recognizable to
the surgeon, but will not be factored with current predictive

Fig. 1 Calibration plot reveals only patients in the top decile of predicted risk have sub-
stantially higher 30-day mortality.

Fig. 2 Calibration plot reveals only patients in the top decile of predicted risk have a sub-
stantially higher rate of 30-day cardiac complications.
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models. Methods to improve these models, including the
addition of nonstandard inputs such as natural language
processing of preoperative clinical progress notes or
radiographs, should be pursued as should the development
and validation of models to predict longer term improve-
ments in pain and function.

In conclusion, we were able to develop as well as in-
ternally and externally validate fairly accurate models of
30-day mortality and cardiac complications for elective
primary TJA. Accurate models for other complications and
outcomes such as longer term improvements in pain and
functioning are critically needed for myriad purposes, but
do not yet exist. It remains unknown if these predictive
models provide information that is not already known to
surgeons or patients. Research is needed to evaluate the
effects of specific applications of predictive models (for
example, informed consent, shared decision-making, or
risk stratification) in terms of their impact on short- and
long-term patient outcomes and patient satisfaction [11].
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