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Abstract 

 

Acute Respiratory Distress Syndrome (ARDS) is a syndrome of respiratory failure that may be identified using text 

from radiology reports. The objective of this study was to determine whether natural language processing (NLP) 

with machine learning performs better than a traditional keyword model for ARDS identifica tion. Linguistic pre-

processing of reports was performed and text features were inputs to machine learning classifiers tuned using 10 -

fold cross-validation on 80% of the sample size and tested in the remaining 20%. A cohort of 533 patients was 

evaluated, with a data corpus of 9,255 radiology reports. The traditional model had an accuracy of 67.3% (95% CI: 

58.3-76.3) with a positive predictive value (PPV) of 41.7% (95% CI: 27.7 -55.6). The best NLP model had an 

accuracy of 83.0% (95% CI: 75.9-90.2) with a PPV of 71.4% (95% CI: 52.1-90.8). A computable phenotype for 

ARDS with NLP may identify more cases than the traditional model. 

 

Introduction 

 

Acute respiratory distress syndrome (ARDS) is a common manifestation of pulmonary organ failure and a syndrome 

with profound hypoxemia with a period prevalence of 10% in all intensive care unit (ICU) admissions, and an 

associated mortality as high as 46% for those with severe ARDS.
1
 Recognition by the clinician occurs in only 34% 

of cases once ARDS criteria are met.
1
 One reason why ARDS is underrecognized by physicians is because it is a 

complex definition that incorporates laboratory data, respiratory data, radiology data, and disease characteristics 

within a time-sensitive framework.
2
 

 

Automated methods for ARDS have served as one solution for syndrome detection.
3-5

 A prior publication 

demonstrated some success in a hand-crafted, rule-based approach using keywords in dictated chest radiograph 

reports.  This traditional model identified keywords that were synonyms for ‘bilateral’ and ‘infiltrate’ in the chest 

radiograph reports to meet the imaging parameters of the ARDS definition.
2
 In follow-up studies, the traditional 

model has not performed well with high false positive rates.
6,7

  Differences in sub-phenotypes of ARDS such as 

trauma and medical patients pose one barrier in validity.
8
 In addition, keywords in a chest radiograph derived for an 

automated approach may vary between centers and cohorts making scalability a challenge. 

 

Clinical notes and reports entered by healthcare providers are the most abundant type of data in the electronic health 

record (EHR) and serve as valuable sources of patient information
9,10

.  Natural language processing (NLP) is a field 

of computer science and artificial intelligence that is concerned with developing methods for computational analysis 

of human (natural) language, including clinical notes.
11

 NLP is frequently utilized in combination with machine 

learning, which involves extracting text-based features and training a machine learning classifier. Researchers have 

evaluated the performance of NLP for ARDS identification.
6, 7

 However, these studies referenced against the older 

American European Consensus Conference definition instead of the current Berlin Definition
2
, only used chest 
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Figure 1.Traditional model for ARDS identification 

 
Qualifying chest imaging includes chest radiograph and computed tomography. Oxygenation criteria is 

first qualifying partial pressure of arterial blood-to-fraction of inspired oxygen (PaO2/FiO2) <300 mmHg 

PEEP = positive end-expiratory pressure in cm H20 
 

 

radiograph reports  and did not include computed tomography (CT) reports, and did not examine standardized 

terminology as text-based features. The benefits of NLP and machine learning models have not been evaluated for 

identification of ARDS in accordance with the Berlin Definition, in multiple sub-phenotypes, or with different text-

based features.
 

 

For the first time, we aim to evaluate the test characteristics of NLP and machine learning models in a mixed cohort 

of medical, trauma, and burn patients following the Berlin Definition utilizing multiple radiology reports (chest 

radiographs and CTs) and incorporating both raw text and standardized terminology. We hypothesize that NLP and 

machine learning can better identify ARDS cases than the traditional model. 

 

Methods 

 

Patient Selection and Environment: 

A mixed cohort of 533 patients admitted to the medical, burn, and trauma ICUs at a tertiary academic center 

between January 1, 2011 and December 31, 2016 were included in the analysis. Inclusion criteria were the 

following: (1) ICU admission; (2) invasive mechanical ventilation with a minimum positive end expiratory pressure 

(PEEP) of 5 cm H2O; (3) at least one partial pressure of arterial blood-to-fraction of inspired oxygen (PaO2/FiO2) 

<300 mmHg. A simple random sample was selected to represent a heterogenous group of risk factors for 

development of ARDS. The medical ICU group was part of a parent study examining risk factors for ARDS in 

critically ill patients with cirrhosis. Patients admitted to the burn and trauma ICUs for non-burn/trauma injuries and 

subsequent encounters for prior injuries were excluded. Burn-injury was verified after patient discharge by review of 

operative notes and attending documentation. All patients receiving invasive mechanical ventilation with suspected 

inhalation injury had a bronchoscopy to confirm inhalation injury based on the Abbreviated Injury Score.
12

 Injury 

severity scores for trauma patients were verified by the trauma registry coders.  
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Reference Standard for ARDS 

Two blinded physician reviewers (PY, PF) independently annotated cases and non-cases of ARDS in agreement 

with the Berlin Definition. The reviewers were internal medicine residents and received training to implement an 

ARDS screen in the ICU as part of a quality improvement project and reviewed cases prospectively with attending 

ICU physicians over a three-month period. The inter-rater agreement between the two reviewers was substantial, 

with a κ-coefficient at 0.71 (95% confidence interval [CI]: 0.60-0.82). A third physician with board certifications in 

pulmonary and critical care as well as research experience in ARDS (MA) provided adjudication for discordant 

cases.
13-15

 In all cases of ARDS, both reviewers had to agree that respiratory failure was not fully explained by 

cardiac failure or hydrostatic pulmonary edema in accordance with the requirements stated in the Berlin Definition.
2
  

 

Traditional model (modified to Berlin Definition) 

A previously published hand-crafted, keyword method was adapted to the Berlin definition in a rule-based algorithm 

with keywords determined a priori (Figure 1).
4,5

 The algorithm was updated from the original studies to include CT 

reports, minimum PEEP of 5 cm H2O, and within seven days of hospital presentation. The qualifying keyword s for 

bilateral infiltrates matched the prior publications except the word “consolidation” was added as a qualifier because 

it is a common term in CT reports .  

 

Feature extraction  

Linguistic processing of clinical notes was performed in clinical Text Analysis and Knowledge Extraction System 

(cTAKES; http://ctakes.apache.org).
16

 Two methods of feature extraction were performed. In the first method, the 

spans of Unified Medical Language System (UMLS) named entity mentions (diseases/disorders,   

signs/symptoms, anatomical sites, procedures) were identified. Each Named Entity mention was mapped to a UMLS 

concept unique identifier (CUI) to standardize language variation between radiologists. For example, a mention of 

'ARDS' in the text of the note is mapped to CUI C0035222; mentions of 'wet lung', 'adult respiratory distress 

syndrome', etc. are mapped to the same unique identifier. Each named entity mention was subsequently analyzed to 

determine its negation (e.g., 'no edema vs ‘edema’) status using the cTAKES negation module. For the second 

method, word n-grams (sequence of adjacent words of length n) were evaluated as a separate feature type. Both 

feature types are commonly used for text classification in clinical and general domains.
17

 A term-frequency, inverse 

document-frequency (tf-idf) transformation was used to weigh the text features into normalized values for the 

machine learning classifiers. 

 

Analysis Plan with Supervised Machine Learning 

Descriptive statistics between ARDS and non-ARDS cases were examined. Continuous variables were evaluated as 

medians and interquartile ranges and analyzed with Wilcoxon rank sum test. Categorical variables were analyzed 

using chi-square tests.  

 

The primary analysis was the binary classification of ARDS using radiology reports within 24 hours of the first 

qualifying PaO2/FiO2 ratio. This matched the traditional model that was previously published.
4,5

 A model using all 

radiology reports was examined as well. The sample size was divided into 80% training and 20% testing for all 

machine learning classifiers.  Text features (CUIs vs. n-grams) were inputs to separate machine learning classifiers, 

and classifier hyperparameters were tuned to the highest area under the receiver operating characteristic curve (AUC 

ROC) using 10-fold cross-validation on the training dataset. The best model from the training dataset was tested in 

the remaining 20% of the sample. We evaluated multiple machine classifiers as implemented in Scikit-Learn 

Version 0.19.0 (http://scikit-learn.org/) including decision trees, k-nearest neighbors, naíve bayes, logistic 

regression, and support vector machine (SVM). In prior NLP work, SVM with a linear kernel has traditionally 

proven to be the optimal algorithm for document classification.
18,19

  

 

Discrimination of the prediction models was evaluated using the AUC ROC. Goodness-of-fit was formally assessed 

by the Hosmer-Lemeshow test and verified visually with a calibration plot. Test characteristics (accuracy, 

sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV)) were provided to 

compare the traditional rule based model to the machine learning models. The nonparameteric approach by DeLong 

et al.
20

 was used to compare the area under the ROC curves. Analysis was performed using Python Version 2.7.14 

and SAS Version 9.4 (SAS Institute, Cary, NC).  The Institutional Review Board of Loyola University Chicago 

approved this study. This research was supported in part by the National Institute of Health (K23AA024503).
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Results 

 

Patient and data characteristics 

The data corpus was comprised of 162,440 radiology reports and clinical notes from 533 patients admitted to three 

ICUs. The count decreased to 9,255 for radiology reports only (any chest radiograph or CT that involved the chest) 

and 1,704 for the radiology reports within 24 hours of the first qualifying PaO2/FiO2 ratio. In the mixed cohort of 

patients admitted to the medical, trauma, and burn ICUs, the case-rate for ARDS was 25.9% (N=138). The median 

injury severity score in trauma patients was severe at 15 (IQR 9-22). Burn patients had a median % total body 

surface area burn injury at 19.7% (IQR 9.2%-40%), and 35.5% (N=55) had inhalation injury. In the patients 

admitted to the medical ICU, 57.9% (N=114) had sepsis. The lowest proportion of patients with ARDS was in those 

with trauma, and the greatest proportion in burn-injured patients (Table 1). Patients with ARDS had worse 

PaO2/FiO2 ratios, and a greater proportion died in-hospital than their non-ARDS counterparts  (Table 1). During 

chart annotations of the medical ICU subgroup, only 31% (N=14) of the patients with ARDS had any mention of 

ARDS in the EHR clinical notes or radiology reports.  

 
Table 1. Patient characteristics and outcomes 

 
Total 

(N=533) 

No ARDS 

(n=395) 

ARDS 

(n=138) 
p-value 

     

Age, median (IQR) 55 (41-65) 56 (41-66) 53 (41-62) 0.21 

Sex, male, n (%) 367 (68.9) 274 (69.4) 93 (67.4) 0.67 

Race, white, (%) 349 (65.5) 264 (66.8) 85 (61.6) 0.04 

Charlson Comorbidity Index, median (IQR) 6 (3-7) .36 (3-7) 5 (2-6) 0.36 

Intensive Care Unit, n (%) 

Medical 

Trauma  

Burn 

 

197 (37.0) 

181 (34.0) 

155 (29.1) 

 

155 (39.2) 

148 (37.5) 

92 (23.3) 

 

42 (30.4) 

33 (23.9) 

63 (45.7) 

<0.001 

Pa02/Fi02 ratio, median (IQR) 
211.9  

(146.5-262.0) 

225.0  

(163.3-265.0) 

169.0  

(121.4-242.0) 
<0.001 

Hospital length of stay (days), median (IQR) 16.2 (7.6-26.9) 15.4 (7.5-23.5) 22.0 (7.6-39.6) <0.001 

Disposition, n (%)     

In-Hospital Death 

Acute/Subacute Care 

Chronic Care 

Home 

Other 

175 (32.8) 

129 (24.2) 

53 (9.9) 

148 (27.8) 

28 (5.3) 

102 (25.8) 

101 (25.6) 

38 (9.6) 

128 (32.4) 

26 (6.36) 

73 (52.9) 

28 (20.3) 

15 (10.9) 

20 (14.5) 

2 (1.4) 

<0.001 

Acute/subacute care= skilled nursing facility, inpatient rehab; Chronic Care= long term care hospital, nursing facility,  
Other = hospice, against medical advice, law enforcement, psychiatric hospital; Charlson Comorbidity Index is a comorbidity 

score used to predict 10-year mortality. 
 

Discrimination and Calibration of NLP and Machine Learning Models: 

 

In the same approach as the traditional method using radiology reports within 24 hours of qualifying PaO2/FiO2 

ratio, the NLP model that produced the best AUC ROC was a linear SVM classifier with unigram features  with an 

AUC in the test dataset of 0.73 (95% CI: 0.61 – 0.85) (Table 2). The addition of all radiology reports was examined 

and a linear SVM classifier with unigram features was derived with an increase in AUC ROC to 0.81 (95% CI: 0.72-

0.91) in the test dataset. In the train dataset, bi-gram features did not improve the AUC ROCso they were not 

evaluated further (data not shown). Using CUIs instead of unigram features  in the model with all radiology reports 

did not produce a significant change in discrimination by AUC ROC (p=0.24). 
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Table 2. Area Under the Receiver Operating Characteristic Curve for Different NLP models  

 

NLP and Machine Learning Model 

Train Dataset  

(95%  Confidence Interval) 

Test Dataset 

(95%  Confidence Interval) 

 N=427 N=106 

24hr radiology reports and unigrams 0.82 (0.77-0.86) 0.73 (0.61-0.85) 

All radiology reports and unigrams 0.84 (0.80-0.89) 0.81 (0.72-0.91) 

All radiology reports and CUIs  0.82 (0.78-0.87) 0.80 (0.70-0.90) 

 
Discrimination of the NLP model using all radiology reports and CUI features is shown with the AUC ROC curve in 

Figure 2a, and Figure 2b is the corresponding calibration plot. The Hosmer-Lemeshow Goodness-of-Fit test 

showed the NLP model with all radiology reports and CUI features fit the test dataset well (p=0.25). 
 
Figure 2a-b. Discrimination with Area Under the Receiver Operative Characteristic Curve and Calibration plots of 

NLP model with all radiology reports and Concept Unique Identifier features 
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Table 3. Test Characteristics of selected algorithms in the test dataset 

 

Model 

Accuracy  

(95%  CI) 

Sensitivity 

(95%  CI) 

Specificity 

(95%  CI) 

PPV 

(95%  CI) 

NPV 

(95%  CI) 

      

Traditional: 24hr radiology 

reports and keywords 

67.3%  

(58.3-76.3)  

76.9%  

(60.7-93.1) 

64.1% 

(53.5-74.8) 

41.7%  

(27.7-55.6) 

89.3% 

(81.2-97.4) 

NLP + machine learning: 24hr 

radiology reports and unigrams 

76.9% 

(68.8-85.0) 

42.3% 

(23.3-61.3) 

88.5% 

(81.4-95.6) 

55.0% 

(33.2-76.8) 

82.1% 

(74.0-90.3) 

NLP + machine learning: All 

radiology reports and unigrams 

80.2% 

(72.6-87.8) 

55.6% 

(36.8-74.3) 

88.6% 

(81.6-95.6) 

62.5% 

(43.1-81.9) 

85.4% 

(77.7-93.0) 

NLP + machine learning: All 

radiology reports and CUIs 

83.0% 

(75.9-90.2) 

55.6% 

(36.8-74.3) 

92.4% 

(86.6-98.3)  

71.4% 

(52.1-90.8) 

85.9% 

(78.5-93.3) 
Each classifier was examined in the test set of N=106 patients. All NLP algorithms were performed in a linear support vector machine classifier. 
PPV = positive predictive value; NPV = negative predictive value; CUI = concept unique identifier.   

 

 

Comparison between traditional model and NLP model 
The traditional model had an overall accuracy of 67.3% (95% CI: 58.3-76.3) with a PPV of 41.7% (95% CI: 27.7-

55.6). The remaining test characteristics are shown in Table 3 with comparisons to all three NLP model variations. 

Overall, an increase in accuracy and PPV occurs by expanding to a data corpus of all radiology reports and using 

CUIs instead of unigram features in a linear SVM classifier. 

Characteristics of n-grams and CUIs as text features 

In examining all radiology reports, there were 1,774 unique CUIs and the top positive weights for ARDS cases 

included “ARDS”, “aspiration”, and “Both lungs”.  The top negative weights for non-ARDS cases included 

“atelectasis”, “pneumothorax”, and “chronic obstructive pulmonary disease”.  The top 25 positive and negative 

weights from the linear SVM model for CUIs are listed in Table 4.  

 
Table 4. Top features from NLP model using all radiology reports (negative weights favor the non-ARDS cases and 

positive weights favor ARDS cases) 

Positive Concept Unique Identifier 

(CUI) features (weights from 

linear support vector machine 

classifier) 

Respiratory Distress Syndrome, Adult (0.22); Malaise (0.21); Fluid 

overload (0.19); Aspiration-action (0.17); Fundus (0.16); Both lungs (0.15); 

Communicable diseases (0.15); Pulmonary edema (0.13); Lung field 

(0.13); Infiltration (0.12); learn transplantation (0.12); Air (0.11); Cardia of 

stomach (0.11); Inhalation injury (0.11); Rest (0.10); On ventilator (0.10); 

Structure of subclavian vein (0.10); Disease progression (0.10); Reflecting 

(0.10); Severe pre-eclempsia (0.10); Veins (0.09); Surface region of upper 

chest (0.09); Liver cirrhosis (0.09); Hyperemia (0.08); Closure by staple 

(0.08)  

Negative Concept Unique 

Identifier (CUI) features (weights 

from linear support vector machine 

classifier) 

Dose pull (0.09); Edema (0.08); Structure of carina (0.08); Transplantation 

of liver (0.08); Arteries (0.08); plain chest x-ray (0.08); pneumothorax 

(0.08); tracheal extubation (0.08); transjugular intrahepatic portosystemic 

shunt procedure (0.07); intestinal obstruction (0.07); nasogastric feeding 

(0.06); trachea (0.06); neck (0.06); chronic obstructive airway disease 

(0.06); upper abdomen structure (0.06); gas dosage form (0.06); fever 

(0.06); probably present (0.05); head (0.05); atelectasis (0.05); widened 

mediastinum (0.05); skin appearance normal (0.05); gait normal (0.05); 

comminuted fracture type (0.05); limb structure (0.05) 

 

Discussion  

 

ARDS is a syndrome with many predisposing conditions and a definition that incorporates both struct ured and 

unstructured elements rendering a complex phenotype that is difficult to automate. This highlights the difficulty of 

the task; in absence of direct evidence of ARDS, a machine learning model can incorporate other relevant features to 

make the identification of ARDS. We demonstrated a scalable and useful approach for a computable phenotype of 

ARDS using NLP and supervised machine learning. The NLP model using standardized terminology with CUIs 
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from all radiology reports increased the PPV from 41.7% to 71.4% and improved the accuracy from 67.3% to 83.0% 

over the traditional model. 

 

We examined a cohort of patients at high-risk for ARDS with a mixture of predisposing conditions. Inhalation injury 

was among the predisposing conditions and has previously  been shown in population-based studies to carry the 

highest incidence for ARDS.
21

 Severe trauma followed as one of the next highest risk categories.
21

 We identified 

severely injured burn and trauma patients in an attempt to provide a more balanced dataset of ARDS and non-ARDS 

cases to improve model performance. Furthermore, the inclusion of decompensated cirrhosis in the medical ICU 

cohort introduced additional respiratory complications such as hydrostatic pulmonary edema and pleural effusions 

that are common to this group.
22

 Therefore, we identified cohorts that not only provided multiple etiologies for 

respiratory failure but also represented a high-risk heterogeneous group of direct and indirect lung injuries to address 

the complexities of the syndrome.  

 

During annotation, we observed that clinical notes rarely mentioned ARDS. Others have also demonstrated poor 

reliability from claims data for identifying ARDS.
23

 To address this problem, the traditional model was derived by a 

group of investigators using a cohort of patients with severe trauma from a single site.
4
 This original study had a 

PPV of 74% using a cohort of 199 patients with 53 (26%) cases of ARDS. A separate validation study screened 

1,270 patients and identified 84 (6.6%) cases of ARDS with a PPV of 74%.
5
 However, follow-up studies from other 

sites have shown worse performance using the same traditional model with a lower PPV around 40%.
6, 7

 Our cohort 

of 533 patients with a quarter having ARDS had similar results  to the follow-up studies with a PPV of 41.7%.  

 

In the two follow-up studies that examined NLP versus the traditional model for ARDS phenotyping,
6, 7

 the authors 

focused on n-grams using solely raw text available in chest radiograph reports. They had accuracies between 73% 

and 91% with PPVs better than the traditional model. We noted similar results but validation of unigram features in 

radiology reports within 24 hours of the qualifying oxygenation report demonstrated a substantial drop in AUC ROC 

in the test dataset, suggesting the model may be overfit. However, incorporating all radiology reports provided AUC 

ROCs above 80% in both train and test datasets. We showed that not only was discrimination good but model fit 

was adequate when visualized by the calibration plot. Although CUIs did not demonstrate better discrimination over 

unigram features, their use as a standardized terminology have better ability to scale across hospital sites. In future 

work, we plan to conduct external validation at another site. 

 

Many of the top weighted CUI features from the linear SVM model were similar to the keywords from the 

traditional model and are consistent with the clinical knowledge. CUIs such as ARDS, both lungs, infiltration, and 

pulmonary edema were among the similarities. Edema as a top feature for both the positive CUIs (fluid overload and 

pulmonary edema) as well as negative CUIs (edema) likely reflected the poor inter-observer reliability between 

dictated radiology reports  for cases of ARDS.
24

 Uncertainty in labelling of cases versus non-cases of ARDS remains 

a problem with poor inter-observer reliability during annotation.
25

 This was recently addressed by a study from 

Reamaroon et al. that accounted for label uncertainty and subsequently improved their AUC ROC from 75% to 85%  

for discrimination of ARDS.
26 

In addition, atelectasis and heart failure CUIs were important negative features that 

support reasons for hypoxemia in non-ARDS cases. Some of the top negative CUIs were representative of other 

diseases associated with hypoxemia such as pneumothorax and chronic obstructive pulmonary disease. Certain 

features in our model was also unique to the sub-phenotypes of ARDS. For instance, some of the top features for 

ARDS included concepts unique to trauma and burn injury. The features unique to sub-phenotypes of ARDS suggest 

that computable phenotypes may need to be tailored more for specific cohorts rather than an all-inclusive model. 

Our sample size did not allow for adequate analyses by sub-phenotype to investigate this further. 

 

The use of all radiology reports  may not be appropriate for an early detection screening tool but is useful for a 

surveillance tool in epidemiologic studies. The inclusion of all radiology reports over the 24-hour reports 

substantially increased the data corpus and provided the best PPV and overall accuracy. Although the NLP model 

with all radiology reports may serve as a useful research tool to extract ARDS cases from the EHR, a more time-

sensitive model with 24-hour reports for early detection has better clinical application. In future work, we plan to 

investigate why the latter model underperformed in our experiments to improve its test characteristics. In addition, 

we plan to train word embeddings using word2vec to implement a convolutional neural network model and examine 

subsumptions in our CUI-based approach to improve our results further. 
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Limitations of this study include its retrospective and single site design. The heterogeneity of the dataset with 

different sub-phenotypes also likely contributed to the lower sensitivities compared to other studies. In addition, the 

use of all radiology reports may have introduced additional error if a qualifying oxygenation ratio was not 

temporally linked to the features in the notes to fulfill the Berlin Definition. However, we did not find that test 

characteristics worsened when comparing radiology reports within 24 hours versus those not within 24 hours of the 

first qualifying oxygen ratio. This may also have been attributable to additional qualifying oxygen ratios that were 

not extracted from the structured data elements.  

 

Conclusion 

 

This study presents useful approaches from NLP and machine learning to build a computable phenotype for ARDS. 

To our knowledge, this is the first study using advanced feature engineering with linkage to UMLS for standardized 

terminology with CUIs, incorporating all radiology note types, and updating to the Berlin Definition. With 

additional improvements in this approach and external validation, large-scale implementation across EHRs for 

identification and surveillance is feasible and may inform future research studies and practice. Moving forward we 

plan to experiment with neural network models and ensemble models combining classifiers trained on both 

structured and unstructured data. 
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