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ABSTRACT

Chemotherapy- or radiotherapy-related intestinalmicrobial dysbiosis is oneof themain causes of intestinalmucositis. Cases of bacterial translocation
into peripheral blood and subsequent sepsis occur as a result of dysfunction in the intestinal barrier. Evidence from recent studies depicts
the characteristics of chemotherapy- or radiotherapy-related intestinal microbial dysbiosis, which creates an imbalance between beneficial
and harmful bacteria in the gut. Decreases in beneficial bacteria can lead to a weakening of the resistance of the gut to harmful bacteria,
resulting in robust activation of proinflammatory signaling pathways. For example, lipopolysaccharide (LPS)-producing bacteria activate the nuclear
transcription factor-κB signaling pathway through binding with Toll-like receptor 4 on stressed epithelial cells, subsequently leading to secretion
of proinflammatory cytokines. Nevertheless, various studies have found that the omega-3 (n–3) polyunsaturated fatty acids (PUFAs) such as
docosahexaenoic acid and eicosapentaenoic acid can reverse intestinal microbial dysbiosis by increasing beneficial bacteria species, including
Lactobacillus, Bifidobacterium, and butyrate-producing bacteria, such as Roseburia and Coprococcus. In addition, the n–3 PUFAs decrease the
proportions of LPS-producing and mucolytic bacteria in the gut, and they can reduce inflammation as well as oxidative stress. Importantly, the
n–3 PUFAs also exert anticancer effects in colorectal cancers. In this review, we summarize the characteristics of chemotherapy- or radiotherapy-
related intestinal microbial dysbiosis and introduce the contributions of dysbiosis to the pathogenesis of intestinal mucositis. Next, we discuss how
n–3 PUFAs could alleviate chemotherapy- or radiotherapy-related intestinal microbial dysbiosis. This review provides new insights into the clinical
administration of n–3 PUFAs for the management of chemotherapy- or radiotherapy-related intestinal microbial dysbiosis. Adv Nutr 2019;10:133–
147.

Keywords: chemotherapy, radiotherapy, intestinal mucositis, dysbiosis, omega-3 polyunsaturated fatty acid

Introduction
Intestinal mucositis is the main lesion that develops after
chemotherapy or abdominal radiotherapy (1). Both ionizing
radiation and chemical reagents target the rapid renewal
of crypt cells, ultimately resulting in de-epithelialization
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(2, 3). Patients with acute chemotherapy- or radiotherapy-
induced intestinal mucositis present with symptoms in-
cluding abdominal pain, vomiting, diarrhea, and digestive
dysfunctions, whereas the late-onset toxicities of ionizing
irradiation to the gut include fistula formation, obstruction,
or even perforation (4, 5). These side effects severely affect
the quality of life of these patients.

Dysbiosis denotes any change in the composition of res-
ident commensal communities relative to the communities
found in healthy individuals (6). Herein, microbial dysbiosis
is characterized by a decrease in beneficial microbes, an
overgrowth of harmful microbes, and a loss of microbial
diversity (6). To date, it is accepted that chemotherapy or
radiotherapy can cause intestinal microbial dysbiosis (7). By
reviewing recent studies, Touchefeu et al. (7) reported that
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the intestinal microbial dysbiosis induced by chemotherapy
and by abdominal radiotherapy could be characterized by
decreased proportions of Clostridium cluster XIVa, Faecal-
ibacterium prausnitzii, and Bifidobacterium and increased
proportions of Enterobacteriaceae and Bacteroides. In healthy
individuals, the commensal bacteria assist the hosts in
improving their defense against harmful bacteria (8, 9).
However, intestinal microbial dysbiosis alone is sufficient to
initiate inflammation within the intestine (10). For example,
LPS from Escherichia coli activates the NF-κB signaling
pathway, which leads to high secretions of proinflammatory
cytokines such as IL-1β , TNF-α, and IL-6 by stressed cells
(11–13).

Clinically, the available drugs for treating intestinal
mucositis after chemotherapy or radiotherapy include glu-
tamine, sucralfate, and antibiotics (7). The omega-3 (n–3)
PUFAs, including EPA and DHA, exhibit therapeutic po-
tential for some autoimmune diseases such as inflammatory
bowel disease and rheumatoid arthritis through their anti-
inflammatory and antioxidant functions and through main-
taining the integrity of the intestinal epithelium (14–17). In
addition, n–3 PUFAs are able to reduce intestinal microbial
dysbiosis through increasing the proportions of beneficial
bacteria and decreasing the proportions of pathogenic
bacteria and their products in the gut (18, 19). Moreover,
results from both basic and clinical studies have confirmed
the anticancer effects of n–3 PUFAs (20). On this basis,
the use of n–3 PUFAs is an optional strategy for managing
patients with intestinal microbial dysbiosis, especially in
those patients undergoing chemotherapy or radiotherapy. In
this review, we introduce the composition of the commensal
microbiota in the healthy gut, after which we summarize
the characteristics of chemotherapy- or radiotherapy-related
intestinal microbial dysbiosis and explain the pathogenesis
of mucositis associated with intestinal microbial dysbiosis.
Next, by reviewing the current findings on improving ben-
eficial gut bacteria, attenuating proinflammatory responses,
and inhibiting tumor growth with n–3 PUFAs, we show the
potential for managing patients experiencing chemotherapy-
or radiotherapy-related intestinal microbial dysbiosis with
the use of n–3 PUFAs. Taken together, we provide new
insights into the clinical use of n–3 PUFAs for patients
with abdominal cancer with chemotherapy- or radiotherapy-
related intestinal microbial dysbiosis.

Composition of Commensal Bacteria in the
Human Intestinal Tract
In healthy individuals, the number of species of commensal
bacteria in the gut ranges from 500 to 1000 because the
selection pressure in the gut restricts bacterial diversity
(21). Within the gut, phyla including Bacteroidetes and
Firmicutes account for∼98%of intestinalmicroflora (21, 22).
By contrast, Proteobacteria, Actinobacteria, and Fusobacteria
account for <1% (23). However, gut microbe composition
varies among healthy individuals (24). Nevertheless, the
proportions of anaerobes are overwhelmingly superior to the
aerobes in a healthy gut (25) because the microenvironment

in a heathy gut is anoxic, thus benefiting the growth of anaer-
obes (26), such as Bacteroides and Bifidobacterium (27). For
the distribution of intestinal microflora, the small intestine is
dominated by Firmicutes and Actinobacteria and the colon is
dominated by Bacteroidetes and the Lachnospiraceae family
(28). Collectively, the above information suggests that the
composition of commensal bacteria is well orchestrated in
the gut.

Specific Effects of Intestinal Commensal
Bacteria on Gut Homeostasis
The intestinal commensal bacteria are crucial in maintaining
gut homeostasis (29). As documented, the intestinal com-
mensal bacteria function in several ways, such as modulating
nutrient metabolism and absorption, maintaining epithelial
homeostasis, and improving gut immune tolerance (21,
29, 30).

The gut is the main site of food digestion, in which
dietary nutrients are metabolized and absorbed. Intestinal
commensal bacteria are important contributors to these
processes. By taking advantage of dietary nutrients, the
commensal bacteria are able to produce essential substances
benefiting human health, such as vitamin B-12 (31), vitamin
K-2 (32), and several essential amino acids (33). Simi-
larly, fermentation of dietary fibers by anaerobes including
Lactobacillus and butyrate-producing bacteria allows these
microbes to produce SCFAs, which include acetic acid,
butyric acid, and propionic acid (30, 34). The SCFAs
can be consumed by enterocytes for intracellular energy
production, thus facilitating the biochemical processes (30,
33–35). Moreover, the commensal bacteria participate in
the metabolism of bile acids. In this case, primary bile
acids can be converted into >20 different secondary bile
acid metabolites, which facilitate dietary lipid turnover and
absorption (36). In addition, a vegetarian diet is rich in
polyphenols (37). To achieve an appropriate bioavailability
of dietary polyphenols, the gut microbiota function in
metabolizing such polyphenols into absorbable compounds
(37). For example, equol, a metabolite of the soya isoflavone
daidzein, exhibits its high affinity toward estrogen receptor
(ER), thus provoking the biological effects by the interaction
between equol and ER (37).

In addition to nutrient metabolism and absorption, the
intestine serves a barrier function, because it is the intestinal
epithelium that separates the human body from the outside
environment. To avoid epithelial injury, Lactobacillus forms
a biofilm covering the epithelium to separate the pathogen-
associated receptors on enterocytes from harmful bacteria
in the gut (38). And Streptococcus thermophiles can produce
lactic acid to inhibit the growth of harmful bacteria by
decreasing the pH of the intestinal tract (39). Moreover, the
commensal bacteria help maintain the integrity of the in-
testinal epithelium. For example, Lactobacillus can stimulate
the biosynthesis of heat-shock protein 72 within enterocytes
in a p38 mitogen-activated protein kinase (p38/MAPK)–
dependent manner, leading to an increased tolerance of en-
terocytes toward foreign stimuli (40). In addition, the SCFAs
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produced by Lactobacillus or by butyrate-producing bacteria
function in improving epithelial homeostasis (30, 33–35).
By taking advantage of SCFAs, the intestinal epithelial cells
upregulate their expressions of genes related to cell differ-
entiation and proliferation (33, 34). Meanwhile, upon SCFA
stimulation, goblet cells can increase their mucus production
and secretion (30, 33, 35).Moreover, SCFAs protect intestinal
epithelial cells against oxidative stress–induced apoptosis
(31). In addition to these effects, SCFAs exert several other
impacts on intestinal barrier, such as the inhibition of NF-
κB, activation of inflammasomes and subsequent production
of IL-18, increased secretion of secretory IgA (sIgA) by B
cells, and increased proportions of T-regulatory cells and
tolerogenic dendritic cells in the intestine (30). In this
aspect, the SCFA-producing bacteria are crucial to inducing
gut immune tolerance toward lumen antigens. However,
when being challenged with chemotherapy or radiotherapy,
intestinal microbial dysbiosis commonly occurs (7). In this
context, Lactobacillus or butyrate-producing bacteria were
decreased in the gut (41, 42), thus weakening the intestinal
barrier function.

Chemotherapy- or Radiotherapy-Related
Intestinal Microbial Dysbiosis andMucositis
Development
Characteristics of chemotherapy- or
radiotherapy-related intestinal microbial dysbiosis
The pathogenesis of intestinal mucositis after chemotherapy
or radiotherapy is complicated (43, 44). Herein, chemo-
therapy- or radiotherapy-related intestinal microbial
dysbiosis enables proinflammatory responses within
the gut to be sustained (7). Commonly, chemotherapy-
or radiotherapy-related intestinal microbial dysbiosis
is characterized by an imbalance in the proportions of
beneficial bacteria and harmful bacteria, perhaps even
presenting as an absolute dearth of beneficial bacteria and
overreproduction of harmful bacteria in the gut (7). With
regard to the contributions of intestinal microbial dysbiosis
to the pathogenesis of mucositis, it has been shown that oral
delivery of feces from enteritic mice caused germ-free mice
to become predisposed to colitis induced by dextran sulfate
sodium (45). Moreover, the germ-free mice were more
resistant to ionizing irradiation than conventional mice (46)
because turnover of the intestinal epithelium in germ-free
mice is impaired due to the lack of commensal bacteria,
which contribute to epithelial self-renewal in conventional
mice (47). As noted above, both ionizing irradiation and
chemical reagents selectively kill the expanding cells within
crypts (2, 3). Alternatively, even in the case of intestinal
microbial dysbiosis, several species of harmful bacteria, such
as E. coli (48) and Fusobacterium (49), have been shown to
stimulate epithelial turnover in conventional mice.

Clinically, remarkable alterations in the constitution of
the intestinal microbiota are observed after chemotherapy
or radiotherapy (Table 1). Such alterations are associated
with dysfunctions of the intestinal barrier. In the intestinal

microbial dysbiosis induced by abdominal radiotherapy,
compared with patients without diarrhea, patients with
diarrhea symptoms presented with a higher abundance
of Bacteroides, Escherichia, and Megamonas in their feces
(42). Likewise, a decline in the fecal proportion of mem-
bers of the Firmicutes phylum is also a typical feature
of intestinal microbial dysbiosis induced by chemotherapy
and pelvic radiotherapy (51, 52). In addition, Wang et al.
(42) determined that if the 16S ribosomal RNA ratios of
Firmicutes to Bacteroides in feces were >2.15 in patients
before receiving abdominal radiotherapy, it would predict
that they were more susceptible to enteritis than patients
with ratios <1.79, suggesting that the ratio of Firmicutes
to Bacteroides could be used as an indicator of enteritis.
Nevertheless, on the basis of recent data, we propose that
this indicator may not be applicable to patients with long-
term intake of antibiotics or those with inflammatory bowel
disease due to the pre-existing intestinal microbial dysbiosis
in these patients before cancer treatment (6). Moreover, the
patients with diarrhea exhibited sharp elevations in serum
LPS after abdominal radiotherapy as well. For the alterations
in intestinal microbiota after chemotherapy, Montassier
et al. (50) identified that the feces of these patients contained
high proportions of Proteobacteria and Enterobacteriaceae,
thus resulting in metabolic disorders of nucleotides, energy,
and vitamins among these patients. In addition, among the
patients with diarrhea after chemotherapy, there were de-
creased amounts of Lactobacillus and Bifidobacterium in the
feces, with accompanying increased proportions ofE. coli and
Staphylococcus (41). However, from the published literature,
evidence suggesting that radiotherapy can significantly alter
the fecal proportions of Lactobacillus and Bifidobacterium is
still unavailable (42, 52, 54).

Chemotherapy- or radiotherapy-related intestinal
microbial dysbiosis provokes the proinflammatory
events in the lesioned gut
The robust activation of the NF-κB signaling pathway by
the interactions between the ligands of Toll-like receptors
(TLRs) and TLRs on enterocytes contributes significantly
to the disordered milieu present within the inflammation
of a lesioned gut (55). The TLR ligands of gut microbes
are recognized by the TLRs on enterocytes; in this context,
downstream transcriptional factors of the NF-κB family alter
their target genes, which ultimately provokes the stressed
cells to produce different inflammatory cytokines (56). For
example, when being challenged with chemotherapy or
radiotherapy, TLR4 drives the secretions of IL-1β , TNF-α,
and IL-6 by enterocytes corresponding to LPS-producing
bacteria (11–13, 57). This underlying mechanism is shown
in Figure 1. Recently, the specific relation between radiation-
induced intestinal microbial dysbiosis and the host secretion
of IL-1β was identified by Gerassy-Vainberg et al. (45).
They found that 3 dominant bacterial phyla—Proteobacteria,
Verrucomicrobia, and Firmicutes—had altered proportions in
an irradiated gut. By using the genera classification method,
Akkermansia in the Verrucomicrobia phylum was found to
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TABLE 1 Characteristics of chemotherapy- or radiotherapy-related dysbiosis1

Study, year Disease/no. Chemo- or Bacteria-detecting
(ref) of patients radiotherapy techniques Samples Main findings

Wang et al., 2015 (42) Cervical cancer/8
Anal cancer/1
Colorectal cancer/2

Pelvic radiotherapy DT:
44 ∼ 50 Gy in 22 ∼ 25
fractions

454 Pyrosequencing Feces • Bacterial phylum:
Firmicutes vs. Bacteroidetes ratio ↓

• Bacterial family:
Lachnospiraceae ↓

• Bacterial genus: Faecalibacterium ↓,
Oscillibacter ↓, Roseburia ↓,
Streptococcus ↓, Clostridium XIVa ↑,
Bacteroides ↑

• Diarrhea vs. no diarrhea: Clostridium XIVa
↓, Sutterella ↓

Montassier et al., 2015 (50) Non-Hodgkin
lymphoma/28

Chemotherapy 454 Pyrosequencing Feces • Bacterial phylum: Firmicutes ↓,
Actinobacteria ↓, Proteobacteria ↑

• Bacterial family: Enterococcaceae ↑,
Enterobacteriaceae ↑

• Bacterial genus: Ruminococcus ↓,
Oscillospira ↓, Blautia ↓, Lachnospira ↓,
Roseburia ↓, Dorea ↓, Coprococcus ↓,
Anaerostipes ↓, Clostridium ↓, Collinsella
↓, Adlercreutzia ↓, Bifidobacterium ↓,
Citrobacter ↑, Klebsiella ↑, Enterococcus
↑,Megasphaera ↑, Parabacteroides ↑

• Capacities of metabolism: energy
metabolism ↓, cofactors metabolism ↓,
vitamins metabolism ↓, glycan
metabolism ↑, signal transduction ↑,
xenobiotics biodegradation, ↑

Montassier et al., 2014 (51) Non-Hodgkin
lymphoma/8

Chemotherapy 454 Pyrosequencing Feces • Bacterial phylum: Firmicutes ↓,
Actinobacteria ↓, Firmicutes vs.
Bacteroidetes ratio ↓, Proteobacteria ↑,
Bacteroidetes ↑

• Bacterial genus: Blautia ↓,
Faecalibacterium ↓, Roseburia ↓,
Bacteroides ↑, Escherichia ↑

Nam et al., 2013 (52) Gynecological cancer/9 Pelvic radiotherapy DT:
50.4 Gy in 28 fractions

454 Pyrosequencing Feces • Bacterial phylum: Firmicutes ↓,
Fusobacterium ↑

• Bacterial family: Eubacteriaceae ↓,
Fusobacteriaceae ↑, Streptococcacea ↑

Stringer et al., 2013 (41) Colorectal cancer/11
Breast cancer/2
Melanoma/1
Healthy volunteers/2

Chemotherapy qPCR Feces • Bacterial genus: Lactobacillus ↓,
Bacteroides ↓, Bifidobacterium ↓,
Enterococcus ↓, Staphylococcus ↑

• Bacterial species: Escherichia coli ↑
Zwielehner et al., 2011 (53) Leukemia/5

Myeloma/2
Non-Hodgkin

lymphoma/3
Gastrointestinal

cancer/3
Breast cancer/1
Thymus cancer/1
Urothelial cancer/1
Ovarian cancer/1

Chemotherapy Bacterial 16S-sequencing Feces • Bacterial genus: Bifidobacteria ↓,
Lactobacillus ↓, Veillonella ↓, Clostridium
cluster XIVa ↓, Bacteroides ↑, Clostridium
cluster IV ↑

• Bacterial species: Faecalibacterium
prausnitzii ↑, Enterococcus faecium ↑,
Clostridium difficile ↑

Manichanh et al., 2008 (54) Abdominal tumors/10
Healthy controls/5

Abdominal
radiotherapy DT:
43.2∼54.0 Gy in 25
fractions

Bacterial 16S-sequencing Feces • Bacterial phylum:
Actinobacteria↑

• Bacterial class:
Bacilli↑, Clostridia↓

1DT, dose in total; ref, reference; ↓, decreased; ↑, increased.

be abundant, as was Sutterella in the Proteobacteria phylum.
Among these bacteria, the proportions of Proteobacteria
andVerrucomicrobiawere increased, whereas the proportion
of Firmicutes was decreased in the gut. Such alterations
were highly associated with an increased secretion of
IL-1β by the host. Moreover, when these irradiated mice
were administered their own feces orally, the concentration
of IL-1β within the lesioned colonic tissue increased further

(45). Moreover, some anti-inflammatory bacteria, such as
F. prausnitzii and Bifidobacterium (8, 58), decreased their
amounts, or even disappeared after chemotherapy (50,
59). In this context, the proinflammatory events could
become robust partially due to a lack of F. prausnitzii
and Bifidobacterium, which could induce host secretion of
IL-10 (58) and antagonize inhibitor of κB (IκB) degradation
by producing the nonlipophilic compounds (8), respectively.
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FIGURE 1 LPS-TLR4 activates the NF-κB signaling pathway.
During this process, MyD88 is recruited to TLR4. Then, IRAKs and
TRAF6 are activated step by step. Herein, TRAF6 activates the TAK1
molecule, which is essential for subsequent activation of the IKK
complex. The IKK complex can phosphorylate the IκB molecule,
which ultimately undergoes ubiquitination and degradation. Then,
the NF-κB, consisting of the subunits p50 and p65, will translocate
into the nucleus to initiate the transcriptions of genes encoding
IL-1β , IL-6, and TNF-α. IKK, inhibitor of κB kinase; IRAK, IL-1
receptor–associated kinase; I-κB, inhibitor of κB; MyD88, myeloid
differentiation factor 88; NEMO, NF-κB essential modulator; P,
phosphorylation; TAK1, TGF-β–activated kinase 1; TLR4, Toll-like
receptor 4; TRAF6, TNF receptor–associated factor 6; Ub,
ubiquitination; ↑, increase.
Similarly, Ruminococcus, Coprococcus, Dorea, and Roseburia
have been reported to be capable of inhibiting the activation
of the NF-κB signaling pathway among stressed enterocytes
(60). If these bacteria were absent after chemotherapy or
radiotherapy, intestinal inflammation potentially increased.

Chemotherapy- or radiotherapy-related intestinal
microbial dysbiosis increases oxidative stress
After chemotherapy or radiotherapy, intestinal inflammation
is followed by oxidative stress, because some proinflamma-
tory cytokines are capable of triggering the production of
oxyradicals (Figure 2). For example, IL-1β is capable of
inducing neutrophils to release superoxide through activa-
tion of the p38/MAPK signaling pathway (61). In addition,
IL-1β could stimulate the T-helper 17 (Th17) cells to produce

FIGURE 2 Inflammation provokes oxidative stress.
Proinflammatory cytokines, such as IL-1β , IL-6, IL-17A, and TNF-α,
can increase oxidative stress by recruiting neutrophils as well as
inducing neutrophils to produce ROS. AT1 receptor, angiotensin II
type 1 receptor; G-CSF, granulocyte colony-stimulating factor;
MKK3/6, mitogen-activated protein kinase kinase 3/6; p38 MAPK,
p38 mitogen-activated protein kinase; ROS, reactive oxygen
species.

IL-17A (62), which would aggravate the oxidative stress
through increasing endogenous secretion of granulocyte
colony-stimulating factor (G-CSF) (63). Likewise, TNF-α
could upregulate the expression of the gene encoding G-CSF
in stressed fibroblasts (64). G-CSF is a potent neutrophil-
recruiting cytokine, which could clear lesioned cells or
bacterial infection by releasing reactive oxygen species (ROS)
(65). Before infiltrating into lesioned sites, the circulating
neutrophils must pass through the microvascular wall to
reach their destination. IL-1β is also capable of upregulating
the expression of the gene encoding inducible NO synthase
(iNOS), thus enabling an increase in capillary permeability
by promoting the production of NO within the endothelium
(66). IL-6 is capable of promoting superoxide production
via upregulation of the expression of the gene encoding
the angiotensin II type 1 receptor on endothelial cells
(67). In return, such ROS stimulate IL-6 secretion by
inducing caveolin-1 to bind with Sirtuin 1 (Sirt1), therefore
leading to the inactivation of Sirt1 (68). From this aspect,
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FIGURE 3 Chemotherapy- or radiotherapy-related intestinal
microbial dysbiosis leads to dysfunction in the intestinal barrier.
First, the intestinal barrier can be compromised by LPS-producing
bacteria, leading to increased permeability. Second, the reduced
proportion of butyrate-producing bacteria enables the mucus
layer to be thinner than before. Third, gut concentrations of sIgA
are decreased after chemotherapy or radiotherapy. sIgA, secretory
IgA; ↑, increased; ↓, decreased.

the inflammation and oxidative stress after chemotherapy
or radiotherapy mutually aggravate the milieu within the
lesioned gut.

Chemotherapy- or Radiotherapy-Related
Intestinal Microbial Dysbiosis and Deficiency of
the Intestinal Barrier
The epithelial layer is known to be an important component
of the mucosal barrier. In heathy individuals, tight junctions
between epithelial cells play a pivotal role in maintaining
the permeability of the intestinal epithelium, allowing for
nutrient absorption while sequestering harmful substances
to the lumen (69). In addition, the mucus layer covering
the intestinal epithelium also contributes to mucosal barrier
function. This layer consists of glycoproteins, mucins, im-
munoglobulins, and butyrate (34, 35, 70) (Figures 3 and 4).
For example, mucin trimers build a biofilm that protects the
epithelial cells from lumen toxins (78), and sIgA is a very
important antibody able to neutralize toxins and pathogens
in the mucus layer (70). In a healthy gut, some beneficial
bacteria such as Lactobacillus and Streptococcus have been
reported to promote the biosynthesis of sIgA, (79). Butyrate

FIGURE 4 n–3 PUFAs attenuate chemotherapy- or
radiotherapy-related intestinal microbial dysbiosis. n–3 PUFAs
revert chemotherapy- or radiotherapy-related dysbiosis and
maintain the intestinal barrier. Intake of n–3 PUFAs restores the
beneficial microbiota via increasing the proportions of beneficial
bacteria and reducing the proportions of harmful bacteria. As a
result, the mucus layer is consolidated, intestinal permeability is
reduced, and the concentration of sIgA is restored. Reg 3γ ,
regenerating islet derived protein 3γ ; sIgA, secretory IgA; ↑,
increased; ↓, decreased.

is able to promote mucin synthesis by upregulating the
expression of the mucin 2 (MUC2) gene (80). In addition,
butyrate is capable of promoting the secretion of cathelicidin,
an antimicrobial peptide released by intestinal epithelial cells
(81). Hence, butyrate-producing bacteria play a key role
in maintaining the physiologic composition of mucus in a
healthy gut.With these processes, the intestinal barrier is well
maintained, thus improving the host’s defense against lumen
pathogens. However, when challenged by chemotherapy-
or radiotherapy-related intestinal microbial dysbiosis, the
permeability of the intestinal epithelium is increased and
the mucus layer is interrupted to a certain extent due to
intestinalmicrobial dysbiosis. In addition, themucositis after
chemotherapy or radiotherapy is always accompanied by
impaired barrier function (Figure 3).

Chemotherapy- or radiotherapy-related intestinal
microbial dysbiosis increases intestinal permeability
Intestinal microbial dysbiosis can increase intestinal perme-
ability. For example, LPS has been shown to be capable of
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increasing intestinal permeability, which was mediated by
an increased expression of TLR4 by enterocytes (Figure 3)
(82). In addition to LPS, IL-1β could disrupt the tight
junctions among epithelial cells by increasing the intracel-
lular production of myosin light chain kinase (MLCK) (83).
MLCK is capable of phosphorylating the myosin light chain
(MLC) at serine residue 19 (84). The phosphorylated MLC
subsequently activates Mg2+-myosin ATPase, resulting in
the contraction among perijunctional actomyosin filaments
and a widening of the intercellular spaces (83). However,
if further challenged with chemotherapy, the epithelial
permeability will deteriorate. For example, chemotherapy
was reported to induce the loss of Clostridium XIVa in
the gut (7). Clostridium XIVa physiologically maintains
intestinal permeability by increasing the gut concentration
of polyamine (85), a substance antagonizing LPS-induced
intestinal dysfunction (86). In addition, bothBifidobacterium
and Lactobacillus have been reported to be able to promote
the expression of genes encoding tight junction proteins,
such as occlaudin (87) and claudin (88). The intestinal
proportions of such bacteria are always decreased after che-
motherapy (41), enabling increases in epithelial permeability.

Chemotherapy- or radiotherapy-related intestinal
microbial dysbiosis leads to breakdown of the mucus
layer
Chemotherapy- or radiotherapy-related intestinal microbial
dysbiosis could disrupt the mucus layer due to the decreased
proportions of butyrate-producing bacteria (42, 50, 51),
such as Roseburia, Coprococcus, and Faecalibacterium (89).
In addition, the mucus layer could be directly destroyed
by several bacteria; Citrobacter, which increases in the gut
after chemotherapy (50), secretes mucinases and glycosi-
dases, which corrode the mucus layer (90). Furthermore,
chemotherapy increases the proportion ofEnterobacteriaceae
in the gut, which impairs the host’s capacity to absorb cys-
teine, proline, and methionine from the diet (50), resulting
in a reduction in the synthesis of mucin (91).

As mentioned above, sIgA is present in the mucus layer.
However, the gut concentrations of sIgA may be decreased
after radiotherapy because of intestinal microbial dysbiosis.
For example, the increased proportion of Sutterella in the
gut is a feature of radiation-related intestinal microbial
dysbiosis (45). To investigate the relation between Sutterella
and gut concentrations of sIgA, Moon et al. (92) observed
that, when adding Sutterella into the culture system of
intestinal epithelial cells in vitro, sIgA concentrations would
be inadequate in the apical side of cells because Sutterella
could degrade the bound secretory component, the cleaved
form of the polymeric Ig receptor (pIgR). The bound
secretory components on the intestinal epithelial cells assist
in transporting the dimeric form of sIgA from the basolateral
to the apical side of the epithelium and further prevent sIgA
frombeing degraded by bacterial proteases (93). In an animal
model, it was found that infection with Sutterella resulted
in an sIgA-low phenotype, which could be inherited by the
offspring (92). Moreover, the sIgA-low phenotype enabled

the hosts to be predisposed to dextran sulfate sodium–
induced colitis, suggesting the importance of Sutterella in
decreasing gut sIgA concentrations (92).

Therapeutic Potential of n–3 PUFAs for
Chemotherapy- or Radiotherapy-Related
Intestinal Microbial Dysbiosis
Biosynthesis of n–3 PUFAs
The molecular structure of PUFAs contains no less than
18 carbon atoms, and there are ≥2 pairs of double bonds
between the carbon atoms. According to the position of
the first double bond, PUFAs can be divided into n–3 and
n–6 FAs. Among these, linolenic acid (18:3n–3) and linoleic
acid (18:2n–6) are the shortest n–3 and n–6 PUFAs, and
they also serve as precursors of other n–3 and n–6 PUFAs
(94). Linolenic acid can be converted into EPA (20:5n–3)
(95), and after elongating and desaturating, EPA is finally
converted into DHA (22:6n–3) using β-oxidation (95). EPA
andDHAare referred to as the n–3 PUFAs (96). Linoleic acid,
however, can be converted into eicosatetraenoic acid, which
is an n–6 PUFA (97). Accumulating evidence has suggested
that the n–3 PUFAs play a critical role in attenuating
inflammation (98), whereas n–6 PUFAs are associated with
proinflammatory responses due to their contribution to the
biosynthesis of prostaglandin E2 (99). Moreover, n–3 PUFAs
have been shown to exert antagonistic effects on intestinal
microbial dysbiosis, resulting in an upregulated proportion
of beneficial bacteria instead of harmful bacteria in the gut
(Table 2).Therefore, n–3 PUFAs are candidates formanaging
chemotherapy- or radiotherapy-related intestinal microbial
dysbiosis.

n–3 PUFAs and increased beneficial bacteria
n–3 PUFAs can increase the gut proportions of beneficial
bacteria (Figure 4). For example, Caesar et al. (71) found
that mice fed fish-oil diets exhibited higher proportions
of Lactobacillus and Akkermansia muciniphila in the gut
than those fed lard. However, serum concentrations of LPS
and bacterial DNA were obviously elevated along with high
amounts of circulating proinflammatory cells after the lard
intervention, reflecting the potential of fish oil to attenuate
inflammation (71). To evaluate the anti-inflammatory effects
of n–3 PUFAs rather than n–6 PUFAs in fish oil, Ghosh
et al. (102) compared the severity of Citrobacter rodentium–
induced colitis between mice fed diets with n–3 PUFAs
or n–6 PUFAs for 5 wk. Relevant results showed that the
mice fed the diets containing n–3 PUFAs exhibited more
Lactobacillus and Bifidobacterium in the feces along with
less gut inflammation than the mice fed diets containing
n–6 PUFAs (102). Lactobacillus has been reported to be
capable of suppressing the activation of the NF-κB signaling
pathway by intracellularly stabilizing IκB (103), leading to
downregulation of the expression of the genes encoding
TNF-α and IL-8 and upregulation of IL10 expression within
enterocytes (104). In addition, Lactobacillus could strengthen
the phagotrophic function of macrophages (105), and
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TABLE 2 Clinical and preclinical studies associated with n–3 PUFAs affecting microbiota constitution1

Study, year (ref) Participants/n
Dietary supple-
ment/duration Techniques Samples Main findings

Watson et al., 2017 (19) Healthy
volunteers/20

4 g mixed DHA/EPA
(1:1)/d for 8 wk

NGS Feces • Bacterial family: Clostridiaceae ↑, Sutterellaceae
↑, Akkermansiaceae ↑

• Bacterial genus: Coprococcus ↓,
Faecalibacterium ↓, Bifidobacterium ↑,
Oscillospira ↑, Lachnospira ↑, Roseburia ↑

Menni et al., 2017 (73) Female
volunteers/876

Estimated food intake
of n–3 PUFAs were
obtained from FFQs

NGS Blood and
feces

• 350 mg DNA/d led to a serum
DHA concentration of 0.14 mmol/L

•Microbiome α diversity ↑
• Bacterial family:
Lachnospiraceae family ↑,
Ruminococcaceae family ↑

Noriega et al., 2016 (72) A healthy
volunteer

600 mg n–3 PUFAs
(fish-protein diet)/d
for 2 wk

NGS Feces • Bacterial phylum: Bacteroidetes ↓, Actinobacteria
↓, Firmicutes ↑

• Bacterial genus: Faecalibacterium ↓, Blautia ↑,
Roseburia ↑, Coprococcus ↑, Ruminococcus ↑,
Subdoligranulum ↑

Balfego et al., 2016 (100) Patients with type
2 diabetes/35

3.0 g EPA and DHA
from sardines for 5
d/wk for 6 mo

qPCR Blood and
feces

• Bacterial phylum: Firmicutes ↓, Firmicutes vs.
Bacteroidetes ratio ↓

• Bacterial genus: Bacteroides-Prevotella ↑
Caesar et al., 2015 (71) C57BL/6 mice Experimental arm:

diets enriched with
menhaden fish oil for
11 wk; control arm:
diets enriched with
lard for 11 wk

454 pyrose-
quencing

Feces • Bacterial phylum: Actinobacteria ↑,
Verrucomicrobia ↑

• Bacterial class: Alphaproteobacteria ↑,
Deltaproteobacteria ↑

• Bacterial genus: Bifidobacterium ↑, Adlercreutzia
↑, Lactobacillus ↑, Streptococcus ↑

• Bacterial species: Akkermansia muciniphila ↑
Kaliannan et al., 2015 (18) Fat1+/− mice Diet enriched with

n–6 PUFAs (10% corn
oil) or n–3 PUFAs (5%
corn oil and 5% fish
oil) for 8 mo

qPCR Feces • Intestinal tissue n–6:n–3 PUFA ratio ↓
Low n-6:n-3 PUFA ratio led to:
• LPS-suppressing and/or anti-inflammatory
bacteria: Bifidobacterium ↑, Akkermansia
muciniphila ↑, Clostridium clusters IV and
XIVa ↑, Enterococcus faecium ↑, Lactobacillus
gasseri ↑

• LPS-producing and/or proinflammatory
bacteria: Proteobacteria ↓,
Enterobacteriaceae
↓, Escherichia coli ↓ gamma- and
delta-proteobacteria ↓, Prevotella ↓,
Fusobacterium ↓, Clostridium cluster XI ↓,
segmented filamentous bacteria ↓

Yu et al., 2014 (101) Imprinting control
region mice

Control arm: natural
saline for 15 d;
low-dose arm: fish oil
(5 mg/kg) for 15 d;
high-dose arm: fish
oil (10 mg/kg) for 15
d (fish oil contained
40% EPA and 27%
DHA)

PCR Feces • Bacterial genus:
Helicobacter ↓, uncultured bacterium clone,
WD2_aaf07d12 (GenBank: EU511712.1) ↓,
Clostridiales bacterium ↓,
Sphingomonadales bacterium ↓,
Pseudomonas ↓,
Firmicutes bacterium ↑

1Fat1, FAT atypical cadherin 1; NGS, Next Generation Sequencing; ref, reference; ↓, decreased; ↑, increased.

Bifidobacteriumwas found to helpmaintain intestinal barrier
function by inhibiting LPS-induced autophagy among en-
terocytes (106). In addition, Bifidobacterium could alleviate
intestinal inflammation by decreasing IL-8 secretion from
enterocytes (107) and increasing the amount of T-regulatory
cells at injured sites (108). Moreover, treatment with n–3
PUFAs could increase the gut proportion of A. muciniphila
(71), which induces Paneth cells to produce mucins and the
antimicrobial peptide, the regenerating islet derived protein
3γ (Reg 3γ ) (109).

As mentioned above, the proportions of butyrate-
producing bacteria in the gut are commonly decreased after
chemotherapy or radiotherapy (42, 50). Recent evidence
suggests that the intake of n–3 PUFAs could increase
the relative abundance of butyrate-producing bacteria in
feces, such as Roseburia, Coprococcus, Allobaculum, and
Butyrivibrio (72–75). In addition to its contributions to
the formation of the mucus layer, butyrate also has anti-
inflammatory functions (110). First, butyrate is able to
inhibit NF-κB translocation into the nucleus by suppressing
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IκB degradation (111), resulting in high endogenous
concentrations of IL-10 and low concentrations of IL-2
(112). Second, butyrate exclusively activates PPAR-γ , a
nuclear receptor that antagonizes the expression of the gene
encoding iNOS (113), and a decline in iNOS has been shown
to hamper the production of nitrate by intestinal epithelial
cells (114). Nitrate functions as a respiratory electron
acceptor, which is essential for the reproduction of some
pathogenic bacteria, such as Escherichia and Salmonella
(114). When lacking nitrate, the gut proportions of these
pathogenic bacteria decrease (77). Therefore, the high
production of butyrate after an intervention with n–3 PUFAs
can attenuate intestinal inflammation.

n–3 PUFAs and decreased harmful bacteria
As mentioned above, the typical feature of chemotherapy-
or radiotherapy-related intestinal microbial dysbiosis is the
increased gut proportions of harmful bacteria, such as LPS-
producing bacteria andmucolytic bacteria (42, 50). Although
E. coli and Desulfovibrio are capable of producing LPS (115),
an animal study confirmed that Desulfovibrio infection also
promoted the conversion of sulfates into sulfides (116), the
latter of which corrupted the mucosal layer and resulted
in ulcerative lesions (116). Likewise, the mucosal-adherent
members of the Bacteroides include mucolytic species, and
these mucolytic species can also impair the mucus layer
(117). Recent evidence has confirmed that treatment with
n–3 PUFAs could reduce the proportions of Desulfovibrio,
E. coli, and the mucolytic species of Bacteroides (74, 76, 118)
in the gut. Functionally, n–3 PUFAs have been reported to
be capable of promoting the synthesis of intestinal alkaline
phosphatase (IAP) (18), which could detoxify LPS through
dephosphorylation (119). Moreover, n–3 PUFAs assisted in
increasing the fluidity of the biomembrane by excluding
cholesterol from the phospholipid layer (120), facilitating the
bioactivity of IAP (121). Therefore, n–3 PUFAs can reduce
the mucosal damage associated with intestinal microbial
dysbiosis (Figure 4).

n–3 PUFAs and reduced inflammation
Intestinal microbial dysbiosis provokes inflammation within
the gut after chemotherapy or radiotherapy. Nevertheless,
recent studies have suggested that n–3 PUFAs could reduce
the proinflammatory responses toward intestinal microbial
dysbiosis (122). Functionally, n–3 PUFAs could directly
block the signal transduction from TLR4 but not from
its downstream molecules, such as MyD88 (Figure 5)
(123). In this context, activation of the NF-κB signaling
pathway was inhibited, thus resulting in decreased secretions
of IL-1β , IL-6, and TNF-α (124–126). Apart from this
action, DHA was shown to be capable of suppressing the
bioactivity of the IκB kinase (IKK) complex by inhibiting
its phosphorylation (Figure 5) (127). Meanwhile, IκB is a
molecule that binds with NF-κB to block the translocation
of NF-κB into the nucleus for subsequent activation of
downstream gene expression (56). In this context, IκB is
unable to be phosphorylated and is subsequently degraded

FIGURE 5 n–3 PUFAs attenuate inflammation and oxidative stress.
Herein, n–3 PUFAs directly interact with TLR4, IKK, and PPAR-γ to
inhibit the activation of NF-κB. As a result, secretions of IL-1β , IL-6,
and TNF-α by stressed cells are inhibited. In addition, n–3 PUFAs
can induce Nrf2 to dissociate from Keap1 to initiate the expressions
of antioxidative genes encoding SOD, HO-1, and NQO-1. HO-1,
heme-oxygenase 1; IKK, inhibitor of κB kinase; I-κB, inhibitor of κB;
Keap1, Kelch-like ECH–associated protein 1; NQO-1,
NAD(P)H-quinone oxidoreductase 1; Nrf2, nuclear factor erythroid
2 p45-related factor 2; P, phosphorylation; SOD, superoxide
dismutase; TLR4, Toll-like receptor 4; Ub, ubiquitination; ↑, increase;
↓, decrease.

by ubiquitination, resulting in the cytoplasmic accumulation
of IκB (127). On this basis, transcriptional activation of
NF-κB target genes was prohibited (56). Similarly, EPA
and DHA could activate PPAR-γ (Figure 5) (128), which
can antagonize the expression of NF-κB target genes by
inhibiting the formation of the transcriptional complex of
NF-κB (129), thus resulting in reduced inflammation.

n–3 PUFAs and reduced oxidative stress
Intestinal inflammation and oxidative stress enable aggrava-
tion of tissue damage (130). Oxidative stress could induce the
activation of the nuclear factor erythroid 2 p45–related factor
2 (Nrf2) signaling pathway to protect cells against oxidative
damage (131). DHA was reported to be capable of switching
on the Nrf2 signaling pathway to reduce oxidative stress,
lessening the extent of tissue damage, because DHA and its
derivative enabled Nrf2 to dissociate from Kelch-like ECH–
associated protein 1 (Keap1) as a result of oxidative stress
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(132). Then, the free formofNrf2 boundwith the antioxidant
response elementwithin the nucleus, targeting the expression
of genes encoding superoxide dismutase (SOD), catalase,
heme-oxygenase 1, and NAD(P)H-quinone oxidoreductase
1 (133, 134). In the gut, different bacteria exhibited different
tolerances to oxidative stress (135, 136), and the reduced
extent of oxidative stress provided optimal conditions for
the reproduction of beneficial bacteria (135). By contrast,
oxidative stress favored the preservation of some harmful
bacteria, such as E. coli and Enterococcus, because their OxyR
proteins functioned as defenders against the oxidative burst
by host macrophages after being engulfed (136). However,
the antioxidant system in beneficial bacteria including most
species of Lactobacillus was not as potent as the OxyR of
E. coli in clearing ROS (135). Moreover, several species
of Lactobacillus even lacked SOD (135). Therefore, using
n–3 PUFAs to attenuate oxidative stress will allow for the
maintenance of the proper proportions of some beneficial
bacteria in the gut (Figure 5).

Anticancer Effect of n–3 PUFAs
Clinically, patients undergoing chemotherapy or radiother-
apy always have solid tumors. Herein, the long-standing
inflammation within a tumor bed potentially has negative
impacts on tumor remission after chemotherapy or radio-
therapy, partially due to the infiltration of some cancer-
facilitating cells such as M2 macrophages and IL-17A–
producing cells (137, 138). More recently, the evidence
reported by Wong et al. (139) showed that oral adminis-
tration of feces from patients with colorectal cancer (CRC)
either to conventional mice or to germ-free mice promoted
intestinal carcinogenesis due to the increased amount of
Th17 cells within the gut tissue. Gut microbes can play a crit-
ical role in inflammation and other pathological processes.
Nevertheless, the anti-inflammatory and antioxidative effects
of n–3 PUFAs have been confirmed. Moreover, by crossing
adenomatosis polyposis coli (Apc)min/+ mice with FAT
atypical cadherin 1 (Fat1) mice, Han et al. (140) found that
n–3 PUFAs could delay the formation of intestinal polyposis
among the offspring. Likewise, previous basic studies also
validated the anticancer effects of n–3 PUFAs by using
immunodeficient mice bearing subcutaneous xenografts of
HCT-116 and HT-29 cells (141, 142). Several clinical trials
have been undertaken to evaluate the potential of n–3 PUFAs
to reduce CRC risks in humans (Table 3).

To show the anticancerous effect of n–3 PUFAs, the
following mechanism is proposed. Activation of the Wnt/β-
catenin signaling pathway drives the proliferation of CRC
cells (147). n–3 PUFAs could distinctly reduce the synthesis
of prostaglandin E2 (148), which has been reported to be
capable of activating theWnt/β-catenin signaling pathway by
cross-talking with the protein kinase (PK) family members,
including PKA, PKB, and PKC (149–151). With the addi-
tion of n–3 PUFAs, prostaglandin E2–induced proliferation
among intestinal stem cells is controlled. In addition to
reducing the synthesis of prostaglandin E2, EPAwas reported
to be the substrate of cyclo-oxygenase 2 (COX-2), which

catalyzes EPA into prostaglandin E3 (152). Prostaglandin E3
acts as a counterpart of prostaglandin E2, thus limiting the
proliferation among intestinal stem cells (153). In another
study, the C57BL/6J mice bearing azoxymethane-dextran
sulfate sodium–induced CRC exhibited high abundances of
Lactobacillus in their gut after receiving EPA treatment, with
accompanying reduced sizes of colorectal tumors, decreased
amounts of proliferative cells, and increased amounts of
apoptotic cells within the tumors (154). However, the mech-
anisms underlying the anticancerous effects of beneficial
bacteria on CRC deserve further investigation.

n–3 PUFA Administration and Safety
According to recommendations from the Dietary Guidelines
Advisory Committee in 2015, although no upper limit was
given for dietary fat intake, SFAs should be replaced by
PUFAs, suggesting the importance of PUFAs for human
health. To date, the US FDA has approved several fish-oil
health products. For preventing coronary artery disease, the
recommended daily intake of fish oil for a heathy individual
is 1 g, which contains ∼200–800 mg EPA + DHA (155).
However, the most suitable dose for cancer patients remains
to be determined, although daily doses of EPA + DHA
ranging from 1.0 g to ∼7.0 g were found to be safe among
patients with CRC (20). However, n–3 PUFAs are easily
oxidized due to the presence of 6 double bonds, which
makes these compounds susceptible to oxygen free radical
attack (156). As a result, n–3 PUFAs are converted into
malondialdehyde (MDA) and 4-oxo-2-nonenal (4-OHE)
(156, 157). Thus,MDA is a biomarker reflecting the oxidation
of n–3 PUFAs in vivo, and urinary MDA concentration
is commonly tested after the intake of n–3 PUFAs (157).
Recently, GC-MS was applied to quantify the concentrations
of n–3 PUFAs in blood samples (158). In addition, DHA
concentrations in erythrocytes or in plasma were found
to predict organ DHA concentrations (159). Importantly,
4-OHEwas determined to induce genemutations by forming
4-OHE–DNA adducts (160). A recent study found that fecal
extracts from rats fed n–3PUFAs plus dietary oxidants exhib-
ited higher intestinal toxicities than those supplemented with
dietary oxidants alone (157).Hence, diet should be controlled
in cancer patients receiving n–3 PUFAs. Red meat should
be avoided because heme iron and myoglobin are able to
oxidize n–3 PUFAs (157). Optimally, food containing high
quantities of vitamin E, vitamin C, polyphenols, tocopherols,
and carotenoids should be considered (161). In case of
infection, fish oil should be avoided, because a previous study
showed that fish oil could cause sepsis by impairing LPS
dephosphorylation activity (102).

Conclusions
n–3 PUFAs could be capable of reverting chemotherapy- or
radiotherapy-related intestinal microbial dysbiosis, attenuat-
ing intestinal inflammation and reducing oxidative stress in
the gut. Therefore, administering n–3 PUFAs should be an
option in these patients.
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TABLE 3 Potential therapeutic uses of dietary n–3 PUFAs in patients with cancer1

Study, year (ref) Patients/n
Anticancer
therapy

Dietary supple-
ment/duration Main findings

Ma et al., 2015 (143) Gastric and colorectal
cancer patients/99

Surgery Experimental arm:
80∼140 mg n–3
PUFAs/kg in
intravenous fat
emulsion/d for 8 d;
control arm: soybean
oil and medium-
chain TGs in a lipid
emulsion for 8 d

• Improved lipid metabolism:
FFAs ↓, TGs ↓, HDL ↑

• Attenuated inflammation: serum IL-6 ↓,
serum C-reactive protein ↓, serum TNF-α
↓, serum procalcitonin ↓

Faber et al., 2013 (144) Cancer patients/38 Radiotherapy 3.6 g mixed DHA:EPA
(1:2)/d for 7 d

• EPA and DHA in white blood cells ↑, serum
PGE2 concentrations ↓

Murff et al., 2012 (145) Polyp-free control
subjects/3166

Adenomatous polyp
patients/1597

Hyperplastic polyp
patients/544

— Dietary PUFA intake
was calculated from
FFQs

• Adequate intakes of n–3 PUFAs led to:
production of PGE2 in women ↓, risk of
colorectal adenomas in women ↓

• Excessive intakes of α-linolenic acid led to:
risk of hyperplastic polyps in men ↑

West et al., 2010 (146) Familial adenomatous
polyposis/55

Surgery 2 g EPA-FFAs/d
for 6 mo

• Polyp number ↓. sum of polyp diameters ↓,
mucosal EPA concentrations ↑

1PGE2, prostaglandin E2; ref, reference; ↓, decreased; ↑, increased.
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