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Abstract

Pd(0)-catalyzed Mizoroki-Heck reactions traditionally exhibit poor reactivity with polysubstituted, 

unbiased alkenes. Intermolecular reactions with simple, all-carbon tetrasubstituted alkenes are 

unprecedented. Here we report that pendant carboxylic acids, combined with bulky monophospine 

ligands on palladium, can direct the arylation of tri- and tetrasubstituted olefins. Quaternary 

carbons are established at high Fsp3 attached-ring junctures and the carboxylate directing group 

can be removed after coupling. Carboxylate directivity prevents over-arylation of the new, less 

substituted alkene, which can be diversified in subsequent reactions.
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The Mizoroki-Heck reaction1 has become a staple of cross coupling and has transformed 

how molecules are synthesized. A large volume of research in the decades since its 

discovery has identified some limitations in its scope.2 For example, electronically unbiased, 

cyclic and sterically hindered olefins remain challenging substrates with low inherent 

reactivity and selectivity3 in traditional Heck arylations.4 Intermolecular Heck reactions are 
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unprecedented with all-carbon tetrasubstituted olefins, with the exception of strained 

hydrocarbons5 like bicyclopropylidene.6 Here we show that potassium carboxylates serve as 

directing groups to enable single Heck reactions of triand tetrasubstituted alkenes, including 

hindered cyclic motifs. Products avoid polyarylation and include sp2-sp3 attached-ring 

motifs and diversifiable unsaturated building blocks, otherwise inaccessible by cross-

coupling methods.

Many different approaches have been applied to extend the classical Heck reaction to more 

traditionally challenging substrates (Figure 1a). Early work by Grigg7 and Overman8 

demonstrated the utility of intramolecular Heck reactions to overcome the reactivity barrier 

for highly substituted substrates, with their groups and others forging various spiro- and 

polycyclic systems from tri- and some tetrasubstiuted olefins. The reactivity enhancement 

from intramolecular delivery of the PdII-Ar species was leveraged in several directed Heck 

reactions.9 Notably, the groundbreaking work of Hallberg10 and Carretero11 used tethered 

functional groups bearing basic nitrogens to alter arylation regiochemistry and relay 

stereochemical information, with the former able to form quaternary centers from a fully-

substituted, albeit polarized substrate. A seminal report from White and coworkers in 2008 

established that oxidative Heck conditions could engage unbiased terminal olefins using 

weakly directing functional groups to yield terminally arylated products,12 and Sigman in 

2014 extended the asymmetric redox-relay Heck reaction to trisubstituted olefins with 

oxidative conditions.13,14 With the exception of enelactams, redox-relay Heck reactions do 

not tolerate cyclic substrates, which tend to yield mixtures of regioisomers.15

Heck reactions with sterically hindered and unbiased olefins remain non-trivial in many 

cases, evidenced by recent syntheses of κ-opioid receptor agonists 20-nor-SalA16 and 

O6C-20-nor-SalA.17 A late-stage Heck arylation on a hindered, unbiased olefin could not be 

achieved using traditional or oxidative Heck conditions. However, incorporation of a 

carboxylic acid close to the alkene significantly accelerated arylation relative to deactivation 

of the palladium catalyst or decomposition of the aryl halide, 3-bromofuran (Figure 1c).16 

Reactivity enhancement from the direction of carboxylic acids had been observed in the C-H 

activation literature, but until now has not been established in Heck arylation.18 We 

wondered if carboxylate-directivity could be applied to traditionally unreactive Heck 

substrates.19 Here we report that carboxylic acids accelerate and direct the intermolecular 

Heck reaction of tri- and tetrasubstituted olefins (Figure 1d) in substrate types (unbiased, 

cyclic, hindered) that are unrepresented in the Heck literature, directed or undirected. The 

reactivity enhancement of the potassium carboxylate allows the formation of quaternary 

centers from linear, cyclic, bicyclic, aliphatic, and hindered styrenyl substrates. Carboxylate-

directivity seems to inhabit a ‘goldilocks region’ among Mizoroki-Heck regimes: cationic-

Pd conditions favor chain-walking into a terminating group13,14 and chelating directing 

groups prevent β-hydride elimination altogether.19 In addition, previously-established 

directing groups like amines and esters are ineffective in promoting the coupling. 

Carboxylate-directivity promotes regioselective engagement of hindered alkenes yet allows 

regio- and stereoselective β-hydride elimination without iterative arylation of the new, less 

hindered alkene.
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We identified tetrasubstituted alkene 1a as a model substrate to explore and optimize 

carboxylate directivity (for a full table of optimization, see the Supporting Information). 

Type of base significantly influenced yield: lithium, sodium and cesium cations were 

inferior to potassium, and ammonium cation was ineffective. A strong influence of cation 

has previously been observed in carboxylate-directed C-H insertion chemistry, where a 

proposed κ2 binding of alkali cation is suggested to induce a κ1 Pd-carboxylate binding 

mode.18 The effect here can alternatively be explained by altered aggregation states of 

different alkali cations,20 or perturbed Lewis basicity of the alkali carboxylates. Choice of 

phosphine proved crucial for efficiency and breadth of scope. Bisphosphines were 

ineffective, likely due to occupancy of the Pd valence necessary for carboxylate coordination 

(entries 4–5). Rapidly dissociating, larger bite-angle bisphosphines delivered small amounts 

of product (entry 6). A bulky mono-phosphine proved optimal for the reaction, either 

favoring an L1Pd-Ar species with open binding sites for both carboxylate and alkene, or 

dissociating from Pd to promote a cationic pathway.21 Interestingly, XPhos performed 

poorly, although it offered the highest yields in 20-nor-SalA.16 While simple 

triphenylphosphine was capable of promoting the reaction, it was outcompeted by the 

bulkier TrixiePhos, especially with electron rich arenes (entry 9 vs. 10). Interestingly, 

iodoarenes reacted to low conversion despite their greater propensity towards oxidative 

addition. No reaction was observed in the absence of palladium.

The arylation exhibits high regio- and stereoselectivity, delivering the E-alkene and the arene 

distal to the directing group, which is consistent with a 6-membered chelate of the 

carboxylate to the Pd||-alkyl intermediate (see Scheme 2, below). In contrast to redox-relay 

Heck reactions of trisubstituted olefins, the unsaturation does not migrate into conjugation22 

with the carboxylic acid but remains adjacent to the newly formed quaternary center. 

Additionally, the alkene isomer preferentially formed is internal and trisubstituted rather 

than terminal and disubstituted.23 The carboxylic acid was essential for reaction: substrates 

containing weakly Lewis basic esters, alcohols, and amides were completely unreacted 

under the optimized conditions after 16 hours. Tertiary amine 7 reacted to low conversion 

and gave a complex mixture of arylated materials.

The carboxylate-directed Heck was successfully applied to a wide range of tri- and 

tetrasubstituted olefins in modest to good yields after a second esterification step (Table 2). 

Unless otherwise noted, stereoselectivity was excellent (>20:1 E/Z by 1H NMR) and 

regiocontrol was excellent in all cases except a cyclopentane substrate (3t-w). Only olefins 

proximal to the carboxylic acid underwent reaction; the distal olefin of 3d was unreactive. In 

addition to simple linear aliphatic substrates, cyclic and styrenyl tri- and tetrasubstituted 

olefins were competent Heck partners. The intrinsic electronic bias of the styrene was 

completely overridden in the cases of 3e, 3f, and 3m, giving valuable diarylated quaternary 

centers. Rearrangement of the styrene substitution did not change delivery of the arene 

electrophile (see 3s). The use of carbo- and heterocyclic olefins produced challenging all-

carbon quaternary centers at Csp3-Csp2 attached-ring motifs, including the bicycle 3n and 

cyclododecane 3o. These motifs represent high fraction-sp3 (Fsp3) equivalents of biaryls and 

valuable scaffolds for medicinal chemistry.24 For example, phenyl substituted cyclohexane 

8, an intermediate in the synthesis of S1P1 agonists, could be prepared in a concise and 
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higher-yielding 3 step route as compared to the reported 6 step sequence.25 Electron-rich 

bromoarenes performed best, in contrast to nickel-catalyzed hydroarylations,26 which also 

form quaternary carbons at attached-ring bridgeheads, but usually prefer electron-deficient 

haloarenes.27 Diastereoselectivity in the Heck reaction could be effected by: substitution α 
to the directing carboxylic acid, (3w), existing stereocenters on cyclic substrates (3k), or 

bridging-ring topology (3n). While most reactions in Table 2 were performed on small scale 

(0.1 mmol), scale-up proved uneventful and allowed over 500 mg of 3u to be prepared in 

one batch from the tetrasubstituted cyclopentene.28

Aryl scope is explored in Table 3 using tetrasubstituted substrate 1a. Para- and meta- 
substitution is well tolerated, and mono-, di-, and trisubstituted arenes could be installed 

with similar ease. Electron rich and electron neutral arenes outperform electron poor, with 

electron rich aryl bromides noted to complete fastest. Even highly electron-rich 

trimethoxyphenyl 3ag was delivered in good yield. Aryl bromides with strongly electron-

withdrawing groups in the para position were found to stall at low conversion from apparent 

catalyst deactivation (see Scheme 2 and Supporting Information). Heterocycles were 

acceptable coupling partners in this chemistry, exemplified by benzodioxole 3ah and 

protected indole 3aj.

The products of carboxylate-directed Heck reaction exhibit high synthetic utility by virtue of 

the olefin and carboxylic acid functional groups, both of which are versatile synthetic 

handles. To demonstrate this versatility, we diversified 3u to form the densely functionalized 

products of Scheme 1. The olefin was capable of functionalization by Drago-Mukaiyama 

hydration,29 epoxidation, and dihydroxylation, and treatment of the dihydroxylation product 

with oxalyl chloride in methanol furnished 5-membered lactone 12. Formation of redox 

active ester in place of the methyl ester allowed straightforward decarboxylation or 

decarboxylative arylation.30 As a result, motifs that were previously inaccessible by 

Mizoroki-Heck chemistry can now be unmasked and retrosynthetically transformed to 

unsaturated carboxylates.

Several interesting mechanistic features are also worth noting. Although less-substituted 

olefins were generated, over-arylation of products in Table 2 only occurred rarely and only 

in small quantities. The adjacent quaternary carbons were not solely responsible for 

enforcing single arylation: a homologated analog of the products in Tables 2 and 3 

underwent facile carboxylate-directed Heck reaction (14→15, Scheme 2a) but the less 

hindered β,γ-unsaturated product (15) did not undergo arylation. Therefore, transition state 

geometry may play a role in effecting monoarylation. A low-energy, pseudo-chair 

conformation might be involved, which fits the relative regiochemistry of arylation and 

stereochemistry generated in 3w (Scheme 2b). This assembly would be geometrically 

unfavorable for β,γ-unsaturated products (15 and Tables 2 and 3) and distant alkenes (3d). 

Additionally, β-hydride elimination generates an olefin out of conjugation with the 

carboxylic acid, which suggests that chain-walking processes cannot occur. The preference 

for tetrasubstituted substrates to form the internal, trisubstituted olefin over the terminal 1,1-

disubstituted olefin (see Table 3, ca. 10:1 on average)23,31 is striking given that statistics 

should favor β-hydride elimination to the terminal position.32,33 That the observed alkene 

isomer avoids the thermodynamic sink of conjugation and the statistically favored product 
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suggests that the carboxylate directing group has a role enforcing β-hydride elimination, 

kinetically or thermodynamically, in addition to directing the regiochemistry of arene 

insertion. The superiority of TrixiePhos to engage hindered olefins was unexpected given its 

large size among monodentate phosphine ligands and may suggest that dissociation occurs 

prior to alkene coordination. Alternatively, the monoligated palladium L1Pd-Ar favored by 

bulky phosphines34 may be necessary to allow coordination of both the carboxylate and the 

alkene. Another surprising feature was the poor performance of both aryl iodides and 

electron deficient aryl bromides, which typically couple well in Heck reactions but in our 

system led to catalyst deactivation. Analysis of the crude reaction mixture in reactions of 

electron poor arenes revealed formation of biaryls and LCMS peaks corresponding to 

substrate dehydrogenation. Catalyst deactivation possibly occurs downstream of reductive 

homocoupling to generate biaryls and inactive Pd|| salts,35 a process that is bimolecular in 

XPd||-Ar and would be disproportionality favored by rapid oxidative addition compared to 

the productive reaction pathway (Scheme 2c). This hypothesis also accounts for the 

superiority of sterically bulky ligands, which may prevent Pd||-Ar association leading to 

deactivation — an observation made previously in styrenyl Heck reactions.36

In conclusion, carboxylate-directivity advances the Heck reaction to a new milestone: the 

intermolecular coupling of tetrasubstituted alkenes. In addition to providing products of high 

synthetic value, the success of this strategy underscores the profound rate enhancement 

imparted by carboxylate directing groups.18 The reactivity trend in counter-cation is 

noteworthy and distinguishes the carboxylate from neutral protecting groups like amines or 

esters, which are ineffective to promote the reaction. The absence of chain walking and the 

regioselectivity of β-hydride elimination may also point to a role of the carboxylate 

downstream of arene insertion.37,38 The observations here invite further mechanistic inquiry 

and the insights gained from this work may be translatable to other modes of olefin cross-

coupling.
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Figure 1: 
Approaches to the Heck reaction on challenging substrates.
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Scheme 1. 
Product Diversification[a]

[a] Conditions: a) R = NHPI, Ph2Zn, Fe(acac)2, dppBz (34%); b) R = NHPI, Zn0, PhSiH3, 

NiCl2·6H2O (39%; c) R = Me, Mn(acac)2, PhSiH3, PPh3, O2 (64%, 2:1 dr); d) R = Me, i. 

NMO, OsO4; ii. (COCl)2, MeOH (65%, 6:1 dr); e) R = Me, m-CPBA (100%, 2:1 dr)
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Scheme 2. 
Mechanistic model for regio- and stereochemistry.
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Table 1.

Reaction Optimization

Entry Variations from above % yield
[a]

1 none 80

2 Li2CO3 / Na2CO3 / Cs2CO3 vs K2CO3 0 / 37 / 53

3 Et3N vs K2CO3 0

4 BINAP vs TrixiePhos 0

5 dppe vs TrixiePhos 0

6 dppf vs TrixiePhos 17

7 XPhos vs TrixiePhos 0

8 PPh3 vs TrixiePhos 67

9 4-OMe-PhBr vs PhBr
85

[b]

10 4-OMe-PhBr vs PhBr, PPh3 vs TrixiePhos
22

[b]

11 PhI vs PhBr 18

12 no Pd 0

[a]
0.1 mmol scale, yield determined by quantitative LCMS.

[b]
Ar = 4-OMe-Ph,1H NMR yield after 1 h.
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Table 3.

Aryl halide scope with a tetrasubstituted alkene.

[a]
0.1 mmol scale, isolated yield over 2 steps, reaction time 16 h. Esterification conditions unless otherwise noted: (COCl)2 (2 eq), DCM (0.1M); 

MeOH (excess)

[b]
Esterification conditions: DIC, DMAP, MeOH, DCM
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[c]
12:1 ratio of isomers favoring the internal [d] Combined yield including deprotected product.
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