Skip to main content
. 2019 Feb 1;3(2):237–273. doi: 10.1162/netn_a_00062

Figure 2. .

Figure 2. 

The full pipeline for the DCM forward model. The model involves three node network stimulated during the cognitive experiment (i). The parameter set describing the dynamics in this network includes a fixed connectivity matrix (A), modulatory connections (B), and inputs to the nodes (C) (ii). In the equation describing the fast neuronal dynamics, z denotes the dynamics in the nodes, and u is an experiment-related input. Red: excitatory connections. Blue: inhibitory connections. The dynamics in this network can be described with use of ordinary differential equations. The outcome is the fast neuronal dynamics (iii). The neuronal time series is then convolved with the hemodynamic response function (HRF) (iv) in order to obtain the BOLD response (v), which may be then subsampled (vertical bars). This is the original, bilinear implementation of DCM (K. J. Friston et al., 2003). Now, more complex versions of DCM with additional features are available, such as spectral DCM (K. J. Friston et al., 2011), stochastic DCM (Daunizeau et al., 2012), nonlinear DCM (Stephan et al., 2008), two-state DCM (Marreiros et al., 2008), large DCMs (Frässle et al., 2018; Frässle, Lomakina-Rumyantseva, et al., 2016; Seghier & Friston, 2013) and so on.