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Abstract 

Clusters of differentiation (CD) are cell surface biomarkers that denote key biological differences between cell types 
and disease state. CD-targeting therapeutic monoclonal antibodies (mABs) afford rich trans-disease repositioning 
opportunities. Within a compendium of systemic lupus erythematous (SLE) patients, we applied the Integrated 
machine learning pipeline for aberrant biomarker enrichment (i-mAB) to profile de novo gene expression features 
affecting CD20, CD22 and CD30 gene aberrance. First, a novel Relief-based algorithm identified interdependent 
features(p=681) predicting treatment-naïve SLE patients (balanced accuracy=0.822). We then compiled CD-
associated expression profiles using regularized logistic regression and pathway enrichment analyses. On an 
independent general cell line model system data, we replicated associations (in silico) of BCL7A(padj=1.69e-9) and 
STRBP(padj=4.63e-8) with CD22; NCOA2(padj=7.00e-4), ATN1(padj=1.71e-2), and HOXC4(padj=3.34e-2) with CD30; 
and PHOSPHO1, a phosphatase linked to bone mineralization, with both CD22(padj=4.37e-2) and CD30(padj=7.40e-
3). Utilizing carefully aggregated secondary data and leveraging a priori hypotheses, i-mAB fostered robust biomarker 
profiling among interdependent biological features.  

Key words: clusters of differentiation; data re-use; trans-disease biomarker profile; Relief-based machine learning; 
systemic lupus erythematosus; transcriptomics; translational bioinformatics pipeline 

Introduction and Background 

Clusters of differentiation (CD) are cell surface biomarkers that denote key biological differences between cell types 
and disease state. For each of the >400 known CDs1, distinct monoclonal antibodies (mABs) enable robust 
immunophenotyping2,3 and serve as scalable biomarkers for translational research4. However, CDs are noticeably 
modified by upstream, interdependent biological features.  Beyond motivation to elucidate novel CD upstream 
biology, CD biomarkers hold potential therapeutic repositioning opportunities as many CDs have FDA-approved 
targeting therapeutic mABs in both B-lymphocyte malignancies5 and autoimmune disorders6.  Therapeutic mABs can 
be deployed for antibody-dependent cytotoxicity or as combination therapies enhancing sensitivity to chemotherapy 
agents7. Enriching the perspective of CDs holds potential to identify additional novel biomarkers of cell differentiation 
and activation, and therapeutic repositioning opportunities due to availability of many FDA-approved targeted 
therapeutic mABs. Scalable high-throughput in silico approaches are needed to identify interdependent features 
elucidating the CD landscape.  

B-lymphocytes malignancies and autoimmune disorders. B lymphocytes (or B-cells) are white blood cells that are 
important regulators of the human immune system and function by secreting antibodies, presenting antigen, and 
secreting cytokines to signal other cells8. B-cell dysfunction has wide reaching consequences and can produce a 
tremendous variety of disease phenotypes, ranging from lymphoma9, autoimmune disorders10, and even human 
immunodeficiency virus pathogenicity11. This study focuses on the role of B cells in systemic lupus erythematosus 
(SLE), a highly variable, incurable autoimmune disease that can affect any organ system in the human body. SLE is 
caused by improper B cell behavior, and results in self targeted immune response.  

Machine learning innovations enhance statistical analyses. We developed the biologically scalable integrated 
machine learning pipeline for aberrant biomarker enrichment (i-mAB) for molecular profiling of the CDs of interest 
by incorporating multiple recently developed machine learning algorithms. Relief-based algorithms, of which most 
popular method is ReliefF, are known to effectively capture complex gene-gene interactions that are important for 
distinguishing classes but often unrecognizable by other algorithms such as Random Forest12,13. MultiSURF is an 
extended version of Relief F that reliably computes significance of features in various data structures including 
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multiple classes with class imbalance14. In updating the feature scores, for a particular observation, while ReliefF 
considers the same number of nearest neighbors in all classes, MultiSURF automatically computes a neighborhood 
radius that is flexible throughout the feature space and often contains different number of observations for each class. 
By adaptively normalizing the weights added to each features based on the proportion of different classes in the 
neighborhood of each observation, MultiSURF inherently takes into account the class imbalance in the data. We 
presented a first known application of the novel Relief-based algorithm MultiSURF to real-world biomedical data to 
identify the most predictive gene expression features in classifying patients and quantify their predictive power with 
the automated machine learning system Tree-based Pipeline Optimization Tool (TPOT)15. Using genetic 
programming, TPOT optimizes a series of feature preprocessing techniques and machine learning models and searches 
for the best prediction pipeline of different machine learning operators with tuned hyperparameters. We used TPOT 
to obtain the optimal framework for the training data with the objective of maximizing the cross-validated balanced 
accuracy and reported the out-of-sample balanced accuracy for classifying the patient groups in the testing data. 

Study motivation. The goal of the current study was to utilize i-mAB to enrich the perspective of CDs with 
interdependent gene expression features and identify novel upstream transcriptomic biomarkers that characterize 
aberrance of CD20, CD22, and CD30 expression. In particular, our study sought to enrich the perspectives of CD20 
(MS4A1 - Membrane-spanning 4-domains subfamily A member 1), CD22 (SIGLEC2 - Sialic acid-binding Ig-like 
lectin 2), and CD30 (TNFRSF8 - Tumor necrosis factor receptor superfamily member 8), due to characteristic 
overexpression in both B-lymphocyte hematologic malignancies and autoimmune disorders. We exclusively focused 
within gene expression characterization, for the purpose of evaluating aberrant CD expression. By incorporating 
clearly defined hypotheses with machine learning applications robust to multi-collinearity, we aimed to enrich our 
perspective of CD biology and potentially leading trans-disease therapeutic repositioning opportunities.  

 
Figure 1. Integrated machine learning pipeline for aberrant biomarker enrichment (i-mAB) study overview. 
(a) Compendium data assembly: Preprocess and aggregation of gene expression data from six different studies 
resulting in a compendium of 160 healthy samples, 1290 SLE samples treatment naïve, and 126 SLE samples with 
treatment. (b) Features selection stage 1: identifying predictive genes in classifying patients with SLE treatment naïve 
using MultiSURF. (c) Feature selection stage 2: detecting genes associated with aberrant level of CDs using 
regularized logistic regression. (d)-(e) Pathway enrichment analysis and replication beyond SLE cohort. 
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Methods 

Study Overview: In this study, we aimed to detect and characterize CD-related genes among the most predictive genes 
in classifying the samples into three categories: healthy, SLE treatment naive, and SLE treatment. For editorial clarity, 
the CD nomenclature1 was used to reference gene expression of CD20, CD22, and CD30, as opposed to the more 
ubiquitous deployment of CD nomenclature in diagnostic proteomics.  After gathering the most important features 
(genes) for the classifier, we used regularized logistic regression to robustly identify genes whose expression is either 
convergent or divergent in contribution to the effect on the aberrant expression of the CDs of interest within the SLE 
treatment naïve group. We also performed a pathway enrichment analysis of these genes to gain further insights into 
their biological and functional characteristics. An overview of compendium assembly and i-mAB pipeline are shown 
in Figure 1; i-mAB packages are provided on the Breitenstein Lab GitHub page: https://breitensteinlab.github.io/i-
mAB/ 

(a) SLE Compendium assembly. A compendium of health controls, treatment naïve SLE patients, and SLE patients 
exposed to various treatments was assembled using data from Gene Expression Omnibus16 – representing our ‘SLE 
Compendium’. (Note: a subset of patients within the ‘treatment naïve’ group received maintenance 
immunosuppressive therapy, but were not exposed experimental treatments). This compendium encompassed human-
derived gene expression measures from 6 original studies, including: GSE1190717, GSE3908818, GSE4945419, 
GSE6163520, GSE6539121, GSE7819322. Our study exclusively utilized existing, de-identified data from human 
subjects and did not require local Institutional Review Board review. Affymetrix data was processed with Single 
Channel Array Normalization (SCAN)23. Other platform data (e.g., Agilent, Illumina) were quantile normalized using 
the Affymetrix data as a reference. Each individual dataset was scaled from 0 to 1 on a per-gene basis before 
concatenating the data sets. Detailed data preprocessing and aggregation steps (including source code) are available 
at https://github.com/greenelab/rheum-plier-data. Detailed sample characteristics of the SLE Compendium can be 
found as supplementary publication24. 

(b) Feature selection stage 1: identifying predictive genes in classifying patients with SLE treatment naive. 
MultiSURF-guided feature inclusion. The dataset was randomly split into 80% for training and 20% for validation. 
On the training samples, we applied MultiSURF to obtain feature importance scores and extracted the p most 
predictive features (genes) that were input of the second stage of the analysis. We remarked that the rescaling of the 
importance scores to range from -1 to 1 does not affect the relative importance among features. To prevent overfitting, 
we excluded all known CDs from this first analysis step.  

Predictive power estimation with TPOT. In order to quantify the classification accuracy provided by the MultiSURF 
features, we applied TPOT on training samples to get the optimized prediction pipeline, implemented the pipeline on 
the training set with iterative inclusion of the features with highest MultiSURF importance scores and reported the 
pipeline’s performance on the testing set. In other words, we assessed the predictive power of the p features by 
applying the recommended set of operators with increasing number of features to obtain predictions of patient types 
in the validation set. Considering the class imbalance in our compendium data, in order to properly evaluate the 
performance of each model, we calculated the values of standard accuracy (proportion of correct predictions), balanced 
accuracy (mean of sensitivity and specificity), and Kappa coefficient which is an accuracy measure that is scaled to 
expected accuracy. 

When performing feature selection among genes sampled at multiple time points, there is the potential for 
autocorrelation of the expression of genes over time.  However, our goal was to find a comprehensive list of gene 
expression features that might affect CD expression levels regardless of the sampled time point. Thus, we treated a 
given transcript’s expression at each time point as independent of other time points. This increases the power to detect 
multiple time-dependent responses. For example, a certain gene might be important because of its role in early 
response to treatment whereas another gene might be activated in a later secondary response. Choosing only one time-
point or averaging over time would decrease the power detect a variety of such gene expression signals. This is also 
the reason we did not implement popular techniques to treat data’s imbalance such as resampling or generating 
artificial samples, which do not reduce the bias toward the majority class in high dimensional data25. We remark that, 
despite having multiple time samples, some effects still might be difficult to detect because some individual’s genes 
might peak at a different characteristic time point for a given cellular response.  

(c) Feature selection stage 2: detecting CD-related genes with regularized logistic regression. Within our SLE 
Compendium, gene expression of all known CDs, including CD20, CD22 and CD30, were categorized as ‘aberrant’ 
or ‘non-aberrant’ based on the following criteria: i) two-tailed normalization at 20th and 80th percentile of relative gene 
expression. The two tails encompassed ‘aberrant’ CD expression, whereas the middle distribution served as ‘non-
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aberrant’. Based on histogram distributions, threshold adjustment was necessary for a subset of CDs:  ii) adjusted two-
tail normalization (n=3) was applied when CD expression followed an apparent normal distribution, but the default 
thresholds did not satisfactorily capture feature variation, or  iii) binarization of non-normal distributions (n=86) 
separated the expression values into low/high groups (instead of non-aberrant/aberrant) to characterize apparent 
patterns of CD expression distributions. (Note: no adjustment was applied to the two-tailed normalization for CD20, 
CD22, and CD30). Detailed labeling of all CD features (histograms of gene expression distribution, descriptive 
statistics of overall expression and variation within the SLE Compendium) was described in our supplementary 
manuscript24. 

Elastic net was chosen for regularization of gene expression features in our second feature selection stage due to 
known robustness within bioinformatics applications using high-dimensional data with highly correlated biological 
features26. We performed elastic net regularized logistic regressions on each of the categorized CD variable and 
identified a set of k features (k < p) that are associated with each CD expression among the p previously selected 
features predicting SLE treatment naïve patients (feature selection stage 1). Incorporating Lasso (L1) and ridge 
regression (L2) penalties, the elastic net simultaneously selects variables and shrinks the coefficients of correlated 
predictors. We set the hyper-parameter α=0.5 to balance the proportion of L1 and L2 penalty and tuned the 
regularization parameter λ with cross validation to obtain the best model containing the genes that are associated with 
the expression level of the CD of interest. Notably, elastic net will tend to give strongly correlated genes similar 
regression coefficients. These genes were then ranked based on the adjusted p-value resulting from their independent 
logistic regression of the CD Aberrant/Non-aberrant expression groups. Independent odds ratio for each association 
was also reported. Further, because data on gender and age are not available for two of the six studies, we did not 
correct for these covariates to preserve the power of the analysis.  

(d) Feature annotation: pathway enrichment analysis of CD-specific gene expression profiles. Gene Set Enrichment 
Analysis (GSEA) is an open-access software that computes the degree of overlap between a predefined gene set and 
collection of annotated gene sets in the Molecular Signatures Databases (MSigDB)27. We use this tool to search for 
enriched Reactome and molecular function pathways among the CD-associated genes. 

(e) Independent in silico replication in general cell line model systems. A panel 64 human-derived general cell line 
models, measuring 12,073 gene expression features, from the Human Cell Atlas28 served as independent in silico 
replication. (https://www.proteinatlas.org/download/rna_celline.tsv.zip)  We performed a correlation test of the counts 
in each specific cell types sample between that gene and its corresponding CD expression on features identified during 
feature selection stage 2. 

Results 

(a) Assembly of SLE Compendium. Our compendium of human SLE patients contained 1,576 observations, with 
multiple measures per patient, aggregated from original studies17-22. The SLE compendium contained 15,497 gene 
expression measurements with observations from healthy control (n=160) samples, treatment-naïve SLE (n=1,290) 
samples, and SLE samples exposed to various treatments (n=126) (Table 1).  
(b) Feature selection stage 1 – Gene expression profile of treatment naïve SLE patients. In our study, maximizing 
prediction balanced model accuracy was only a minor component of our gene expression profiling, with maximizing 
opportunity for biologically rich and inferential signals being of most importance. Further complicating gene 
expression profiling endeavors was the known issue possibility of multicollinearity, where many biologically 
important signals are correlated with both other explanatory features and the study outcomes. Therefore, selection of 
the mathematically robust model MultiSURF with an inclusive, albeit replicable, feature inclusion threshold of 0.177 
(1500/max(raw feature score)) was chosen based on the distribution of the importance scores (Supplement 1 - Figure 
S129). This heuristic threshold yields a reasonable number of genes for the next step of the analysis. Applying this 
threshold, we collected p=681 gene expression features that have significantly high total importance score compared 
to the remaining genes. We reiterate that rescaling the MultiSURF importance scores to range from -1 to 1 does not 
affect the relative importance among features.  

 

 

 

Table 1. SLE Compendium characteristics as ascertained from study of origin  
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 Cohort 1 Cohort 2 Cohort 3 Cohort 4 Cohort 5 Cohort 6 Overall 

Study PMID 18631455 23203821 24644022 25736140 27040498 26138472 --- 

Study GEO identifier GSE11907 GSE39088 GSE49454 GSE61635 GSE65391 GSE78193 --- 

Healthy control* 0 46 0 30 72 12 160 

median age (range) --- 34.5  
(19-50) --- --- 12 

(6-21) --- 16  
(6-50) 

gender - female/male --- 34 --- --- 57 --- 91 
SLE-treatment naïve* 37 21 177 99 924 32 1290 

median age (range) 14 
(8-17) 

43 
(20-50) 

40 
(18-71) --- 15 

(6-19) --- 16 
(6-71) 

gender - female 35 21 148 --- 817 --- 1021 
SLE-various 
treatments* 0 57 0 0 0 69 126 

median age (range) --- 36 
(19-50) --- --- --- --- 36 

(19-50) 
gender - female/male --- 57 --- --- --- --- 57 

*observation characteristics represent multiple observations per patient 

 

Figure 2. Gene expression feature importance profile of treatment naïve systemic lupus erythematosus patients 
(top 100 features listed). Results from step b, containing 681 gene expression features that differentiate treatment 
naïve SLE patients from healthy controls and SLE patients exposed to various treatment. Feature importance profile 
includes: i) scaled importance score (grey bars) and ii) corresponding out-of-sample classification accuracy of sample 
type (HC/SLE treatment naïve/SLE treatment) from adjusted TPOT-recommended pipeline with iterative inclusion of 
features from left to right (orange, blue or green lines). The y-axis represents both the MultiSURF scaled importance 
score and TPOT pipeline accuracy. 

We noted that our focus at the first stage of the analysis is feature inclusion; therefore, we only reported the 
performance from the optimized pipeline as an estimation of the model’s predictive power. TPOT suggested a complex 
pipeline that stacks the gradient boosting, decision tree and Random Forest algorithm with an intermediate step of 
selecting the top 20-percentile features based on their ANOVA F-values between with the class. We adjusted the 
TPOT-recommended pipeline slightly by removing one step of feature selection in order to obtain the corresponding 
out-of-sample accuracy as we include more features in the stacked model (Figure 2). Initially, as more predictors 
were included in the model, the out-of-sample accuracy increased (orange), demonstrating that the added features are 
meaningful. However, we note that after the inclusion of approximately ten most predictive features in the model, the 
increase in balanced accuracy (blue) and Kappa coefficient (green) slowed down. Nevertheless, there was an overall 
upward trend in these performance metric values as more features were added to the model. We also noted that the 
flow of balanced accuracy and Kappa coefficient are not smooth, which was likely due to the built-in stochasticity of 
the model. To prevent any biases in the feature scoring metric of the algorithm, we consider all 681 genes for the 
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second stage of finding association with CD expression. We note that the 681-predictor model attains a relatively high 
out-of-sample prediction accuracy of approximately 0.935, balanced accuracy of 0.822, and Kappa coefficient of 
0.680. We recalled the Kappa coefficient is an accuracy measure that is scaled to expected accuracy which is the 
random chance of making a correct prediction by a null model. In particular, a Kappa coefficient of 0.680 means that 
the model achieved a rate of classification 68% of the way between a null model and perfect classification. 

(c) Feature selection stage 2 – CD-specific gene expression profiles. Among the 681 features selected during (b) 
feature selection stage 1, we applied the elastic net regularized binomial logistic regression model to choose features 
that are statistically associated with select CDs and calculated the binomial deviance D, the conventional measure of 
the lack of fit to the data in a logistic regression model. After fixing the hyper-parameter α=0.5, we used cross-
validation to tune the regularization parameter λ. Overall, the regularized logistic regression achieved high correlation 
with CD20 (D=0.0698, λ=0.0335, k=53 features), CD22 (D=0.1351, λ=0.0310, k=78 features), and CD30 (D=0.1908, 
λ=0.0221, k=137 features). Selected gene expression features were then characterized as univariate associations (i.e. 
independent effects) on the same CD endpoints. Gene expression features, in addition to corresponding effect size and 
significance, varied widely between CD20, CD22, and CD30 (Figure 3). Odds ratios and 95% confidence intervals 
characterize increasing explanatory gene expression unless designated otherwise (*=decreasing explanatory gene 
expression). Even though independent analyses do not reveal the significance of several genes (95% CI of odds ratio 
well contains the null value of 1, such as MARCKSL), they are kept in the elastic net algorithm due to their contribution 
to the amount of variance explained in the regression model. We note that the odds ratios and their 95% CI are shown 
without including study origin as a covariate due to relative consistent distributions of CD expression across the 
compendium studies (Supplement 2. Figure S229). However, we performed additional regressions to explore a 
potential study of origin effect, and only the regression of CD30 aberrant expression level suggested a potential 
difference between GSE49454/GSE61635 and the remaining studies (Supplement 3. Figure S329). For consistency, 
we showed the results from simple regressions with only one explanatory variable (gene expression). 

(d) Feature annotation: pathway enrichment analysis of CD-associated genes. We performed GSEA of molecular 
function and biological processes among features recommended by feature selection stage 2 to enhance our de novo 
profile with existing knowledge bases. While biological activity typically consists of tightly-connected reactions and 
interactions, statistical signals might be too disparate to clearly resonate within existing biological knowledge.  

Our GSEA identified several noteworthy findings within biological processes: Phosphate-containing compound 
metabolic process was identified for CD22 (k/K=0.0076, 1.94e-3, encompassing: DLG1, DUSP15, EPHB4, IKBKAP, 
MAP2K6, MSH2, NDUFB1, NUDT5, PDE8A, PDGFB, PHOSPHO1, RFK, TNK2, TTN, and TYMP) and CD30 
(k/K=0.0086, 1.53e-2, encompassing: ABHD14B, IRS1, ISYNA1, MAP2K6, ME1, NDUFB1, OBSCN, PANK3, 
PDE8A, PDGFB, PHOSPHO1, PI4K2A, PRKD3, PSMB4, RIPK3, SMPD3, and TNK2). The closely-related 
organophosphate metabolic process was also identified for CD22 (k/K=0.0076, 1.94e-3, encompassing: DLG1, 
MSH2, NDUFB1, NUDT5, PDE8A, PDGFB, PHOSPHO1, RFK, TYMP) and CD30 (k/K=0.0076, 1.94e-3, 
encompassing: ABHD14B, IRS1, ISYNA1, ME1, NDUFB1, PANK3, PDE8A, PDGFB, PHOSPHO1, PI4K2A, and 
SMPD3). Kinase activity, catalysis a phosphate group to a substrate molecule, for CD22 (k/K=0.0083, q=3.64e-2, 
encompassing: ACSL6, ABCB4, ATN1, BAG2, CEP68, EIF3L, IKBKAP). 

For CD20, several signals broadly encompassing tissue development and function were identified, including: muscle 
contraction (k/K=0.0172, q=4.79e-2), muscle organ development (k/K=0.0181, q=2.57e-2), muscle structure 
development (k/K=0.0116, q=4.79e-2), muscle system process (k/K=0.0177, q=2.57e-2), organ morphogenesis 
(k/K=0.0083, q=3.80e-2). Calmodulin binding, implicating intracellular calcium receptor regulation, was also linked 
to CD20 (k/K=0.0279, q=1.14e-3, encompassing: SCN5A, USP6, TTN, MYH3, MARCKSL1). Calmodulin affects a 
wide range of physiological processes, including cell proliferation, apoptosis, autophagy, and cancer cell 
differentiation30. Detailed associations from the gene enrichment analyses can be found in (Supplements 4-5. Tables 
S1-S229). 
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Figure 3. Gene expression biomarker profile of CD aberrance. 

Statistical annotation of features recommended by integrative analyses  as 
characterizing CD aberrance: i) MultiSURF being predictive of SLE 
patients, and ii) amongst treatment naive SLE patients, regularized logistic 
regression as being associated with aberrant CD biomarker expression. 
Interpretation: Risk [odds ratio (95% CI)] of going from normal CD gene 
expression to aberrant CD gene expression (Figure 3), modeled 
independently by logistic regression. Direction of expression is denoted in 
blue (Increase) or orange (Decrease). For example, as predictor NRCAM 
normalized gene expression value decreases by 0.1, the risk of aberrant 
CD22 gene expression increases by 1.24.  
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(e) Independent in silico replication of CD-specific gene expression profile in general cell model systems. We 
performed a correlation test between the transcript counts of the detected CD-associated genes with the corresponding 
CD in 64 human-derived cell lines. Among 78 gene expression features that were previously selected by elastic net to 
be associated with aberrant level of CD22, we found three genes, BCL7A, STRBP and PHOSPHO1, that have 
statistically significant correlation with the CD22 expression level in the Human Protein Atlas cell line database, after 
adjusting the p-values with the Benjamini-Hochberg’s procedure31. For CD30, among 137 gene expression features 
that were identified by elastic net, four genes were shown to significantly correlate with the CD expression level: 
NCOA2, PHOSPHO1, ATN1, and HOXC4. None of the 53 CD20-related genes showed significant correlation in this 
cell line database after p-value correction.  

Table 2. In silico replication of features affecting CD aberrance in human-derived cell line models  

 Gene Correlation (95% CI) t-statistic 
Unadjusted 

p-value 
Adjusted  
p-value 

CD22 BCL7A 0.719 (0.575, 0.820) 8.14 2.25e-11 1.69e-9 
 STRBP 0.672 (0.510, 0.787) 7.14 1.23e-9 4.63e-8 
 PHOSPHO1  (0.152, 0.575 3.27 1.75e-3 4.37e-2 

       

CD30 NCOA2 0.534 (0.331, 0.689) 4.97 5.58e-6 7.00e-4 

 PHOSPHO1 0.464 (0.246, 0.637) 4.12 1.13e-4 7.40e-3 

 ATN1 0.430 (0.206, 0.611) 3.75 3.88e-4 1.71e-2 

 HOXC4 0.401 (0.173, 0.589) 3.45 1.01e-3 3.34e-2 

 
Discussion  
Using the i-mAB pipeline, we identified several noteworthy findings that enrich our understanding of CD biology. 
For CD22 and CD30, we found phosphate-containing compound metabolic process, organophosphate metabolic 
process, and kinase activity (phosphate catalysis). In an independent in silico analysis, PHOSPHO1, a phosphatase 
linked to bone mineralization, was associated with both CD22 and CD30 gene expression. Future in vitro study is 
warranted to elucidate the potential implication of phosphates on aberrant CD22 and CD30 expression. For CD20, we 
identified several signals broadly encompassing tissue development and function including muscle contraction muscle 
organ development, muscle structure development, muscle system process, organ morphogenesis, and most 
interestingly, calmodulin binding (intracellular calcium receptor regulation). 

Strength and limitation. Aggregation of public datasets may provide a number of advantages but also disadvantages 
including potential bias due to study origin. However, we closely followed the guideline suggested by Smith et al. in 
analyzing secondary datasets to produce meaningful results32 and paid close attention to the aggregation procedure to 
minimize potential bias across studies. We utilized robust methodologies, careful selected models, and sound 
analytical comparisons to identify gene expression signals with potential for biological relevance. In our study, two 
key methodological considerations existed, encompassing three parts: i) initial gene expression feature generation (i.e. 
feature selection stage 1) representative of treatment naive SLE patients and ii) attribution of features (i.e. feature 
selection stage 2) to CDs as gene expression profiles, and iii) feature annotation. i) In pursuit of developing an agnostic 
gene expression profile of treatment naive SLE patients, we were required to make imbalanced comparisons between 
healthy normal controls (n=160) and treated SLE patients (n=126) to treatment naive SLE patients (n=1,290). 
However, we took a series of steps to overcome potential limitations due to imbalanced comparisons. First, 
MultiSURF, a feature selection method known to be robust to imbalanced data, served as our agnostic feature 
generator and identified gene expression features of potential relevance. Second, an automated machine learning 
system recommended an optimized pipeline with multiple complex algorithms that would not have been implemented 
manually without automated machine learning. We focused on the completeness of measures of the model’s 
performance and reported the Cohen’s Kappa coefficient as well as balanced accuracy while considering the multi-
class and imbalanced-class problems. ii) From a statistical perspective, gene expression can be highly correlated 
potentially because the perspective of the aggregate transcriptome might be indiscriminate to complex biological 
synthesis and regulatory pathways influencing gene expression. We applied a regularized multivariate logistic 
regression to identify the predictive features that are statistically significantly associated with the aberrant level of 
CDs expression while taking into account the data’s multicollinearity. iii) Univariate associations between individual 
gene expression features and select CDs were independently tested. However, considering the underlying interaction 
among the genes, we focused on the pathway enrichment analysis of CD-associated genes. We highlighted certain 
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single gene expression features due to transparent biological relevance and confidence in strength of signal. Further, 
the independent in silico replication of the several CD-specific gene expression profiles in general cell model systems 
also ascertained the association between these genes and the CD expression. Incorporating a priori hypotheses in 
newly developed, data-driven machine learning methods, i-mAB provides a biologically scalable pipeline for profiling 
CDs and potentially other interdependent biomarkers such as cytokines. 

Consideration for generalizability. Some protein products degrade rapidly while others are persistent for a long time. 
Similarly, transcripts are known to have dramatic variation in persistence - elevated transcript levels might be 
necessary to produce similar levels of bioavailable protein products compared to more stable proteins (e.g. proteins 
within the same pathways). Aberrant biology occurring within the SLE disease state has potential to indeterminately 
modify transcript synthesis or protein bioavailability (i.e. stability, degradation) and maintenance of physiological 
homeostasis. A single statistical or machine learning approach often provides a wide-angle view of the biological 
picture of disease. Careful iterative analysis with multiple approaches may provide a higher resolution picture of 
complex mechanism and signals of disease. While the signals replicated within general cell model systems potentially 
suggest broader biological implications, these biomarkers might have limited application to whole blood and B-
lymphocytes. As previously noted, a subset of patients labeled as treatment naïve likely received maintenance 
immunosuppressive therapy. Although the therapy was not an active treatment for the disease, it may have slightly 
attenuated the overall transcriptome expression. Replication of the pathway findings and independent replication 
signals are warranted for different diseases and tissue-specific environments 

Potential biomarker applications of upstream biological features as potential biomarkers. CDs may represent 
biological relevant markers of disease. Due to orphan drug policy33, enriched CD perspectives might stimulate 
opportunities for therapeutic repositioning across disease with similar biomarker expression. Particularly for treatment 
of rare diseases34 therapeutic mABs have been previously demonstrated to be safe in humans. 

Conclusion 

The i-mAB pipeline identified novel (adjusted independent) associations of potential relevance to CD biology: BCL7A 
(p=1.69e-9) and STRBP (p=4.63e-8) with CD22; NCOA2(p=7.00e-4), ATN1(p=1.71e-2), and HOXC4 (p=3.34e-2) 
with CD30.  PHOSPHO1, a phosphatase linked to bone mineralization, was associated with both CD22 (p=4.37e-2) 
and CD30 (p=7.40e-3) expression. Simultaneously leveraging a priori hypotheses, performing secondary data 
analysis, and integrating appropriate machine learning approaches, i-mAB provides opportunity to detect de novo gene 
expression features that replicate in independent disease-agnostic model systems and enrich our understanding of the 
molecular characteristics of SLE and select CDs. 

References 

1. Engel P, Boumsell L, Balderas R, et al. CD Nomenclature 2015: human leukocyte differentiation antigen 
workshops as a driving force in immunology. Journal of Immunology. 2015;195(10):4555-63. 

2. Belov L, de la Vega O, dos Remedios CG, Mulligan SP, Christopherson RI. Immunophenotyping of leukemias 
using a cluster of differentiation antibody microarray. Cancer Research. 2001;61(11):4483-9. 

3. Zucchetto A, Cattarossi I, Nanni P, et al. Cluster analysis of immunophenotypic data: the example of chronic 
lymphocytic leukemia. Immunology Letters. 2011;134(2):137-44. 

4. Autenrieth SE, Grimm S, Rittig SM, Grünebach F, Gouttefangeas C, Bühring HJ. Profiling of primary peripheral 
blood-and monocyte-derived dendritic cells using monoclonal antibodies from the HLDA10 Workshop in 
Wollongong, Australia. Clinical & Translational Immunology. 2015;1:4(11). 

5. Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nature Reviews Cancer. 201;12(4):278. 
6. Kamal A, Khamashta M. The efficacy of novel B cell biologics as the future of SLE treatment: a review. 

Autoimmunity reviews. 2014;13(11):1094-101 
7. Simpson A, Caballero O. Monoclonal antibodies for the therapy of cancer. BMC proceedings 2014;8(4):O6  
8. Pieper K, Grimbacher B, Eibel H. B-cell biology and development. Journal of Allergy and Clinical Immunology. 

2013;131(4):959-71. 
9. Ondrejka SL, Hsi ED. Pathology of B-cell lymphomas: diagnosis and biomarker discovery. Non-Hodgkin 

Lymphoma 2015:27-50. Springer, Cham. 
10. Lipsky PE. Systemic lupus erythematosus: an autoimmune disease of B cell hyperactivity. Nature immunology. 

200;2(9):764. 
11. Moir S, Fauci AS. Pathogenic mechanisms of B-lymphocyte dysfunction in HIV disease. Journal of Allergy and 

Clinical Immunology. 2008;122(1):12-9. 

1366



 
 

12. Kononenko I, Šimec E, Robnik-Šikonja M. Overcoming the myopia of inductive learning algorithms with 
RELIEFF. Applied Intelligence. 19;7(1):39-55. 

13. McKinney BA, Crowe Jr JE, Guo J, Tian D. Capturing the spectrum of interaction effects in genetic association 
studies by simulated evaporative cooling network analysis. PLoS Genetics. 2009;5(3):e1000432. 

14. Urbanowicz RJ, Olson RS, Schmitt P, Meeker M, Moore JH. Benchmarking relief-based feature selection 
methods. arXiv preprint arXiv:1711.08477. 2017 Nov 22. 

15. Olson RS, Urbanowicz RJ, Andrews PC, Lavender NA, Moore JH. Automating biomedical data science through 
tree-based pipeline optimization. Applications of Evolutionary Computation 2016:123-137. 

16. Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets—update. Nucleic 
Acids Research. 2012;41(D1):D991-5. 

17. Chaussabel D, Quinn C, Shen J, et al. A modular analysis framework for blood genomics studies: application to 
systemic lupus erythematosus. Immunity. 2008;29(1):150-64. 

18. Lauwerys BR, Hachulla E, Spertini F, et al. Down-regulation of interferon signature in systemic lupus 
erythematosus patients by active immunization with interferon α–kinoid. Arthritis & Rheumatology. 
2013;65(2):447-56. 

19. Chiche L, Jourde-Chiche N, Whalen E, et al. Modular transcriptional repertoire analyses of adults with systemic 
lupus erythematosus reveal distinct type I and type II interferon signatures. Arthritis & Rheumatology. 
2014;66(6):1583-95. 

20. Carpintero MF, Martinez L, Fernandez I, et al. Diagnosis and risk stratification in patients with anti-RNP 
autoimmunity. Lupus. 2015;24(10):1057-66. 

21. Banchereau R, Hong S, Cantarel B, et al. Personalized immunomonitoring uncovers molecular networks that 
stratify lupus patients. Cell. 2016;165(3):551-65. 

22. Welcher AA, Boedigheimer M, Kivitz AJ, et al. Blockade of interferon-γ normalizes interferon-regulated gene 
expression and serum CXCL10 levels in patients with systemic lupus erythematosus. Arthritis & Rheumatology. 
2015;67(10):2713-22. 

23. Piccolo SR, Sun Y, Campbell JD, Lenburg ME, Bild AH, Johnson WE. A single-sample microarray normalization 
method to facilitate personalized-medicine workflows. Genomics. 2012;100(6):337-44. 

24. Le TT, Blackwood NO, Breitenstein MK. Labels of aberrant Clusters of Differentiation gene expression in a 
compendium of systemic lupus erythematosus patient. BioRxiv/2018/277145. 

25. Lusa L. SMOTE for high-dimensional class-imbalanced data. BMC bioinformatics. 2013;14(1):106. 
26. Zou H, Hastie T. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: 

Series B (Statistical Methodology). 2005;67(2):301-20. 
27. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for 

interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences. 
2005;102(43):15545-50. 

28. Thul PJ, Åkesson L, Wiking M, et al. A subcellular map of the human proteome. Science. 2017;356(6340). 
29. Le TT, Blackwood NO, Taroni JN, Fu W, Breitenstein MK. Integrated machine learning pipeline for aberrant 

biomarker enrichment (i-mAB): characterizing clusters of differentiation within a compendium of systemic lupus 
erythematosus patients. arXiv:submit/2188809. 

30. Berchtold MW, Villalobo A. The many faces of calmodulin in cell proliferation, programmed cell death, 
autophagy, and cancer. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2014;1843(2):398-435. 

31. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. Controlling the false discovery rate in behavior genetics 
research. Behavioural brain research. 2001;125(1-2):279-84. 

32. Smith AK, Ayanian JZ, Covinsky KE, Landon BE, McCarthy EP, Wee CC, Steinman MA. Conducting high-
value secondary dataset analysis: an introductory guide and resources. Journal of general internal medicine. 
2011;26(8):920-9. 

33. Braun MM, Farag-El-Massah S, Xu K, Coté TR. Emergence of orphan drugs in the United States: a quantitative 
assessment of the first 25 years. Nature Reviews Drug Discovery. 2010;9(7):519 

34. Seoane-Vazquez E, Rodriguez-Monguio R, Szeinbach SL, Visaria J. Incentives for orphan drug research and 
development in the United States. Orphanet Journal of Rare Diseases. 2008;3(1):33. 

1367


