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Abstract

In psychotherapy, movement synchrony seems to be associated with higher patient satis-

faction and treatment outcome. However, it remains unclear whether movement synchrony

rated by humans and movement synchrony identified by automated methods reflect the

same construct. To address this issue, video sequences showing movement synchrony of

patients and therapists (N = 10) or not (N = 10), were analyzed using motion energy analy-

sis. Three different synchrony conditions with varying levels of complexity (naturally embed-

ded, naturally isolated, and artificial) were generated for time series analysis with windowed

cross-lagged correlation/ -regression (WCLC, WCLR). The concordance of ratings (human

rating vs. automatic assessment) was computed for 600 different parameter configurations

of the WCLC/WCLR to identify the parameter settings that measure movement synchrony

best. A parameter configuration was rated as having a good identification rate if it yields high

concordance with human-rated intervals (Cohen’s kappa) and a low amount of over-identi-

fied data points. Results indicate that 76 configurations had a good identification rate (IR) in

the least complex condition (artificial). Two had an acceptable IR with regard to the naturally

isolated condition. Concordance was low with regard to the most complex (naturally embed-

ded) condition. A valid identification of movement synchrony strongly depends on parameter

configuration and goes beyond the identification of synchrony by human raters. Differences

between human-rated synchrony and nonverbal synchrony measured by algorithms are

discussed.

Introduction

The term nonverbal behavior is used to describe various behaviors such as gaze, gestures, facial

expressions, body postures and movements [1]. The investigation of nonverbal synchrony
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within a dyad has gained increased consideration within areas of research such as physician-

patient interactions [2], psychotherapist-patient interactions [3–5], mother-child communica-

tion [6–8], human-machine interactions [9], interactions within friendships [10, 11] and

courtship behavior [12]. Nonverbal synchrony refers to nonverbal behaviors of interacting

individuals that are connected to each other on a temporal level [11, 13]. In contrast to posture

mirroring as showing in the same static posture, movement synchrony as a specific type of

nonverbal synchrony, refers to the dynamic aspect, which is the temporal connection between

motions of the interacting persons, independent of a particular body part or direction [14].

This nonverbal synchrony can be observed in short sequences that we call synchronization

intervals [10]. In psychotherapy context, movement synchrony would be observed, for exam-

ple, if the therapist is nodding and the patient is changing his/her body position with a short

time delay or when both interaction partners are nodding simultaneously.

In comparison to human ratings, methods that automatically record nonverbal behavior

and determine nonverbal synchrony are economic, less time-consuming and require fewer

resources. A current method that automatically generates time series that represent move-

ments of individual persons in a video is motion energy analysis (MEA) [5, 6, 11]. If multiple

persons have been recorded, time series can be computed for each person within a video by

determining a region of interest (ROI). After computation, motion energy time series can be

used to identify movement synchrony. For this purpose, typical automated methods such as

cross-recurrence quantification analyses, spectral analyses, or correlative and regressive time

series analyses methods are applied (TSAM) [15].

In the social and behavioral sciences, the use of correlative and regressive TSAM predomi-

nantly prevails. Two prominent examples of correlative and regressive TSAM are windowed

cross-lagged correlation (WCLC) [16] and windowed cross-lagged regression (WCLR) [10,

11]. The application of TSAM on movement time series is based on a movement synchrony

definition of interacting partners’ synchronous or time-lagged synchronous movements. The

underlying methodical principle can be described as follows: The correlation (or regression)

between the first segment of the time series of person A and the first segment of the time series

of person B is calculated. Next, this local association is tested for significance (e.g., R2-differ-

ence-test). Afterwards, the segment of the time series of person B is shifted and procedure is

repeated until the entire time series and all reasonable time lags between A and B have been

tested. The result of such windowed cross-lagged correlation (WCLC) or windowed cross-

lagged regression (WCLR) is a “landscape” (R2-matrix), which shows at which time point the

behavior of A is significantly associated with the simultaneous or time-lagged behavior of B.

Subsequently, different algorithms can be used to analyze this matrix and obtain a global syn-

chrony score. For example, Altmann [10], Altmann [11] used a modification of Boker et al.’s

(2002) peak-picking algorithm to determine synchronization intervals. These intervals were

characterized by the time lag and a specific start and end point. Different indices may be calcu-

lated to obtain a global score, for example, the averaged strength of the association (averaged

over time and different time lags) as used by Ramseyer and Tschacher [5]. We abbreviate this

method and the corresponding index with WCLCS (subscript S stands for strength). Another

possibility is the WCLCF (subscript F stands for frequency) or the WCLR, where the frequency

of synchrony is calculated as the ratio between synchronized time and total time (for more

details, see Schoenherr, Paulick [17]). Fig 1 illustrated the computational steps for the move-

ment synchrony identification.

Previous studies have shown that, based on identical time series, different correlative and

regressive TSAM lead to different synchrony indices [11, 17]. Additionally, calculating syn-

chrony for different baseline-surrogate datasets with varying parameter settings (e.g., window

size = bandwidth) lead to different results [18]. This indicates that the computed value of
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synchrony strongly depends on the algorithm and parameter settings applied. However, to

date, there is no consensus on which parameter settings lead to optimal results. Table 1 dis-

plays examples of the use of WCLC, WCLR and related procedures as well as the selected

parameter settings.

Smoothing procedure

In order to eliminate video noise, many authors recommend smoothing the time series before

applying TSAM. Grammer, Honda [33], Paulick, Deisenhofer [3] and Ramseyer and Tscha-

cher [5], Ramseyer and Tschacher [27] used a moving average method. Nagaoka and Komori

[25] utilized wavelets. Altmann [10], Altmann [11] recommended smoothing splines and Pax-

ton and Dale [26] used a Butterworth low-pass filter. Apart from the different methods, the

critical issue is the amount of smoothing applied. To date, however, it remains unclear which

amount of smoothing leads to improved synchrony detection. Fig 2 illustrates the impact of

smoothing on the shape of the time series.

Transformation

Motion energy time series are non-stationary [11]. This means that the variance and the expec-

tation value of the time series are not stable over time. A linear trend or cyclic behavior in both

time series under consideration could lead to spurious correlations, which may cause an over-

identification of synchronization intervals [10]. Authors have attempted to control non-statio-

narity by transforming the distribution of values into an approximately normal distribution

[11]. By means of an Anscombe transformation [34] or Box-Cox transformation [35], a nor-

mal distribution can be approximated. Moreover, these transformations have a variance-stabi-

lizing effect. Nagaoka and Komori [25] used a Box-Cox transformation with the parameter λ =

0, which corresponds to a logarithmic transformation, whereas Altmann [11] recommends the

Anscombe transformation. Furthermore, z-standardization is used to standardize the value

Fig 1. Computational steps from video sequence to identification of a movement synchrony interval.

https://doi.org/10.1371/journal.pone.0211494.g001
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range of time series from different persons [5, 27]. However, this transformation does not lead

to any change of the distribution or variance. Another option to standardize the value range is

to transform the motion energy time series (METS) with respect to the ROI size (size standard-

ization—for details see Methods). As a result, values of this linear transformation vary from

zero (no motion) to 1 (entire ROI is active). Fig 3 displays the different transformations and

their impact on the distribution of values.

Table 1. Overview of applied parameter setting.

Smoothing

procedure

Transformation Method Bandwidth Step Measures per

second

Altmann [10], Altmann [11] Smoothing splines

(λ = .9995)

Anscombe transformed WCLR,

WCLCF

100 frames

(ca. 4 sec)

2 frames

(0.08

sec)

24

Ashenfelter, Boker [19] - - WCLC 160 frames

(2 sec)

10

frames

(0.125

sec)

80

Bilakhia, Petridis [20] - - WCLC - 58

Boker, Rotondo [16] - - WCLC 320 frames

(4 sec)

8 frames

(0.1 sec)

80

Boker and Rotondo [21] - - WCLC 160 frames

(2 sec)

80

Bozkurt, Yemez [22] - - WCLC

adapted

(CCA)

180 frames

(6 sec)

30

Campbell [23] Low pass filtered WCC 1 frame -

Delaherche and Chetouani [15] - Ramseyer’s

normalization procedure

WCLC 1 sec -

Paulick, Deisenhofer [3] Moving average 10 z-transformed WCLCS 60 frames

(1 min)

60

frames

(1 min)

10

Messinger, Mahoor [7] - z-transformed WCLC 3 sec - Ca. 30

Michelet, Karp [24] - - WCC 75 frames - 25

Nagaoka and Komori [25] - Box-Cox transformed WCC 18000 frames

(10 min)

150

frames

(5 sec)

30

Paxton and Dale [26] Butterworth low-

pass filter

CLC 8

Ramseyer and Tschacher [5], Ramseyer and

Tschacher [27], Ramseyer and Tschacher [28]

Moving average 10 z-transformed WCLCS 600 frames

(1 min)

1 frame

(0.1 sec)

10

Sun, Nijholt [29] - - WCC Between 20–280 frames - -

Tschacher, Rees [30] Moving average 10 z-transformed WCLCS 300 frames

(30 sec)

0.1 sec 10

Tronick, Als [31] - - WCC 10 frames

(10 sec)

- 1

Yang, Wang [32] - - WCLC Between 64–256 frames

(0.64–2.56 sec) Best: 128

frames (1.28 sec)

32

frames

(0.32

sec)

100

Watanabe [6] - - WCLC 480 frames (8 sec) - 60

Note. Subscript letters indicate the type of global output parameter (for details see [17]). WCLC: windowed cross-lagged correlation, WCC: windowed cross-correlation,

CLC: cross-lagged correlation, WCLR: windowed cross-lagged regression, CCA: canonical correlation analysis, λ refers to the roughness penalty parameter, ‘-‘ indicates

that information was not reported.

https://doi.org/10.1371/journal.pone.0211494.t001
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Method

Two methods that show high convergent validity and a local identification of movement syn-

chronization intervals (MSI) are the WCLR and WCLCF from Altmann [10], Altmann [11],

[17]. The algorithms are publicly available at GitHub: https://github.com/10101-00001/sync_

ident. The output of both methods is a table showing every MSI of the interaction under inves-

tigation. This enables us to compare these MSI with intervals rated by human raters. The

WCLR was developed for cyclic time series to avoid spurious cross-correlations due to auto-

correlation. We used these two methods because they identify synchronization intervals. These

intervals may be used to investigate more local events that emerge on a short-time level as alli-

ance ruptures [36] or good moments within therapy. Furthermore, these measures had the

highest correlation with an external criteria in the validation study of Schoenherr, Paulick

[17].

Bandwidth

An important parameter in the application of windowed correlative and regressive methods is

bandwidth. Bandwidth specifies the length of the examined segment. The choice of bandwidth

depends on content and methodological considerations [16]. If the bandwidth is set too long,

the detected synchrony may be biased and the true dynamics of the interaction may not be

optimally mapped. In contrast, with small bandwidths, it is also possible that synchronization

intervals remain undetected. Additionally, if the selected segment is too small, the correlation

Fig 2. Different amounts of smoothing applied to motion energy time series (METS).

https://doi.org/10.1371/journal.pone.0211494.g002
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or regression cannot be reliably determined due to the low number of measured values. Schön-

brodt and Perugini [37] recommend a sample size of 250 values for stable parameter estima-

tion with respect to typical correlation analyses. This number, however, is dependent on the

true correlation. For high correlations (r = .7), the authors found a sample size of 65 to be suffi-

cient. An optimal trade-off for high reliability and high sensitivity has not yet been determined

[16]. The choice of the bandwidth is also dependent on the number of values recorded per sec-

ond. Currently, every researcher chooses the bandwidth with respect to the phenomena under

investigation. If one wants to assess global synchrony that is established over period, higher

bandwidths (30 seconds and higher) are used [5]; if the phenomena under investigation are

local synchrony intervals, smaller bandwidths (2.5 seconds: Altmann [10]) are applied.

With respect to the problem of non-stationarity, Boker, Rotondo [16] proposed that the

assumption of stationarity can be made locally within segments. Therefore, using windows

may also be beneficial for statistical reasons.

Spurious correlations

Various approaches can be used to control for coincidentally identified synchronization inter-

vals. Ramseyer and Tschacher [38] built on the concept of pseudosynchrony by Bernieri,

Reznick [39]. They created an artificial database of interactions by means of random permuta-

tions of the segments of the real time series. In doing so, they created an empirical distribution

to determine a cut-off value to discriminate between pseudosynchrony and genuine syn-

chrony. Louwerse, Dale [40] also built surrogate pairs to compare genuine synchrony with

pseudosynchrony by using random permutations of data points. Recently, Moulder, Boker

Fig 3. Different transformations and their impact on the distribution of motion energy values assessed with MEA.

https://doi.org/10.1371/journal.pone.0211494.g003
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[18] compared different methods of surrogate dataset generation (data shuffling, segment

shuffling, data sliding, participant shuffling) showing that not every baseline is equally conser-

vative. Additionally, there seems to be an interaction with parameters chosen for applying the

WCLC. In contrast to baselines which are based on surrogate datasets, Gottman and Ringland

[41] and Altmann [10], Altmann [11] propose a parametrical approach to test genuine syn-

chrony against randomly occurring synchrony, whereby the distribution of the proof statistic

is pre-defined (e.g., χ2-distributed). While computing the correlation, they test the value

against zero using the pre-defined distribution. The surrogate approach provides an empiri-

cally derived null distribution, whereas the approach of Gottman and Ringland [41] would

require the selection of a pre-defined distribution that could be used to determine significance

of computed correlations. Another approach is to increase the cut-off for the comparison of

genuine and pseudosynchrony [42]. This may be realized by introducing a cut-off value for

meaningful correlations or R2 values.

Research questions

In the literature, most of the TSAM are applied with various parameter settings (e.g., transfor-

mation, smoothing, method, bandwidth, control for spurious correlations), which are largely

based on the researchers’ preferences or theoretical considerations. Apart from Altmann [10]

and Paxton and Dale [26], validation studies are lacking evidence. Especially the validation

of TSAM against human-rated synchrony would be an important contribution to the field. In

the present study, we examine the quality of movement synchrony identification of different

TSAM configurations depending on the parameters described, while using human-rated syn-

chronization intervals and simulated time series build out of the human-rated intervals with

varying complexity as reference. Aim of this paper is to exemplify a validation of TSAM

regarding their capability to correctly identify synchronization intervals given an external cri-

terion (in our case: simulated time series and human ratings of movement synchrony).

Methods

Step 1: Selection of video material and generation of time series

To create a dataset of video sequences with and without movement synchrony under natural-

istic conditions, 40 sequences showing different amounts of movement synchrony (e.g.,

synchronous head nodding or body movements which provoke the impression to be interre-

lated) where selected by the first author. Sequences were extracted from video recordings of

the 3rd psychotherapy session of social anxiety disorder patients treated with cognitive-

behavioral therapy or psychodynamic therapy. The video recordings originated from the

SOPHO-NET treatment study, which was conducted between 2007 and 2009 (for more

details see [43, 44]). [for more details, see 43, 44]. Only videos with an optimal camera posi-

tion and acceptable recording conditions were included. The sequences had a mean duration

of 116.69 (SD = 11.35) seconds.

All 40 sequences were rated by three independent female raters with a master’s degree in

psychology, age range: 26 to 28 years. The raters were familiar with the concept of movement

synchrony and were instructed about the general working procedure of the algorithms we use

to measure movement synchrony. Before rating, all raters had to rate two example sequences

correctly to ensure that they understood the instruction. On a dichotomous scale, the raters

were asked to rate whether the sequence showed patient and therapist movements, which were

related to each other in any possible way (synchrony: yes) or not (synchrony: no). Rater had

no restrictions of the time lag; therefore, they could rate perfectly synchronous or time-lagged

movements as synchrony. In addition, raters were allowed to watch the sequence as often as
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they wanted to. Of all video sequences, 18 were rated consistently as sync-sequences and 11 as

no sync-sequences. If a sequence was rated as containing movement synchrony, the interval in

which this took place was additionally identified (= movement synchronization interval: MSI).

Ten movement synchrony sequences and ten sequences showing no movement synchrony,

which were rated equally by all raters (sync or no sync), were included for subsequent analysis.

The videos of selected sequences (N = 10 with synchrony + 10 without synchrony) were

converted into a consistent video format (size of 640x480, frame rate of 25 fps, bit rate of 2000

Kb/s using Any Video Converter 3.0 [45]. Sequences had a mean duration of 118 (SD = 12.94)

seconds. Patient and therapist movements displayed in the videos were assessed using MEA

[46] MATLAB scripts are publicly available at: https://github.com/10101-00001/MEA. The

ROI covered the upper body from the chair’s seat upwards. Next, the starting and end points

(in frames) of the specified MSI were identified using the plot of the time series. The starting

point was defined as the first frame that showed a motion energy value greater than zero proxi-

mal to the human-rated starting point. The end point was set proximal to the human-rated

end point, where the motion energy time series were equal to zero again. MSI had a mean

duration of 145 frames (5.8 seconds), a standard deviation of 57.93 frames (2.37 seconds), a

minimum duration of 26 frames (1.04 seconds) and a maximum duration of 282 frames (11.28

seconds). The individuals shown in Fig 1 in this manuscript have given written informed con-

sent (as outlined in PLOS consent form) to publish their case details.

Step 2: Generation of synchrony conditions

We used three different experimental conditions since parameter settings should be tested

with respect to varying complexity of the stimulus material: 1) natural synchrony rated by

humans embedded in a normal interaction, 2) natural synchrony rated by humans isolated

from normal interaction, 3) artificial synchrony. In the first condition, patient and therapist

METS resulting from MEA were used (see Fig 4, lower figure, gray box indicates MSI within

Fig 4. Examples of the three different conditions with an MSI (A) and a no MSI (B) using two time series (patient and therapist movements). Artificial

synchrony (upper plot), naturally isolated synchrony (middle), naturally embedded synchrony (lower plot). Gray boxes indicate human rated MSI or no MSI; dashed

vertical lines indicate the area investigated by the algorithms.

https://doi.org/10.1371/journal.pone.0211494.g004
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the sequence). Due to the fact that the natural time series were very complex and included

other movements apart from the MSI (or no MSI), we modified the time series to obtain a nat-

urally isolated condition: All values of both time series (patient and therapist time series) were

set to zero excluding the motion energy values of the MSI (or no MSI) identified by the human

raters. Thus, this condition incorporates only the movements of both persons within the speci-

fied MSI (or no MSI). Thirdly, we generated an artificial condition: Given the time series of A

and B from the naturally isolated condition, we replaced B’s time series with a time-lagged

time series of A (time lag of 50 frames). Therefore, we obtained an MSI showing perfect time-

lagged movement synchrony. Therefore, in the artificial condition the true synchronization

interval is known due to the creation of a time series pair. In contrast, in the isolated and natu-

ral condition the reference synchronization interval is rated by human raters and can be

biased. With respect to the no MSI group, we did not duplicate the patient time series but

included a time series of zeros as the therapist time series. If the patient did not move, this

therefore resulted in two time series with no movement. The different time series are displayed

in Fig 4.

As a result, we obtained 10 naturally embedded synchrony time series pairs, 10 naturally

isolated synchrony time series pairs and 10 artificial synchrony time series pairs for MSI and

no MSI, respectively (total n = 3 (naturally embedded vs. naturally isolated vs. artificial) � 2

(sync vs. no sync) � 10 (video sequences) = 60). Note that the artificial condition can be viewed

as simulated time series as they can be easily replicated. We used parts of the real-interaction

time series to build those time series, but this was only a matter of choosing those pulses

that are realistic for human interactions, particularly realistic for the therapeutic context.

Step 3: Applying 600 configurations of TSAM algorithms

Next, multiple TSAM with different parameter settings were applied to METS of video

sequences. In total, 600 different configurations were investigated by combining method,

(WCLCF, WCLR), type of transformation (raw data, size standardization, Box-Cox transfor-

mation with λ = 0, Anscombe transformation), smoothing (no smoothing, slight smoothing

with smoothing splines (λ = .900), high smoothing with smoothing splines (λ = .005)), band-

width (75 frames (= 3 seconds), 125 frames (= 5 seconds), 175 frames (= 7 seconds), 250 frames

(= 10 seconds) and 750 frames (= 30 seconds)) and R2 cut-off to filter spurious correlations

(R2 > 0.0, R2 > 0.1, R2 > 0.2, R2 > 0.25, and R2 > 0.3). In the following sections, we omit the

‘F’ of WCLCF for readability. Note that Box-Cox transformation with λ = 0 equals to a loga-

rithmic transformation; thus we increased each motion energy value with 1 to avoid log(0)

before applying this transformation.

Assessing the motion energy of two individuals with MATLAB [46] has the advantage that

the size of the regions of interest (ROIs) can be saved. This allows the standardization of the

METS by the size of the ROI. First, we determined the ratio of the larger ROI to the smaller

ROI in the video sequence (range of ROI sizes ratios within a video was 1.03 to 1.99, M = 1.37,

SD = 0.36). Next, we multiplied the ratio with each element of the METS of the individual with

the smaller ROI size. The size standardization was used as one possible transformation aside

from Box-Cox and Anscombe transformations.

With regard to the automated identification of MSI, we used WCLC and WCLR as imple-

mented by Altmann [10], Altmann [11] and set the maximum time lag to 75 frames (= 3 sec-

onds). Before applying both procedures but after transformation and smoothing, we added

some noise (M = 0, SD = .1) to the time series to make a calculation of a correlation and

regression possible. To reduce computation time, values were computed every two frames.

Applying one configuration to the time series resulted in an m x n matrix (m = duration of
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the video sequence in frames/2, n = number of time lags/2) of R2 values. To determine inter-

vals showing the highest R2 values, peak-picking algorithm of Altmann [10], Altmann [11]

was used (MATLAB script publicly available: https://github.com/10101-00001/sync_ident).

The output of the algorithm is a list containing every MSI within the video sequence with its

time lag, starting, end, and average R2 value. To account for spurious correlations, we

included an R2 cut-off (R2 > 0.0, R2 > 0.1, R2 > 0.2, R2 > 0.25 and R2 > 0.3) to filter MSI of

the output list below the cut-off. The data of this study is publicly available at GitHub:

https://github.com/DesireeSchoenherr/data_validation_study.

Step 4: Statistical analysis: Investigation of the best configuration

To determine which configuration identifies synchrony best, we were interested in high power

of identification (i.e., valid identification of MSI) and low type I error (i.e., low percentage of

over-identified MSI in sequences where no movement synchrony was present). Therefore, a

configuration was rated as good if it showed high power in the presence of synchronization

intervals and low type I error in their absence. In addition, a configuration was only rated as

good if the criteria hold for each video sequence.

To compare the ratings with each other, human ratings of the video sequence/true syn-

chronization intervals of the artificial time series were transposed to a time series with zeros

and ones, indicating whether movement synchrony was present (= 1) or not (= 0). This time

series functioned as a reference time series. In addition, a binary time series of the algorithm

was built by setting the time series to one in an automatically identified MSI and to zero out-

side an MSI. As a measure of concordance of simulated/human and computer-rated syn-

chronization intervals, we computed Cohen’s kappa using both binary time series. A widely

established scale for the interpretation of kappa suggests the following cut-offs: values� 0

poor agreement, .00 –.20 slight agreement, .21 –.40 fair agreement, .41 –.60 moderate agree-

ment, .61 –.80 substantial agreement and .81–1.00 almost perfect agreement [47]. With

regard to the no MSI group, the proportion of over-identified frames (abbreviated as:

pr_out) was calculated that equals the number of identified frames relative to the number of

frames in a sequence.

The parameter configuration with the highest identification rate (IR) of synchrony was

identified using a sequential procedure: First, the time series in the artificial condition were

investigated to ensure that the configurations were able to detect artificial synchrony and no

synchrony (high power, low type I error). Configurations with a kappa higher than .60 for

each of the 10 synchronization intervals (high power) or a maximum value of 5% over-identi-

fied frames with respect to each of the 10 no synchronization intervals (low type I error) were

classified as configurations with a good identification rate (IR). Configurations that yielded a

minimum kappa between .41 and .60 for synchronization intervals or 5% to 10% over-identi-

fied frames for no synchronization intervals were evaluated as configurations with an accept-

able IR. Configurations that did not fulfill either of these criteria were rated as configurations

with a poor IR (sync: kappa < .40, no sync: more than 10% pr_out). Based on these classifica-

tions, the three IR levels were used to produce cross tables and conduct Fisher’s exact test to

check for significant overall influences of the manipulated parameters (e.g., bandwidth,

smoothing amount). To examine which specific parameter configuration is best, we addition-

ally conducted ordinal logistic regressions using the function polr in R [48]. Thereby, we

used the IR as criterion and the parameters (levels were dummy coded) as predictors. Coeffi-

cients of the ordinal logistic regression which are higher than zero indicate that the parameter

has a positive influence on the IR (higher kappa, lower pr_out); coefficients lower than zero

indicate that the parameter has a negative influence on the IR (lower kappa, higher pr_out). A
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significant predictor (e.g., method WCLC vs. WCLR) indicates that the IR is affected by the

parameter.

Second, we investigated the data with respect to the naturally isolated condition, using only
the configurations that showed a good IR in the artificial condition. Again, we determined the

configurations with a good, moderate and bad IR. In addition, we conducted an ordinal logis-

tic regression with respect to the naturally isolated condition, where only configurations with a

good IR in the artificial condition were used.

Third, we examined the data with respect to the naturally embedded condition. Therefore,

we used the configurations with a good or acceptable IR for all video sequences in the naturally
isolated condition.

Lastly, we investigated whether the video sequence had an influence on the validity of iden-

tification using two Kruskal-Wallis-tests with the average kappa (kappamean) or the average

percentage of over-identified frames (pr_outmean) as the dependent variable and the video

sequence as independent variables. As our independent variables are not normally distributed

(p< .001), we used Kruskal-Wallis-test. Note, that a sequence ID only characterizes the stimu-

lus. Therefore, the Kruskal-Wallis-test will show us if there is a dependency between the

sequence ID (categorical) and the dependent variables (kappamean, pr_outmean, both continu-

ous). However, since the independent variable is categorical, the type of dependency cannot be

characterized further.

In additional analyses, we also investigate the general influence of the parameters on the

average of kappa and pr_out. Details and results are reported in the Supporting information

(S2 Appendix).

Results

Artificial condition

Firstly, we considered the artificial condition and counted the number of configurations with a

poor, acceptable and good IR depending on their parameter setting (e.g., smoothing, band-

width, etc.). The corresponding cross table is reported in Table 2.

To investigate the influence of different parameters on the IR, we conducted Fisher’s exact

tests because for some cells the assumptions of a χ2-test were not fulfilled (not more than 20%

of the expected counts less than 5, provided that none are less than 1). We found that the

choice of method, bandwidth, smoothing amount and R2 cut-off influenced the IR in the MSI

group (smoothing: p< .001, Cramer’s V = 0.23; method: p = .049, Cramer’s V = 0.10; band-

width: p< .001, Cramer’s V = 0.66; R2 cut-off: p< .001, Cramer’s V = 0.24). The highest influ-

ence was found for bandwidth, the lowest for method. The frequencies in Table 2 (kappa)

suggest that bandwidth should be rather low (175 and/or smaller), a low amount of smoothing

should be applied and the R2 cut-off should be set to 0.25. No significant effects were found

with respect to transformation (p = .77).

Referring to the artificial no MSI condition (pr_out), we found significant effects for

method, bandwidth, and R2 cut-off (method: p< .001, Cramer’s V = 0.37; bandwidth: p<
.001, Cramer’s V = 0.50; R2 cut-off: p< .001, Cramer’s V = 0.48). The largest influence was

found for bandwidth, the lowest for the amount of smoothing. The frequencies in Table 2

(pr_out) suggest that bandwidth should be rather high, the WCLR should be applied and the

R2 cut-off should be set to 0.25. No significant effects were found with respect to transforma-

tion and smoothing (transformation: p = .28; smoothing: p = .41).

To identify the best parameter also scientifically, we conducted ordinal logistic regressions.

This offers the possibility to also control for other covariates. Results of the ordinal logistic
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regression based on kappa (log-likelihood = -196.44, df = 16) and pr_out (log-likelihood =

-214.33, df = 16) are displayed in Table 3.

The coefficients for kappa indicate that transformation do not have an impact on the IR.

No smoothing is best in comparison to slight and high amount of smoothing. The WCLR is

superior in comparison to the WCLC (reference group). Additionally, a bandwidth of 175

and an R2 cut-off of 0.25 (reference group) seem to be optimal for synchrony detection in MSI

within the artificial condition.

The results regarding pr_out show that smoothing and transformation do not have an

impact on the IR of over-identified frames. High significant coefficients indicate a positive

influence on the IR (lower false positives, lower pr_out). Parameters that were best suited for

the identification were the WCLR, a higher bandwidth and an R2 cut-off of 0.25.

Within the artificial condition, 76 configurations fulfilled both criteria for a good IR

(kappa > .6 and pr_out < 5%) and therefore showed high power and low type I error. Using

these configurations, the average and standard deviation of the rater concordance (minimum

kappa, maximum kappa, mean kappa) between the artificially generated movement phe-

nomenon (true MSI) and algorithm ratings of the 10 video sequences containing MSIs were:

Mkappa_min = .64, SDkappa_min = .05; Mkappa_max = .90, SDkappa_max = .05, Mkappa_mean = .77,

SDkappa_mean = .05. The average and standard deviation of over-identified frames in the

no MSI group were: Mpr_out_min = 0.06%, SDpr_out_min = 0.17%, Mpr_out_max = 1.01%,

SDpr_out_max = 1.72%, Mpr_out_mean = 0.32%, SDpr_out_mean = 0.70%.

Table 2. Cross table of the variables method, bandwidth, transformation, smoothing, and R2 cut-off value (artificial condition) and identification rate (IR) in syn-

chronization intervals.

Poor IR Acceptable IR Good IR

κ< .4 pr_out > 10% .4 < κ< .6 10% > pr_out > 5% κ> .6 pr_out < 5% total

Smoothing Raw data 42 (21.0%) 49 (24.5%) 110 (55.0%) 15 (7.5%) 48 (24.0%) 135 (68.0%) 200 (33.3%)

Slight smoothing 41 (20.5%) 47 (23.5%) 131 (65.5%) 17 (8.5%) 28 (14.0%) 136 (68.0%) 200 (33.3%)

High smoothing 28 (14.0%) 47 (23.5%) 172 (86.0%) 8 (4.0%) 0 (0.0%) 145 (72.5%) 200 (33.3%)

Transformation Raw data 28 (18.7%) 37 (24.7%) 98 (65.3%) 5 (3.3%) 24 (16.0%) 108 (72.0%) 150 (25.0%)

Size standard. 26 (17.3%) 35 (23.3%) 108 (72.0%) 7 (4.7%) 16 (10.7%) 108 (72.0%) 150(25.0%)

Log-trans 26 (17.3%) 36 (24.0%) 104 (69.4%) 13 (8.7%) 20 (13.3%) 101 (67.3%) 150 (25.0%)

Anscombe 31 (20.6%) 35 (23.3%) 103 (68.7%) 15 (10.0%) 16 (10.7%) 100 (66.7%) 150 (25.0%)

Method WCLC 66 (22.0%) 132 (44.0%) 202 (67.3%) 0 (0.0%) 32 (10.7%) 168 (56.0%) 300 (50.0%)

WCLR 45 (15.0%) 11 (3.7%) 211 (70.3%) 40 (13.3%) 44 (14.7%) 249 (83.0%) 300 (50.0%)

Bandwidth 75 0 (0.0%) 48 (40.0%) 100 (83.3%) 8 (6.7%) 20 (16.7%) 64 (53.3%) 120 (20.0%)

125 0 (0.0%) 48 (40.0%) 100 (83.3%) 8 (6.7%) 20 (16.7%) 64 (53.3%) 120 (20.0%)

175 1 (0.8%) 12 (10.0%) 83 (69.2%) 11 (9.2%) 36 (30.0%) 97 (80.8%) 120 (20.0%)

250 5 (4.2%) 17 (14.2%) 115 (95.8%) 7 (5.8%) 0 (0.0%) 96 (80.0%) 120 (20.0%)

750 105 (87.5%) 18 (15.0%) 15 (12.5%) 6 (5.0%) 0 (0.0%) 96 (80.0%) 120 (20.0%)

R2 cut-off > 0.00 27 (22.5%) 71 (59.2%) 91 (75.8%) 28 (23.3%) 2 (2.7%) 21 (17.5%) 120 (20.0%)

> 0.10 21 (17.5%) 24 (20.0%) 88 (73.3%) 4 (3.3%) 11 (9.2%) 92 (76.7%) 120 (20.0%)

> 0.20 21 (17.5%) 24 (20.0%) 88 (73.3%) 4 (3.3%) 11 (9.2%) 92 (76.7%) 120 (20.0%)

> 0.25 21 (17.5%) 0 (0.0%) 58 (48.3%) 0 (0.0%) 41 (34.2%) 120 (100.0%) 120 (20.0%)

> 0.30 21 (17.5%) 24 (20.0%) 88 (73.3%) 4 (3.3%) 11 (9.2%) 92 (76.7%) 120 (20.0%)

Note. WCLC = windowed cross-lagged correlation, WCLR = windowed cross-lagged regression, bandwidth refers to the frame number. We used a frequency of 25

frames per second for our analysis, size standard. = size standardization, IR = identification rate, cell row proportions in brackets, κ = Cohen’s kappa,

pr_out = percentage of over-identified frames.

https://doi.org/10.1371/journal.pone.0211494.t002
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Naturally isolated and embedded condition

Second, we examined the data in the naturally isolated condition. We found only two configu-

rations with identical identification of MSI and no MSI, which fulfilled our criteria of an

acceptable IR. These configurations were WCLC, log-transformed, no smoothing, R2 cut-
off = 0.25 with a bandwidth of 75 or 125 frames (= 3 or 5 seconds). However, we also conducted

an ordinal logistic regression to identify the best parameters scientifically. Note that we only

used the configurations that were rated as good in the artificial condition; thus some parameter

levels are missing. Results are displayed in Table 4 (kappa: log-likelihood = 12.56, df = 13;

pr_out: log-likelihood = -5.57, df = 13). As reference values, we used the best configuration

that was identified (WCLC, log-transformed, no smoothing, R2 cut-off = 0.25, bandwidth = 75

frames).

Result of the IR based on kappa showed that the reference configuration is superior to all

other parameter settings. However, with respect to the IR based on pr_out there are no differ-

ences between different parameter configurations.

In the naturally embedded condition, no configuration was rated as having a good or

acceptable IR. In Table 5, means of kappa (MSI) and the average pr_out (no MSI) for the con-

figurations with the best IR of the artificial and naturally isolated conditions as well as the arti-

ficial condition only are shown for each of the three time series types (artificial, naturally

isolated, naturally embedded). In the naturally embedded time series, the IR is rather low;

approximately 50% of frames are over-identified in the no MSI group.

Table 3. Results of the ordinal logistic regression with IR (kappaor pr_out) as criterion and parameters as predic-

tors (artificial condition).

b (kappa) b (pr_out)

Smoothing reference group: smoothing = raw data

Slight -0.84� 0.04

High -1.72� 0.43

Transformation reference group: transformation = raw data

Size-standard. -0.39 0.04

Log-trans -0.13 -0.36

Anscombe -0.75 -0.38

Method reference group: method = WCLC

WCLR 1.11� 4.14�

Bandwidth reference group: bandwidth = 75

125 0.00 0.00

175 0.97� 3.65�

250 -4.00� 3.39�

750 -10.61� 3.34�

R2 cut-off reference group: R2 cut-off = 0.25

0.0 -3.80� -34.54�

0.1 -1.85� -28.53�

0.2 -1.85� -28.53�

0.3 -1.85� -28.53�

Note. WCLC = windowed cross-lagged correlation, WCLR = windowed cross-lagged regression, bandwidth refers to

the frame number. We used a frequency of 25 frames per second for our analysis, size standard. = size

standardization, IR = identification rate,

� indicates significant associations (p< .05), kappa = Cohen’s kappa, pr_out = percentage of over-identified frames.

https://doi.org/10.1371/journal.pone.0211494.t003
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Influence of the video sequence

Lastly, we examined the influence of the video sequence on kappamean and the amount of

over-identified frames (pr_outmean). We found a significant effect with respect to all three

time series types when comparing kappamean between video sequences (artificial: χ2 = 520.47,

df = 9, p< .001; naturally isolated: χ2 = 552.81, df = 9, p< .001; naturally embedded: χ2 =

717.54, df = 9, p< .001). Ranks of the sequences are displayed in S1 Table. For example, video

Table 4. Results of the ordinal logistic regression with IR (kappa) as criterion and parameters as predictors (natu-

rally isolated condition).

b (kappa) b (pr_out)

Smoothing reference group: smoothing = raw data

Slight -.95 0.00

Transformation reference group: transformation = log-transformed

Raw data -28.70� 0.01

Size-standard. -63.08� -6.50

Anscombe -26.29� -6.50

Method reference group: method = WCLC

WCLR 0.95 9.40

Bandwidth reference group: bandwidth = 75

125 0.00 0.01

175 -61.34� -7.38

R2 cut-off reference group: R2 cut-off = 0.25

0.0 -23.57� -8.97

0.1 -21.06� -8.06

0.2 -21.06� -8.06

0.3 -21.06� -8.06

Note. WCLC = windowed cross-lagged correlation, WCLR = windowed cross-lagged regression, bandwidth refers to

the frame number. We used a frequency of 25 frames per second for our analysis, size standard. = size

standardization, IR = identification rate,

� indicates significant associations (p< .05), kappa = Cohen’s kappa, pr_out = percentage of over-identified frames.

https://doi.org/10.1371/journal.pone.0211494.t004

Table 5. Cohen’s kappa (MSI) and over-identified frames pr_out (no MSI) of the two best configurations of the artificial and naturally isolated conditions and the

best configurations of the artificial condition for all three time series types.

Sync sequences No sync sequences

Mkappa Mpr_out

Configuration Simu Nat iso Nat emb Simu Nat iso Nat emb

Best configurations artificial and naturally isolated synchrony

WCLC_75_log_nosmooth_0.25 .83 .64 .02 1.20 2.13 57.66

WCLC_125_log_nosmooth_0.25 .83 .64 .02 1.20 2.13 57.66

Best configurations artificial synchrony

WCLC_75_raw_slight_0.25 .84 .57 -.02 0.50 2.82 44.63

WCLC_75_size_slight_0.25 .84 .57 -.02 0.00 2.82 43.27

WCLC_125_raw_slight_0.25 .84 .57 -.02 0.50 2.82 44.63

Note. MKappa = mean of all stimuli (sequences) with respect to kappa_mean; pr_out = proportion of over-identified frames to all no sync frames; simu = artificial

condition/simulated synchrony; nat iso = naturally isolated condition/synchrony; nat emb = naturally embedded condition/synchrony, WCLC = windowed cross-

lagged correlation; 75 or 125 indicates bandwidth; raw = raw data; log = logarithmic transformed, size = size-standardized; slight = slight smoothing; 0.25 indicates the

R2 cut-off, WCLC = WCLCF.

https://doi.org/10.1371/journal.pone.0211494.t005

Validation of methods to assess movement synchrony

PLOS ONE | https://doi.org/10.1371/journal.pone.0211494 February 11, 2019 14 / 24

https://doi.org/10.1371/journal.pone.0211494.t004
https://doi.org/10.1371/journal.pone.0211494.t005
https://doi.org/10.1371/journal.pone.0211494


sequence number 7 was the sequence with a very low kappa with respect to the naturally iso-

lated condition. However, it was the best sequences referring to the artificial and naturally

embedded condition. We also found a significant effect with respect to two time series types

when comparing pr_outmean between video sequences (naturally isolated: χ2 = 1631.10, df = 9,

p< .001; naturally embedded: χ2 = 817.70, df = 9, p< .001). There were no differences for the

artificial condition (χ2 = 6.13, df = 9, p = .73). For example, video sequence 1 was best with

respect to the naturally isolated condition, whereas for the naturally embedded condition

video sequence number 15 was best. Since we do not have any variables describing these

sequences further, it remains an open question which characteristics of a video sequence are

important for being a good sequence.

Discussion

The aim of this study was the validation of TSAM regarding their capability to correctly iden-

tify synchronization intervals given an external criterion. The peak-picking algorithm in com-

bination with the WCLC or WCLR of Altmann [10], Altmann [11] allows the identification of

MSI so that predefined synchronization intervals (e.g., rated by a human rater or artificially

generated by a time series simulation) can be compared with MSI identified by TSAM. We

tested the validity of varying configurations with MSI and no MSI to find a configuration with

high power (correct positives) and low type I error (false positives) with respect to the identifi-

cation of MSI. Former studies having tested TSAM or varied parameter settings are rare. Ram-

seyer and Tschacher [49] showed that synchrony is dependent on the time lag and segment

size by using different parameter settings in a case study. Altmann [10], Altmann [11] tested

the WCLC and WCLR by using simulated time series in a case study. Therefore, the current

study contributes to the examination of the impact of different parameter settings on the iden-

tification of movement synchrony by using n = 60 time series pairs.

Artificial condition

Our results show a clear influence of method, bandwidth, smoothing amount and R2 cut-off

on the identification rate (IR) in MSI. These parameters, except for the smoothing amount,

also affect the frequency of over-identified frames in the no MSI condition. The WCLR is sig-

nificantly superior to the WCLC. A bandwidth of 175 frames (= 7 seconds) leads to the best

results, followed by smaller bandwidths such as 75 or 125 frames (= 3 and 5 seconds) regarding

to the MSIs. With regard to smoothing, it is advisable to use raw data or to smooth the data

slightly at most. An R2 cut-off of 0.25 provides the best IR for MSI and no MSI.

For the subsequent analyses, we excluded configurations showing an acceptable or poor IR

in the artificial condition. Of all N = 600 configurations within the artificial condition, there

were 76 that displayed a good IR (κ> .6, pr_out < .05) for each of the video sequences. On

average, these configurations had a very high inter-rater level of agreement between artificially

generated MSI and computer-based ratings and a small proportion of over-identified frames

(Mkappa_mean = .77, SDkappa_mean = .05, Mpr_out_mean = 0.32%, SDpr_out_mean = 0.70%). This indi-

cates that the presented methods are able to detect perfect synchrony with a constant time lag

(also known as echoing). The influences of specific parameters are discussed in detail in the

following.

A parameter that affected the IR of synchrony was the amount of smoothing. So far, differ-

ent smoothing amount have not yet been compared. The graphics in the introduction illustrate

that if the time series does not contain any errors due to video defects, it is quite plausible to

not smooth the data too much to avoid shifting or erasing peaks. Accordingly, our results
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suggest that no smoothing or slight smoothing is advisable. If the time series contains such

errors, filtering is important to avoid biases in MSI identification.

Transformation appears to have no significant influence on the identification of MSI.

Transformations are performed to achieve stationarity and to transform the distribution into

an approximately normal distribution [10]. The use of windows in the calculation of the MSI

was also implemented to ensure local stationarity. It appears that the use of the windows is

sufficient to deal with distribution-related challenges and there is no need for a stabilizing

transformation.

Regarding the method used (WCLC vs. WCLR) we found a significant effect in the artificial

condition. The WCLR showed higher kappas and lower false positives than the WCLC. The

effect size was small to medium (Cramer’s V = 0.10–0.37) in favor of WCLR. The difference

between WCLC and WCLR may be explained by the fact that the WCLR was developed for

cyclic or auto-correlated time series.

With regard to bandwidth, we found that rather small bandwidths lead to good results.

Additionally, bandwidth seems to have the highest impact on results. Ramseyer and Tschacher

[49] reported high synchrony values with bandwidths of 60 to 90 seconds (i.e., 600 to 900

frames). These contradictory results can be explained by the different synchrony measure and

research question. While Ramseyer and Tschacher [49] calculated the strength of synchrony

of the total interaction [17], our algorithms measured the frequency of synchrony [10, 17].

Moreover, while Ramseyer and Tschacher [49] classified the highest cross-correlation in com-

parison to surrogate-based pseudosynchrony, they did not compare the localization of a syn-

chronization interval by a human rater/simulated MSIs to the identification by TSAM.

Therefore, the criterion against which synchrony is compared differs: for Ramseyer and Tscha-

cher [5] it is synchrony measured in surrogate datasets, in the current study it is either simu-

lated perfect/imperfect synchrony, or synchrony rated by human raters. In addition, the

different stimulus material has an influence on the results, as shown in our study (Ramseyer

and Tschacher [49]: split-screen, two cameras; our scenario: naturalistic therapy sessions, one

camera).

We introduced an R2 cut-off to further control for spurious correlations. Our results sug-

gest that an R2 cut-off improves the IR. The multiple executions of the correlations or regres-

sions to form the m × n R2 matrix (m denotes the number of time points in frames, n indicates

the number of time lags in frames) seem to have the effect that random intervals are identified

as synchronous intervals. An increase of the R2 cut-off can be understood as controlling for

such spurious correlations. Note that this procedure is only valid with high true correlations

and may be problematic if synchrony is weak.

Best configuration in the naturally isolated and artificial conditions

For further analyses, we only included configurations that had been classified as good in the

artificial condition. Investigating the naturally isolated condition, we found only two configu-

rations with an acceptable IR (WCLC, logarithmically transformed, not smoothed, R2 > 0.25,

bandwidth of 75 or 125 frames). It is noticeable that both configurations use logarithmically

transformed data, seemingly contradictory to the results in the artificial condition. This incon-

sistency, however, can be explained as follows: The plots of the time series with identified syn-

chronization intervals (Fig 5) display that the peaks have different shapes in the naturally

isolated condition in contrast to the artificial condition. Therefore, a large movement can

occur synchronously with a rather weak movement. This difference in the peak heights is

matched by the logarithmic transformation and thus allows a better identification of the syn-

chronization intervals compared to a time series that has not been logarithmically transformed
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(Fig 5, Plot A, B, C). If both time series have approximately the same peak heights, the results

differ only slightly (Fig 5, Plot D, E, F). In line with this, the results of the ordinal logistic

regression show that the log-transformation is superior to other transformations in MSI detec-

tion, provided that the IR is acceptable for all videos. If the general influence of the parameters

is investigated (see Supporting information, S2 Appendix), also the Anscombe transformation

has a significant influence on the results. Therefore, we recommend using logarithmically

transformed time series (or another variance-stabilizing transformation) for the identification

of synchrony (based on human-rated synchronization intervals).

For bandwidth, the results point towards the preference of lower bandwidths (75 or 125) as

indicated by both best configurations.

Another explanation for the differences between artificial and naturally isolated time series

is that the characteristics of the reference material differ substantially. In the artificial condi-

tion, a synchronization interval is created as echoing of a given time series part so that the time

series of both persons are perfectly equal with a predefined time lag. In contrast, in the natu-

rally embedded configuration the “true” synchronization interval (respectively its beginning

and end) is rated by human raters. Our study revealed that a lot of algorithms with very high

identification quality in the artificial configuration failed in the naturally embedded configura-

tion. This could mean that the algorithms had another synchrony concept than the human rat-

ers in our study. Furthermore, it should be noted that the algorithms and human raters had

different levels of information about the nonverbal interpersonal interaction under study.

Whereas the algorithms “decided” about the similarity of time series parts of an aggregated

Fig 5. Time series (patient and therapist movements) of the naturally isolated condition. Solid horizontal lines indicate the computer-based synchrony interval

(WCLC, bandwidth 125, R2 > 0.25); dashed horizontal lines indicate the human-rated synchrony interval of the video sequence. (A) Time series of human-rated

synchronization interval with different peak heights, (B) logarithmically transformed time series shown in A, (C) slightly smoothed and not transformed time series

shown in A, (D) time series of human-rated synchronization intervals with similar peak heights, (E) logarithmically transformed time series shown in D, (F) slightly

smoothed and not transformed time series shown in D.

https://doi.org/10.1371/journal.pone.0211494.g005
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movement measure (the motion energy), the decision of a human rater refers to the informa-

tion in the video including gaze behavior or direction of movement (which were not available

for the algorithms). On that reason, future studies should examine simulated stimulus material

whereby the time-lag and the shape of the echoed time series are modified. The big advantage

of simulated time series is that the synchronization intervals can be defined.

Naturally embedded condition

With respect to the naturally embedded time series, we did not find a configuration that

reached a kappa of> .4 for all sequences. A reason for this finding may be that the rating of

the synchronization intervals was carried out by three human raters who were really similar to

each other. Therefore, the construct to which the algorithm-construct of synchrony was com-

pared to was synchrony as rated by three young female psychologists. Movement synchrony

was identified when there was an obvious relationship between the movements of both persons

interacting. However, the construct measured by the computer-based methods disregards the

context of the displayed movements. Only simultaneous or slightly time-delayed movements

of the interaction partners are identified as synchrony. That is, an interval in which the thera-

pist is looking for something in a folder and the patient scratches his head would be identified

as synchrony by methods, but not by human raters. Fig 6 clearly displays the difference in rat-

ings. The phenomenon between approx. 1125 frames and 1160 frames as well as the phenome-

non between 1340 frames and 1360 frames are evaluated as not synchronous by the raters, but

are nevertheless identified by the methods, leading to low rater agreement between human rat-

ing and computer rating. A possible solution to reduce the over-identification of frames could

be to smooth small deflections (Fig 6, t = 1375–1400 frames) by applying a moving median

(bandwidth of 5 values) [46], or to modify the peak-picking algorithm. Studies using a more

representative sample of raters may also be requested. However, Bernieri, Reznick [39] showed

that even with a large number of raters (n = 20), ratings are not very reliable. We used similar

raters to not additionally include a rating bias based on gender or age because studies show an

influence in synchrony (respectively perceiving synchrony) for these variables [50, 51]. More-

over, calculating correlations makes the assumption of a linear relationship between both time

series. Allowing for other dependencies may also result in an improved detection of synchrony

[52].

Another important aspect to consider is the output of the MEA. MEA aggregates all move-

ments displayed in a video. Therefore, movements of arms, torso and head are aggregated to

one movement index. A human rater can differentiate between these different body parts and

also considers gaze direction and may therefore understand movement synchrony differently.

Moreover, our motion analysis was based on 2-D video recordings and can only partially rep-

resent 3-dimensional movements. Another possibility for future research projects is the usage

of 3-D cameras such as the Microsoft Kinect.

To summarize, we identified 76 of 600 configurations that allow a good identification of

artificially generated MSI and a low false identification rate with respect to artificially gener-

ated no MSI. These configurations were found in the artificial condition. In the artificial con-

dition, the time series pair was generated with perfect (time-delayed) synchrony. Therefore, 76

were able to identify perfect echoing with high concordance. These configurations used a low

amount of smoothing, the WCLC or WCLR, an R2 cut-off of 0.25 and rather low bandwidths.

Furthermore, we were able to show that computer algorithms identify synchrony in a different

way than humans, that is they detect similarity of time series with a good identification rate

(artificial condition), but not multimodal synchrony within a context as rated by humans in

the present study.
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Fig 6. Time series (patient and therapist movements) of the naturally embedded condition. Solid horizontal lines indicate the computer-based synchrony interval

(WCLC, bandwidth 125, R2 > 0.25), dashed horizontal lines indicate the human-rated synchrony interval of the video sequence. (A) Time series of the human-rated

synchrony phenomenon, (B) logarithmically transformed time series shown in A, (C) slightly smoothed and not transformed time series shown in A.

https://doi.org/10.1371/journal.pone.0211494.g006
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Limitations & future research

To our knowledge, this study is the first testing parameter settings with respect to time series

analysis methods in a validation study using n = 60 time series pairs and 600 different parame-

ter configurations. Therefore, the current study contributes to the investigation of the validity

of automated algorithms for the identification of nonverbal synchrony.

One limitation of the present study lies in the fact that we defined the true MSI by ratings of

similar human raters. It is possible that different instructions and an extended training are

required to better capture the construct. Although rater were instructed and familiar with the

concept of movement synchrony, human raters have an internal model of synchrony that

likely includes keeping eye contact and signals of other modalities that are not assessed by the

computer-assisted methods for automated synchrony identification. The resulting difference

could be reduced by further instructions or an extended rater training with regard to the con-

cept of movement synchrony. However, it should be kept in mind that all algorithms (parame-

ter configurations) studied in the naturally isolated and naturally embedded condition (in

which human ratings were used as reference) were tested and approved by the good IR in the

artificial condition. In the artificial condition, the true synchronization intervals were created

by programming / simulation and are thus largely unbiased.

Furthermore, the time lag of synchrony was not systematically varied in the stimulus mate-

rial. However, it is possible that time-lag has an impact on the IR. In a further study, it would

also be important to systematically vary the time lag and more finely grade the parameters.

We were able to show that the stimulus material had a significant impact on the IR. This

means that generalizability to other study designs is restricted. Further, in future studies, the

amount of stimulus material should be increased. Our video sequences had specific character-

istics (e. g., therapy videos of patients with social anxiety disorder, one camera setting) and a

specific format (size: 640 x 480, etc.). The creation of a publicly accessible video database with

annotations of synchronous movements could make a great contribution to the further devel-

opment of TSAM. With the help of such a database, methods could be validated and the con-

struct of nonverbal synchrony could be defined more explicitly. Such a database would also

provide the opportunity to further investigate video characteristics and parameter settings.

Conclusion

Numerous studies have demonstrated that several problems occur with human ratings (e.g.,

reduction number of values of the assessed behavior, because of the rater’s capacity, problems

defining an equal construct between raters) and that the reliability of human raters is weak

[53]. Additionally, human ratings require more time and personal resources and training

seems to be important to ensure that all raters assess the same construct. In contrast, auto-

mated synchrony identification is economic and reliable. With our study, we demonstrated

that the choice of parameter settings is essential for the generation of meaningful results using

automated methods for synchrony detection. The tests of the artificial condition suggested

that WCLR without smoothing, small bandwidths (75 or 125 frames) and an R2 cut-off of 0.25

is best suited for the identification of perfect echoing. With respect to the naturally isolated

condition, we identified WCLC with a bandwidth of 75 or 125 frames (3 or 5 seconds, respec-

tively), no smoothing/slight smoothing, but a logarithmically transformed time series and an

additional R2 cut-off of 0.25 as the best configuration to detect the interpersonal synchrony of

body movements (given acyclic time series and MSI showing two different complex peaks).

This configuration also showed a good IR regarding high correct positives and low false posi-

tives in the artificial condition. In addition, we found low concordance in the naturally embed-

ded condition due to the fact that human raters assessed movement synchrony differently than
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the applied configurations. Human raters rate synchronous movements by including variables

such as eye contact and context variables, resulting in another concept of synchrony. Move-

ment synchrony of our best algorithm goes beyond this definition by assessing all simulta-

neous or slightly time-delayed highly correlated time series trajectories. Thus, unconscious

processes resulting in movement synchrony, which may also have an influence on the thera-

peutic process, are additionally assessed.
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In: Feldman R, Rimé B, editors. Fundamentals of nonverbal behavior. xiv. New York, NY, US: Cam-

bridge University Press; Paris, France: Editions de la Maison des Sciences de l’Homme; 1991. p.

511 pp.

14. Chetouani M, Delaherche E, Dumas G, Cohen D. 15 Interpersonal Synchrony: From Social Perception

to Social Interaction. Social Signal Processing. 2017:202.

15. Delaherche E, Chetouani M, editors. Multimodal coordination: exploring relevant features and mea-

sures. Proceedings of the 2nd international workshop on Social signal processing; 2010: ACM.

16. Boker SM, Rotondo JL, Xu M, King K. Windowed cross-correlation and peak picking for the analysis of

variability in the association between behavioral time series. Psychological Methods. 2002; 7(3):338.

https://doi.org/10.1037/1082-989X.7.3.338 PMID: 12243305

17. Schoenherr D, Paulick J, Worrack S, Strauss B, Rubel JA, Schwartz B, et al. Quantification of nonverbal

synchrony using linear time series analysis methods: Lack of convergent validity and evidence for fac-

ets of synchrony. Behavior Research Methods. 2018:1–23.

18. Moulder RG, Boker SM, Ramseyer F, Tschacher W. Determining synchrony between behavioral time

series: An application of surrogate data generation for establishing falsifiable null-hypotheses. Psychol

Methods. 2018. https://doi.org/10.1037/met0000172 PMID: 29595296.

19. Ashenfelter KT, Boker SM, Waddell JR, Vitanov N. Spatiotemporal symmetry and multifractal structure

of head movements during dyadic conversation. Journal of Experimental Psychology: Human Percep-

tion and Performance. 2009; 35(4):1072. https://doi.org/10.1037/a0015017 PMID: 19653750

20. Bilakhia S, Petridis S, Nijholt A, Pantic M. The MAHNOB Mimicry Database: A database of naturalistic

human interactions. Pattern recognition letters. 2015; 66:52–61. https://doi.org/10.1016/j.patrec.2015.

03.005

21. Boker SM, Rotondo JL. Symmetry building and symmetry breaking in synchronized movement. Mirror

neurons and the evolution of brain and language. 2002; 42:163.

Validation of methods to assess movement synchrony

PLOS ONE | https://doi.org/10.1371/journal.pone.0211494 February 11, 2019 22 / 24

https://doi.org/10.4081/ripppo.2016.232
http://www.ncbi.nlm.nih.gov/pubmed/21639608
https://doi.org/10.1299/jsme1958.26.2244
https://doi.org/10.1080/15250000902839963
https://doi.org/10.1080/15250000902839963
http://www.ncbi.nlm.nih.gov/pubmed/19885384
https://doi.org/10.1111/j.1469-7610.2006.01701.x
http://www.ncbi.nlm.nih.gov/pubmed/17355401
https://doi.org/10.1111/j.1467-9280.2005.01619.x
https://doi.org/10.1111/j.1467-9280.2005.01619.x
http://www.ncbi.nlm.nih.gov/pubmed/16181445
https://doi.org/10.1023/A:1022986608835
https://doi.org/10.1023/A:1022986608835
https://doi.org/10.1037/1082-989X.7.3.338
http://www.ncbi.nlm.nih.gov/pubmed/12243305
https://doi.org/10.1037/met0000172
http://www.ncbi.nlm.nih.gov/pubmed/29595296
https://doi.org/10.1037/a0015017
http://www.ncbi.nlm.nih.gov/pubmed/19653750
https://doi.org/10.1016/j.patrec.2015.03.005
https://doi.org/10.1016/j.patrec.2015.03.005
https://doi.org/10.1371/journal.pone.0211494


22. Bozkurt E, Yemez Y, Erzin E. Multimodal analysis of speech and arm motion for prosody-driven synthe-

sis of beat gestures. Speech Communication. 2016; 85:29–42. https://doi.org/10.1016/j.specom.2016.

10.004

23. Campbell N. An audio-visual approach to measuring discourse synchrony in multimodal conversation

data: September; 2009.

24. Michelet S, Karp K, Delaherche E, Achard C, Chetouani M. Automatic imitation assessment in interac-

tion. Human Behavior Understanding: Springer; 2012. p. 161–73.

25. Nagaoka C, Komori M. Body movement synchrony in psychotherapeutic counseling: A study using the

video-based quantification method. IEICE transactions on information and systems. 2008; 91(6):1634–

40. https://doi.org/10.1093/ietisy/e91-d.6.1634

26. Paxton A, Dale R. Frame-differencing methods for measuring bodily synchrony in conversation. Behav-

ior Research Methods. 2013; 45(2):329–43. https://doi.org/10.3758/s13428-012-0249-2 PMID:

23055158

27. Ramseyer F, Tschacher W. Nonverbal synchrony of head- and body-movement in psychotherapy: dif-

ferent signals have different associations with outcome. Frontiers in Psychology. 2014; 5(979). https://

doi.org/10.3389/fpsyg.2014.00979 PMID: 25249994

28. Ramseyer F, Tschacher W. Synchrony in dyadic psychotherapy sessions. Simultaneity: Temporal

structures and observer perspectives. 2008:329–47.

29. Sun X, Nijholt A, Truong KP, Pantic M, editors. Automatic visual mimicry expression analysis in interper-

sonal interaction2011: IEEE.

30. Tschacher W, Rees G, Ramseyer F. Nonverbal synchrony and affect in dyadic interactions. Frontiers in

Psychology. 2014; 5(1323). https://doi.org/10.3389/fpsyg.2014.01323 PMID: 25505435

31. Tronick ED, Als H, Brazelton TB. Mutuality in mother-infant interaction. Journal of communication.

1977; 27(2):74–9. https://doi.org/10.1111/j.1460-2466.1977.tb01829.x PMID: 853138

32. Yang N, Wang Z, Hu W. Synchrony expression analysis of human-human interaction using wearable

sensors. Control and Automation (ICCA). 2016:611–5.

33. Grammer K, Honda M, Juette A, Schmitt A. Fuzziness of nonverbal courtship communication unblurred

by motion energy detection. Journal of personality and social psychology. 1999; 77(3):487. https://doi.

org/10.1037/0022-3514.77.3.487 PMID: 10510505

34. Anscombe FJ. The transformation of Poisson, binomial and negative-binomial data. Biometrika. 1948;

35(3/4):246–54. https://doi.org/10.2307/2332343

35. Box GE, Cox DR. An analysis of transformations. Journal of the Royal Statistical Society Series B

(Methodological). 1964:211–52.

36. Safran JD, Muran JC, Eubanks-Carter C. Repairing alliance ruptures. Psychotherapy. 2011; 48(1):80.

https://doi.org/10.1037/a0022140 PMID: 21401278
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