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Abstract
Since the discovery and definition of neutrophil extracellular traps (NETs) 14 years ago, numerous characteristics and
physiological functions of NETs have been uncovered. Nowadays, the field continues to expand and novel mechanisms that
orchestrate formation of NETs, their previously unknown properties, and novel implications in disease continue to emerge.
The abundance of available data has also led to some confusion in the NET research community due to contradictory results
and divergent scientific concepts, such as pro- and anti-inflammatory roles in pathologic conditions, demarcation from other
forms of cell death, or the origin of the DNA that forms the NET scaffold. Here, we present prevailing concepts and state of
the science in NET-related research and elaborate on open questions and areas of dispute.

Facts

● Neutrophil extracellular traps (NETs) are formed as a
defense mechanism to immobilize invading microorgan-
isms but also in response to sterile triggers.

● NETs consist of a DNA scaffold decorated with granule-
derived proteins, such as enzymatically active proteases
and anti-microbial peptides.

● Apart from their function in immune defense, NETs
play important detrimental or beneficial roles in

inflammation, autoimmunity and other pathophysiolo-
gical conditions

● NET release can be instigated by many triggers and via a
multitude of distinct pathways with often unknown
interdependence.

Open questions

● Are NETs primarily formed from nuclear or mitochon-
drial DNA, or both? Does the source of the DNA
depend on the activating stimulus and/or the specific
conditions that trigger NET formation? Do NETs
composed of nuclear or mitochondrial DNA reflect
different pathways that are adapted to distinct physio-
logical needs?

● How can we unambiguously distinguish NETs from the
remnants of other forms of cell death?

● Is there a connection between NET formation, neutro-
phil aggregation and/or neutrophil swarming?
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● Is there a link between autophagy, necroptosis, pyr-
optosis and NET formation?

Introduction

Histones and other nuclear proteins organize DNA in the
nucleus of eukaryotic cells into nucleosomes and higher-
order chromatin by neutralizing the negative charges on
DNA. Thus, protein–DNA interactions constrain the
potential energy of DNA to extend into a fibrous polymer
and allow it to participate in the complex choreography that
defines cellular functions [1]. The uncoiling of DNA
represents the release of that potential energy, as can be
appreciated during the rupture of a cell, which vastly
expands the volume of nuclear DNA.

In 2004, Brinkmann et al. observed that the release of
nuclear chromatin can be a regulated process that results in
the appearance of what they called neutrophil extracellular
traps (NETs) [2]. This insight raised the possibility that the
release of nuclear chromatin may have physiologically
beneficial consequences by significantly contributing to
host defense.

NETs consist of DNA fibers decorated with proteins
normally confined to granules, including antimicrobial
molecules [2–4]. Extracellular DNA traps have been shown
to be able to contribute to the immobilization and neu-
tralization of certain kinds of bacteria [2, 5], fungi [6–8],
and even some viruses [9, 10].

NETs form by the release of potential energy contained
in the nucleus overall [2], some parts of it [11], or mito-
chondrial nucleoid DNA [12]. The compact structure of
nuclear chromatin may be loosened by several alternative
mechanisms: one is the global transcriptional activation that
unwinds the inactive chromatin at the majority of loci [13].
A second is the proteolytic degradation of histone termini
that assist in folding nuclear DNA [8] and a third is the post-
translational modification of positively charged residues in
core and linker histones [14, 15]. These three processes may

synergize with each other or take precedence under specific
conditions.

In the course of the last 14 years, the number of pub-
lications involving NETs have virtually exploded (Fig. 1).
A search on Pubmed (www.ncbi.nlm.nih.gov/pubmed/) for
“neutrophil extracellular traps” yielded 1940 results through
the end of October 2018. NETs have been implicated not
only in anti-microbial defense but also in a variety of sterile
inflammatory and autoimmune conditions [2, 4, 16–37].

A lively discussion is currently ongoing about key
aspects of NETs, their contents and morphology [38, 39],
how their formation should be precisely named to reflect the
different pathways of their generation [40, 41], the fate of
the NETing neutrophil [42], by which triggers NET for-
mation can be induced [3, 43], and the implications of NET
formation for the host [5, 39, 44, 45]. These reports are
partly overlapping, conflicting, or in direct contrast to each
other. Specifically, the requirement of certain molecular
pathways, the connection between NET formation and cell
death, and the source of DNA in NETs are a matter of
debate [38, 46, 47] (Fig. 2). The use of different methods of
detection and quantification of NETs in vitro, in serum and
in tissue [48–56] also impedes interpretation and/or
comparison.

We have made an effort to put together a broad panel of
opinion leaders and experts in the field to formulate con-
cepts and raise further questions regarding various aspects
of NET formation. The seeds for this effort germinated
during a NET consensus meeting held in Erlangen, Ger-
many in September 2016.

This paper revolves around a list of statements that
summarize levels of agreements on various NET-related
questions (Table 1), accompanied by a commentary that
focuses on open questions and areas of scientific dispute. In
particular, we list aspects of terminology and mechanisms
of NET formation, and of components, triggers, physiolo-
gical functions and pathological implications of NETs.
Furthermore, we elaborate on minimal requirements for
proper experimental designs and methodological accuracy
of NET-related studies and for quantification and definition
of NETs. The article also contains paragraphs penned by
individual authors that describe the state-of-the art and
ongoing efforts in various areas of NET research in the light
of their own research (Supplementary Text). This dual
structure of the paper was intended to provide a glimpse
into the kaleidoscope of current NET research.

Current consensus and diverging opinions in
NET research

To shed light on opinions on NET-related topics, a ques-
tionnaire with 140 statements (submitted by the authors of

Fig. 1 Number of publications including the term “neutrophil extra-
cellular trap” per year (according to PubMed)
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this paper) was sent out. Every author was to rate the level
of agreement with each statement (1, agree; 2, do not agree;
0, undecided). From this list, 85 non-redundant statements
with high response rates were chosen (Table 1). This listing
illustrates current areas of consensus and dispute.

General statements and terminology

A large majority of the authors of this paper agree that the
current literature creates confusion for lack of proper defi-
nitions of NETs (statement 1, st. 1). In many publications,
extracellular DNA derived from different sources and/or
after different forms of cell death pathways is collectively
and erroneously equated with NETs. This confusion might
partly arise due to the use of unspecific bioassays (such as
measurement of extracellular DNA, measurement of extra-
cellular elastase activity) that are used as a surrogate for
NETs (st. 2). Different isolation procedures and neutrophil
sources (isolation via density gradient centrifugation or
magnetic cell sorting from bone marrow or from peripheral

blood) or species differences between mice and humans
may further complicate this issue. Also, the term “NETosis”
suggests that cell death is an inevitable consequence of
extrusion of DNA. Yet it is challenging to determine the
exact sequence of events and the fate of the cell in retrospect
when analyzing tissue sections. Furthermore, not even all
pathways of NET generation elicited under controlled
experimental conditions in vitro result in cell death.
Therefore, in alignment with the Nomenclature Committee
of Cell Death [46] the authors of this paper suggest to avoid
the term”NETosis” or use it only in contexts where the
demise of the neutrophil is obvious (st. 3, 4). In all other
cases, we recommend to use the term “NET formation”
instead.

Composition and morphology of NETs

There is a strong consensus that NETs contain enzyma-
tically active neutrophil proteases (st. 7) and other anti-
bacterial molecules. The source of DNA in NETs is less

Fig. 2 Current areas of
consensus and controversy
about neutrophil extracellular
traps (NETs)
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unambiguous. Simon, Yousefi et al. described extrusion
of NETs consisting of mitochondrial DNA together with
granule proteins rather than nuclear DNA [57, 58]. This
mechanism, which was also shown to occur in eosino-
phils [12], involves an active reorganization of the
cytoskeleton [59] and is ROS-dependent, but not
accompanied by cell death. While it is now acknowl-
edged by a majority of authors that NETs can be formed
from both nuclear and mitochondrial origin (st. 5, 6, 54,
55), a potential mechanistic and/or physiologic demar-
cation between these processes is still unclear. Simon and

Yousefi also claimed that NETs composed of mitochon-
drial DNA manifest as fibers, while the cloud-like
appearance of nuclear DNA often seen after prolonged
incubation of neutrophils in vitro with canonical NET
instigators such as phorbol 12-myristate 13-acetate
(PMA) or bacteria [5] is a result of necrotic cell death
[38]. However, according to the opinion of a majority of
authors, NETs created in vitro can also have a cloud-like
appearance (st. 8) and morphological differences might
be due to mechanical agitation of culture slides (or the
lack thereof).

Table 1 Statements about NET-related questions

398 S. Boeltz et al.



NET formation in vivo

There is unequivocal consensus that NET formation in
response to microbial and sterile agents is a real phenom-
enon that occurs in vivo (st. 9–14). However, it is important
to highlight that only a limited number of studies have
addressed the direct effect of specific stimuli in the induc-
tion of NETs in vivo. Despite these potential limitations,
stimuli considered to be inducers of NET formation in vivo
are bacteria [2], fungal hyphae [7], biochemical stimuli [2,
34, 41, 60–63], some inflammatory cytokines and chemo-
kines [2, 64, 65], immune complexes [66], and contact with
activated platelets [67].

Physiological functions of NETs

An important function of NETs is the defense against
bacteria, viruses and fungi (st. 15). NETs not only immo-
bilize the opponent [68], but also are equipped with anti-
microbial compounds (such as anti-microbial peptides,
histones and proteases) (st. 16). They are therefore con-
sidered able to kill pathogens directly. Extracellular DNA-
containing structures have also been described in zebrafish
[69], in cats [70], invertebrates [71, 72], and plants [73].
Therefore, the formation of extracellular DNA traps may be
considered an ancient, evolutionary conserved defense
mechanism [71, 74] (st. 17). In alignment with this per-
spective, bacteria have evolved strategies to avoid killing
through NETs, per example via expression of nucleases that
degrade NETs, or even to use NETs to their advantage (per
example in biofilms) [5, 68, 75] (st. 18).

Apart from their multiple enhancing functions in immune
defense and autoimmunity, evidence for anti-inflammatory
action of NETs is also accumulating [44, 45] (st. 19). An
important part of the regulatory effect of NETs on inflam-
mation is due to the modulation of cytokine and chemokine
activity by NET-related proteases (st. 20, 24) [26, 34, 76–79].

NETs have been shown to build larger conglomerates
when present in higher densities [34, 77, 80], with both
detrimental and beneficial outcome for the host [44] (st. 21,
23, 24, 25). A remaining open question is the connection
between neutrophil aggregation and NET formation (st. 22).
The technological progress in two-photon intravital micro-
scopy has enabled the discovery of neutrophil swarming, a
phenomenon characterized by highly coordinated series of
neutrophil movement, followed by cell accumulation
mediated by chemoattractant signals and adhesion mole-
cules [81]. Swarming is observed during infection and
sterile inflammation in both mouse and human neutrophils
[82]. Interestingly, cell death, both in the inflamed sur-
rounding tissue and within the neutrophil cluster itself,
strongly amplifies swarming and fuels immune activation
[83]. It is tempting to hypothesize that neutrophil swarming

and the formation of NETs might be interdependent pro-
cesses, but as of now, the connection between these cellular
functions remains elusive (st. 22).

NET formation has been reported in blood vessels, ductal
structures, and surfaces [15, 80, 84], but also in the tissue
[34, 85]. NETs constitute an anti-microbial defense
mechanism and are therefore likely to be found at places
with high microbial burden. Thus, the conclusion that the
location of internal and external body surfaces is respon-
sible for the (perceived) enrichment for NETs is con-
troversial (st. 26), as is the view that NETs provide a
protective coating to mucosal surfaces (st. 27).

In a recent publication, a lining of NETs was found
adjacent to large necrotic areas [86]. The authors suggested
that aggregated NETs wall-off lumps of material with
immunostimulatory activity, such as necrotic tissue or
monosodium urate crystals, thereby limiting immune reac-
tivity and inflammation to sterile agents (st. 28). However,
this isolating effect needs to be balanced against the tissue-
damaging properties of NETs that have been confirmed in
several studies [31, 32, 44, 87].

Triggers of NET formation

While there is a large consensus that microbial agents,
biochemical stimuli, calcium influx, immune complexes,
and contact with platelets (thrombocytes) and/or damage-
associated molecular patterns can trigger NET formation (st.
29–35) a direct connection between lysosomal membrane
instability and NET formation is still under discussion (st.
36). Munoz et al. have reported lysosomal instability and
concurrent disintegration of the nuclear morphology in
neutrophils upon exposure to nonpolar nanoparticles fol-
lowed by NADPH oxidase-dependent chromatin externali-
zation [63, 88]. The authors therefore introduced a model
where lysosomal leakage triggers a cascade of events
involving ROS production and ending in formation of
NETs [63]. A direct connection between these phenomena
remains, however, yet to be proven.

Pathways of NET formation

In the initially described pathway of NET formation
induced by PMA or bacteria and later termed “NETosis”
[89], neutrophils release nuclear DNA decorated with pro-
teins into the extracellular milieu via an NADPH oxidase 2
(NOX2)-dependent mechanism involving the death of the
neutrophil [2, 90]. Fourteen years later, it has become clear
that NET release can occur via multiple distinct pathways
with often unknown interdependence (st. 37, 38) [3, 43].
Since different stimulators of NET formation induce dif-
ferential signaling, generalized statements about certain
protein requirements should be avoided. A common
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denominator is however that NET release is mostly seen as
an active process driven by cell-intrinsic pathways that are
activated by external stimuli (st. 39).

Apart from NOX2, the requirement of neutrophil-specific
serine proteases neutrophil elastase (NE) and myeloperox-
idase (MPO) has also been described for the later stages of
NET formation in association with cell death, more parti-
cularly for chromatin decondensation [91, 92]. In particular,
NOX2-derived ROS were reported essential for the release
of NE and MPO from azurophilic granules [92, 93].
However, it is now clear that some forms of NET formation
occur independently of NOX2 and MPO [3] (st. 40, 41).

The enzyme PAD4 that is highly expressed in neu-
trophils mediates conversion of arginine into citrulline,
which results in a massive loss of positive charges on
arginine residues in histones. This conversion loosens the
forces between DNA and histones and thus contributes to
chromatin decondensation [94]. The role of PAD4 in NET
formation is, however, one of the most controversial aspects
in the study of NETs. Inhibition of PAD4 was reported to
decrease NET formation in response to certain stimuli and
PAD4-deficient mice sometimes display impaired NET
formation [15, 26, 84, 95–98]. However, it should be noted
that other reports observed normal NET formation in the
absence of functional PAD4 [3, 99]. Therefore, this has led
to the idea that not all NET release is PAD4-dependent (st.
42–44). Some of the discrepancies on the role of PAD4 in
NET formation may be explained by our limited under-
standing of the different functions that PAD4 may have in
neutrophil biology. Per example, a recent study linked
PAD4 to assembly and activation of NOX2 [100]. Although
this function of PAD4 is citrullination-independent, it can
be blocked by PAD4 inhibitors. In contrast, conditions in
which PAD4 is catalytically active prevented activation of
NOX2. These novel findings shed some light on the para-
dox of why PAD4 is sometimes found to be essential for
NET formation under conditions in which citrullination is
not detected (e.g., in PMA-induced NETs) [3, 98].

Of note, the presence of citrullinated histones in cell
culture or tissue is often regarded as a strong indicator of
NET formation having occurred. However, these findings
could potentially also be explained by extracellular citrul-
lination of NET-bound histones by the PAD2 enzyme that
is released from the cytoplasm upon stimulation with PMA
[101], although PAD2 is not directly involved in NET
formation triggered by LPS or TNFα [102]. For all the
above reasons, caution in extracting conclusions should be
exerted when studying PAD4 and citrullination as drivers of
NET formation.

Neeli and Radic reported that several pathways of NET
formation converge at the level of protein kinase C [41] (st.
45). They report that PAD4 activity is dependent on PKCζ
activation and that PKCα is a dominant negative repressor

of histone citrullination. Still, activation of both isoforms by
combinatory treatment with PMA and ionomycin leads to
increased NET release without detectable citrullination. It
remains unclear, what caused these synergistic effects in the
absence of citrullination as a driver of chromatin decon-
densation and this finding contrasts reports that PAD4
activity is solely dependent on calcium [15, 84].

Over the last few years, evidence has indicated that
autophagy might be required for NET formation, although
the molecular mechanisms are not clearly defined yet [103].
Remijsen et al. were the first to show that a combination of
autophagy and ROS production is necessary for efficient
PMA-induced NET formation in human neutrophils [104].
Next, Mitroulis et al. demonstrated that neutrophils from
patients with acute gouty arthritis exhibit autophagy-
mediated spontaneous NET release [61]. Furthermore,
pharmacological inhibition of the mTOR pathway enhanced
autophagosome formation along accelerated NET release
following neutrophil stimulation with the bacteria-derived
peptide fMLP [105]. The first genetic evidence illustrated
that silencing of Atg5 in a neutrophil-like human cell line
infected with adherent–invasive Escherichia coli blocked
NET formation [103]. Recently, diminished Atg5 expres-
sion due to aging was also shown to reduce the capacity of
neutrophils to form NETs [106–108]. In apparent contrast,
Atg5-knockout mouse neutrophils had reduced autophagic
activity but normal capacity to release extracellular DNA
[109]. Of note, pharmacological inhibition of autophagy
with PI3 kinase inhibitors such as wortmannin has to be
interpreted with caution, because some, but not all, studies
have indicated wortmannin to also inhibit ROS production
which, consequently, could also block NET formation [104,
110–112]. Treatment with the so-called late-autophagy
inhibitors, such as bafilomycin A1 and chloroquine, had no
effect on NET formation [109]. Due to these conflicting
data, there is yet no consensus on the role of autophagy in
NET formation (st. 46).

Non-suicidal pathways of NET formation were descri-
bed, where the cell remains intact and normal cellular
functions of neutrophils, such as chemotaxis and phagocy-
tosis, are still carried out [11, 42, 57, 113] (st. 47). These
processes seem to occur much more quickly than the
canonical NET pathway induced by PMA [90] or other
forms of NET release that result in disruption of the plasma
membrane [7, 34, 62, 114], per example crystal-induced
NET formation (st. 49) and thus seem to be mechanistically
distinct. Suicidal and live NET formation therefore need to
be looked at separately (st. 48).

The frequent use of unspecific bioassays, such as the
detection of extracellular DNA as a surrogate for the pre-
sence of NETs has created confusion, since it is not able to
distinguish between NET formation and other forms of cell
death with a necrotic morphotype. A distinction that is
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followed by the majority of authors of this paper is that
NET formation requires an active and regulated process (st.
39), while necrosis can also occur in a passive, unregulated
way (st. 50).

Desai et al. have found that NET formation upon 2 h
stimulation with PMA or crystals involves the RIPK1/
RIPK3/MLKL-dependent pathway of necroptosis [115, 116]
(st. 51). They therefore argue that NET formation that
involves cell death is a passive process secondary to plasma
membrane rupture induced by necroptosis or other forms of
necrosis [117] (st. 53) This view is opposed by others who
have seen RIP3/MLKL-independent extrusion of DNA
choosing different experimental conditions [118] (st. 52) or
who argue that the definition of NET formation includes a
highly regulated and coordinated process that is different
from both necroptosis and necrosis (st. 50, 53). It also needs
to be mentioned that two novel studies [119, 120] have
demonstrated that the rupture of the plasma membrane
during ROS-dependent NET formation is mediated by gas-
dermin D, thus connecting NETs with pyroptosis [121, 122].

Several recent reports have demonstrated that a consider-
able fraction of the nucleic acids contained in NETs is of
mitochondrial origin [29, 57, 123, 124]. Special caution is,
however, required to distinguish NET-derived mitochondrial
DNA from mitochondrial nucleic acids expulsed during
incomplete neutrophil mitophagy [125]. Due to its pro-
inflammatory and interferogenic properties, oxidized mito-
chondrial DNA has been allotted an important role in the
pathogenesis of SLE [29, 124, 125]. Although the mutual
interdependence of extrusion of mitochondrial and nuclear
DNA in NETs has yet to be confirmed, there seem to exist
pathways of NET formation that are dependent and inde-
pendent of mitochondria (st. 54, 55). For the majority of the
authors of this paper, however, the breakdown of the nuclear
membrane is still a hallmark of NET formation (st. 56).

Extracellular traps in different cell types

Extracellular trap release from cells other than neutrophils is
understudied, and the mechanisms of chromatin decon-
densation release remain elusive. While extracellular trap
formation in neutrophils and eosinophils [12] is more or less
unequivocally accepted (st. 57, 58), further research, best
performed in genetic models, is needed to understand both
prevalence and relevance of extracellular trap release in cell
types other than granulocytes (st. 59, 60). Extracellular trap
release has also been reported for mast cells [126, 127].
Although a necessity for ROS production was observed,
definite cellular pathways and further details are still war-
ranted. The caspase-1-dependent release of monocyte
extracellular traps following high multiplicities of infection
has been reported by Webster et al. [128] and has very
recently been described to contribute to the pathogenesis of

rhabdomyolysis [129]. Similar to the cell death reported by
Webster et al., also pyroptosis relies on caspase-1 activity
and also leads to the release of intracellular components
[46]. It is therefore unclear, whether extracellular trap for-
mation in monocytes is distinct from pyroptosis.

Pathology and treatment

Owing to the multiple reports of the detrimental effects of
NETs, especially in autoimmune diseases such as SLE, RA
and vasculitis [4, 130–134], treatment with DNAse has
become a promising therapeutic option (st. 67). NETs are
degraded by endonucleases and DNase I-like proteins in the
circulation. Apart from DNase I, also DNase I-like 3 is
involved in vivo in the disintegration of NETs [135].
Removal of extracellular DNA by inhalation of recombinant
human DNAse I is already a widespread and safe ther-
apeutic option for cystic fibrosis [136]. In lupus, impairment
of DNAse I function is associated with nephritis [22] and
DNase I activity negatively correlates with disease activity
[137]. Missense mutations in nucleases cause lupus-like
disease in humans and mice [22, 138–141]. Furthermore,
NET-binding proteins, such as antibodies or complement
factor C1q, protect them from degradation possibly by
inhibiting DNase I [22, 142]. Taken together, this argues for
a beneficial role of DNAse in lupus. Similar mechanisms
might be at work in other autoimmune diseases with
occurrence of autoimmune reactivity to components of the
nucleus. However, DNAse removes DNA from any source
and its effect is not NET-specific. Furthermore, intravital
imaging has revealed that when injected into circulation,
DNase I is effective in the removal of DNA and decom-
position of the NET-like structure but not necessarily in
detachment of other components on NETs, which addi-
tionally attach to (glyco)proteins lining endothelium [143]
and have potential tissue-damaging properties. Last but not
least, other studies have challenged the detrimental effect of
NETs on lupus-like autoimmunity and tissue damage [26,
96, 144]. Thus, caution needs to be exercised to identify the
precise clinical conditions and developmental stages of
diseases that warrant the in vivo use of DNAse or other
therapeutic agents that aim at inhibition of NET formation.

Materials and Methods in NET-related research

PMA was initially used as one of the triggers to induce and
define NETs [2, 90]. It is therefore often used as a surrogate
for other NETs. PMA-induced NET formation is ROS-
dependent and results in cell death (formerly called NETo-
sis). Since then, many other pathways have been detected [3,
43], so that nowadays, the sole use of PMA is often con-
sidered limiting and the use of additional other more phy-
siologically relevant stimuli is encouraged (st. 68, 69).
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Immunocyto- and immunohistochemistry are the most
widely used methods for the detection of NETs. NETs are
identified as structures containing extracellular DNA co-
localizing with granule-derived proteins, such as neutrophil
elastase, and histones [2] (st. 70–72). NET formation can be
monitored in real time via intravital microscopy [42, 143],
live cell imaging [43, 51, 145–147] and with techniques
based on DNA-intercalating dyes [11, 148] (st. 73, 74).
Given the correct sample preparation and the use of proper
controls, NETs can be visualized ex vivo in tissue sections
and in fluid secretions [50, 149] (st. 75), although demar-
cation from necrosis can be challenging and caution should
be taken to avoid overinterpretation of findings. Confirma-
tion of the presence of granule proteins is encouraged also
in these settings and even in in vivo settings to identify
NETs. NETs can either appear cloud-like or filamentous [5]
(st. 8).

Regarding neutrophil isolation for NET assays, blood
might either be anti-coagulated with heparin or by chelating
divalent ions, although it should be noted that a study found
inhibition of NET formation by heparin [150] (st. 76, 77).
Besides, isolation of neutrophils is generally performed in
the absence of calcium and magnesium to prevent clumping
and adhesion [151, 152] although NET generation and
aggregation was reported to be inhibited by agents chelating
divalent cations [34, 62] (st. 78, 79). The presence of cal-
cium, magnesium and chelators (EGTA and EDTA) should
therefore be described in the paper as they may have an
impact on NET release.

Also, no real consensus yet exists about which medium
to use for the storage of neutrophils prior to or during
assessing NET formation in vitro, although the composition
of the culture medium strongly influences the propensity to
form NETs [153, 154] (st. 80). Also, NET assays must be
performed under controlled CO2/HCO3-/pH balance [155–
157] (st. 81). For the future, the introduction of standardized
buffers to assess NET formation is desirable (st. 82).

As of now, the minimal requirements are that experi-
ments on NET formation should exactly specify the culture
conditions (st. 83). This constitutes the base medium, the
use of serum [90, 158] or protein, the absence or presence of
platelets [60] and the surface constitution of the cell culture
plate [159] (st. 84). In addition, independently of the sti-
mulus used, the source or preparation of the inducer should
be stated in detail (st. 85).

Concluding remarks

Prompted by the excitement that followed the seminal paper
by the Zychlinsky group that introduced NETs to the sci-
entific community [2], a large body of data emerged that
allotted major roles in defense from pathogenic

microorganisms, in inflammation, and multiple pathophy-
siological conditions to NET formation. This wave of
excitement was, and is, accompanied by doubts and criti-
cisms. This paper illustrates current areas of consensus and
dispute in the NET field (Fig. 2). The main areas of dis-
cussion are 1) the source of the DNA in NETs, 2) that
demarcation from other forms of cell death is incomplete
because factors that unambiguously distinguish NETs from
the remnants of other forms of cell death are still missing,
and 3) that NET formation can be mediated by multiple
pathways. Therefore, it is unlikely that targeting a single
pathway inhibits all NET formation without having a con-
siderable impact on other aspects of cell biology and/or
pathophysiology. Finally, 4) certain aspects of experimental
procedures are not yet standardized. By highlighting these
open questions, this paper aims to instigate further research
and contribute to the harmonization of these issues.

Interestingly, defects in the signaling cascades that pre-
cipitate NET formation (such as the oxidative burst in
chronic granulomatous disease or neutrophil serine proteases
in Papillon–Lefèvre syndrome) are associated with pathol-
ogies characterized by chronic autoimmunity and inflam-
mation, both of sterile and infectious origin [160–164]. On
the other hand, treatment with PAD4 inhibitors that impedes
NET formation (along with other cellular pathways) has had
promising results for the treatment of autoimmune diseases
[27, 165–167]. Thus, NET formation can be considered a
major therapeutic target for the management of multiple
human disorders. Understanding of the molecular mechan-
isms and the spatiotemporal dynamics that regulate NET
formation and clearance and delineate it from other forms of
cell death, will enable to fine-tune therapeutic approaches
and minimize the risk of detrimental side effects and
adverse outcome.
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