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Abstract

The key to any computational drug repositioning is the availability of relevant data in machine-understandable for-
mat. While large amount of genetic, genomic and chemical data are publicly available, large-scale higher-level
disease and drug phenotypic data are limited. We recently constructed a large-scale disease-comorbidity rela-
tionship knowledge base (dCombKB) and a comprehensive drug-treatment relationship knowledge base (TreatKB)
from 21 million biomedical research articles and other resources. In this study, we demonstrated the potential of
dCombKB and TreatKB in drug repositioning for schizophrenia, one of the top ten illnesses contributing to the
global burden of disease. dCombKB contains 121,359 unique disease-disease comorbidity pairs for 23,041 dis-
eases. TreatKB contains 208,330 unique drug-disease treatment pairs for 2,484 drugs and 24,511 diseases. We
constructed a phenotypic comorbidity disease network (PDN) of 14,645 disease nodes and 101,275 edges based on
dCombKB. We applied standard network-based ranking algorithm to find diseases that are phenotypically related
to SCZ. We developed a drug prioritization system, PhenoPredict CDN, to systematically reposition drugs for SCZ
from diseases phenotypically related to SCZ. PhenoPredict CDN found all 18 FDA-approved SCZ drugs and ranked
them highly as tested in a de-novo validation setting (recall: 1.0, mean ranking: top 6.05%, median ranking: top
1.65%). When compared to PREDICT, a comprehensive drug repositioning system, for novel predictions, Pheno-
Predict CDN outperformed PREDICT in Precision-Recall (PR) curves across three different evaluation datasets.
Compared to PREDICT, PhenoPredict CDN showed a significant 110.0-230.0% improvements in mean average pre-
cision. In summary, large-scale higher-level disease-comorbidity relationships data extracted from biomedical lit-
erature has potential in drug discovery for SCZ, a complex disease with unknown pathophysiological mechanisms.
All the data are publicly available: dCombKB at http://nlp.case.edu/public/data/dCombKB, TreatKB
at http://nlp.case.edu/public/data/treatKB/, and predictions for SCZ at http://nlp.case.
edu/public/data/SCZ_CDN/.

1 Introduction
Computational drug repositioning strategies can be categorized as drug-based, disease-based and profile-based [1-3] .
Drug-based and disease-based approaches exploit drug-drug or disease-disease similarity and existing drug-treatment
knowledge to infer new disease-drug associations [4-7]. Profile-based drug-repositioning approaches exploit profile
similarities between drugs and diseases [8-12]. The key to all computation-based drug repositioning is the availability
of relevant data in machine-understandable format. Existing drug repositioning systems mainly used genetic and
genomic data of drugs and diseases [1-3], and in less-degree exploited phenotypic data of diseases and drugs [13-
14]. While a large amount of genetic, genomic and chemical data are publicly available, large-scale higher-level
disease and drug phenotypic data are limited. Human Phenotype Ontology (HPO), a standardized vocabulary of
phenotypic abnormalities encountered in Mendelian diseases [15], is a commonly used disease phenotype data for
drug repositioning [4, 13]. We have recently developed a drug repositioning strategy that used disease-manifestation
associations from HPO [13]. The fact that HPO mainly contains Mendelian diseases, many of which have no drug
treatments, greatly limited its potential in inferring candidate drugs from phenotypically related diseases.

We have recently constructed a large-scale disease-comorbidity relationship knowledge base (dCombKB) from 21
million biomedical research articles using natural language processing techniques[15]. dCombKB contains 121,359
unique disease-comorbidity pairs for 23,041 diseases. Different from HPO that is comprised of almost exclusively rare
Mendelian disorders, dCombKB contains both common complex and Mendelian diseases. For example, dCombKB
includes a total of 321 SCZ-comorbidity pairs, including both psychiatric comorbidities (e.g., epilepsy, anxiety, brain
atrophy, psychosis) and non-psychiatric comorbidities (e.g., hyperprolactinemia, diabetes mellitus, obesity, dyslipi-
demia, rheumatoid arthritis). We demonstrated in our previous study that diseases sharing comorbidities tend to share

1066



both underlying genetics and drug treatments [15]. In this study, we demonstrated that this unique large-scale disease-
comorbidity relationship knowledge base dCombKB had great potential in drug repositioning using schizophrenia
(SCZ) as a case study.

Schizophrenia is a psychiatric disorder involving chronic or recurrent psychosis. It is commonly associated with im-
pairments in social and occupational functioning [16]. SCZ is among the most disabling and economically catastrophic
medical disorders and is among top ten illnesses contributing to the global burden of disease [17]. Traditional drug dis-
covery has produced many commercially successful antipsychotic drugs, but no new mechanisms of action have been
discovered, nor have any gains in efficacy been made since the early 1960s [18]. Currently there exist no medications
that can cure SCZ or treat its core symptoms. Despite the high prevalence and vast unmet medical need represented
by the disease, many drug companies have moved away from the development of drugs for SCZ, not only because
of the high costs, high failure rates, and lengthy development processes inherent to traditional drug development, but
also due to a poor understanding of the molecular mechanisms underlying SCZ [19]. Under such circumstances, SCZ
patients have little hope for new drug treatment. Therefore, alternative strategies for the discovery of truly innovative
drug treatments for SCZ are needed [19-20].

We developed a phenome-driven drug repositioning system (PhenoPredict CDN) and tested it in identifying reposi-
tioned candidate drugs for SCZ. PhenoPredict CDN critically leveraged dCombKB to infer innovative drug treatments
from diseases phenotypically related to SCZ. Our assumption is that if a drug treats many diseases that are phenotypi-
cally related to SCZ , then this drug is likely a promising repositioned candidate to treat SCZ. Another critical compo-
nent of PhenoPredict CDN is TreatKB, a comprehensive drug-disease treatment relationship knowledge base that we
recently constructed from multiple heterogeneous and complementary data resources using advanced computational
techniques including natural language processing, text mining and data mining [15, 21-22]. All together, TreatKB
contains 208,330 drug-disease treatment pairs for 2484 drugs and 24,511 diseases. We demonstrated in our recent
studies the critical roles of TreatKB in computational drug repositioning [5-6, 13].

We compared PhenoPredict CDN to PREDICT, a comprehensive drug repositioning system [4]. PREDICT used
disease phenotypic similarities defined in HPO, and drug-drug similarities from other databases to construct a clas-
sifier to determine treatment associations between 593 drugs and 313 diseases, including SCZ. We compared our
system to PREDICT in novel drug predictions using multiple evaluation datasets and demonstrated that PhenoPre-
dict CDN consistently achieved better performance than PREDICT. Compared to many existing mechanism-based
drug repositioning systems that are based on known disease biology or drug mechanisms, PhenoPredict CDN has
the advantage of repositioning drug candidates to treat diseases with unknown pathophysiological mechanisms such
as SCZ. To the best of our knowledge, our study represents the first drug repositioning system driven by large-
scale disease-comorbidity relationships extracted from biomedical literature records. To clarify, the goal of this
study is not to build a comprehensive drug repositioning systems for all disease, instead our goal is to demon-
strate the potential of a literature-based large-scale disease-comorbidity relationship database in drug repositioning.
We have made all the data publicly available, including dCombKB, TreatKB and predictions for SCZ, at http:
//nlp.case.edu/public/data/dCombKB, http://nlp.case.edu/public/data/treatKB/, and
http://nlp.case.edu/public/data/SCZ_CDN/.

2 Data and Methods

2.1 Data
Disease-comorbidity relationship knowledge base (dCombKB) dCombKB was constructed from 21 million biomed-
ical literature records using NLP techniques [15]. dCombKB contains 121,359 disease-comorbidity pairs for 23,041
unique diseases. For example, dCombKB contains a total of 321 SCZ-comorbidity pairs, including both psychi-
atric comorbidities (e.g., epilepsy, anxiety, brain atrophy, psychosis) and non-psychiatric comorbidities (e.g., hyper-
prolactinemia, diabetes mellitus, obesity, dyslipidemia, rheumatoid arthritis). All disease terms were standardized
based on UMLS terminologies. In addition, the disease-comorbidity pairs were weighted based on their occur-
rences with specific syntactic patterns (details were described in our published paper [15]). We showed that dis-
eases sharing comorbidities also share genes and drug treatments [15]. dCombKB is publicly available at http:
//nlp.case.edu/public/data/dCombKB.
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Drug-disease treatment relationship knowledge base (TreatKB) TreatKB includes 111,862 drug-disease pairs (1,336
drugs and 8,046 diseases) extracted from records of 4.8 million patients in FAERS, 9,216 drug-disease pairs (1,483
drugs and 1,381 diseases) extracted from 44,000 FDA drug labelings, 69,724 pairs (1,560 drugs and 7,970 diseases)
extracted from 21 million MEDLINE abstracts, and 69,724 pairs (1,286 drugs and 11,848 diseases) from 180,000 clin-
ical trial studies [15, 21-22]. We demonstrated that TreatKB was important for the computational drug repositioning
[5-6,13]. treatKB is publicly available at http://nlp.case.edu/public/data/treatKB.

2.2 Methods
The experiment framework consists of three steps: (1) we constructed phenotypic comorbidity disease networks
(PDNs) using disease-disease comorbidity relationships from dCombKB. We experimented with four different ways
in constructing PDNs; We applied a network-based ranking algorithm to find diseases that are phenotypically related
to SCZ; We tested the network construction and ranking algorithms by examining the distribution of mental disorders
among ranked SCZ-related diseases; (2) We developed a drug prioritization algorithm to systematically reposition
drugs from SCZ-related diseases to treat SCZ; We evaluated PhenoPredict CDN using18 FDA-approved SCZ drugs in
a de-novo setting. We compared PhenoPredict CDN to PREDICT in novel predictions using three evaluation datasets;
and (3) We evaluated top-ranked drug candidates by manually reviewing published literature and clinical trial reports.

2.2.1 Construct phenotypic comorbidity disease network (PDNs) and find SCZ-related diseases from PDNs
Construct phenotypic comorbidity disease network (PDNs) We explored four different ways in building PDNs: (1)
PDN1, wherein two nodes were directly linked if they are disease-comorbidity (D-C) pairs in dCombKB. The edge
weights were determined by the weights of D-C pairs (as defined in dCombkB); (2) PDN2, wherein two diseases (D1
and D2) were linked if they shared any comorbidities. The edge weights were determined by the number of shared
comorbidities; (3) PDN3 was the same as PDN2 except that the edge weights were determined the Jaccard similarity
[23] of disease-associated comorbidities; and (4) PDN4, which was similar to PDN2 and PDN3 except that the weights
were determined by the cosine similarity [23] of disease-associated comorbidities. In this study, we did not discount
the weights of common diseases or comorbidities since for drug repositioning purpose, common disease may be as
important as rare disorders. We also generated random PDNs for each real PDN by randomly shuffling its edges.
These random PDNs were used in the subsequent drug repositioning algorithms.

Find phenotypically related diseases for a given input (e.g., SCZ We applied the standard network-based ranking
algorithm to find phenotypically related diseases for a given input (SCZ in this study). We have recently applied this
algorithm to prioritize genes for a given disease [24-25] and to prioritize diseases for a given microbial metabolite
[26-27]. The iterative network-based ranking algorithm is defined as: pt+1 = (1 − r)Mpt + rp0, wherein M is
the column-normalized adjacency matrix of PDN, γ is a preset probability of restarting from the initial seed node
(γ=0.1 in this study), and pt is a vector in which the ith element holds the normalized ranking score of disease i at tth
iteration. The initial probability vector p0 contains normalized probability values for input. In our study, p0 contained
SCZ, with a probability of 1.0. Diseases were ranked according to values in the steady-state probability vector, which
was obtained by iterating the algorithm until the change between pt+1 and pt was less than 10−6.

Evaluate and analyze SCZ-related diseases We tested both the network construction and ranking algorithm by exam-
ining rankings of mental disorders among retrieved SCZ-related diseases. SCZ is a mental disorder and is known to
share both phenotypes and genetics with other mental disorders. We expect that top-ranked SCZ-related disease will
contain more mental disorders than bottom-ranked diseases. Using SCZ as the seed, we retrieved four ranked lists of
diseases from four PDNs. We classified these diseases into mental diseases (“Mental, behavioural disorders”) using the
10th revision of the International Statistical Classification of Diseases and Related Health Problems (ICD10), a disease
classification scheme designated by the World Health Organization (WHO) [28]. Since the term usage in dCombKB is
often different from that in ICD10, we mapped disease terms to their corresponding unified medical language system
(UMLS) unique concept identifiers [29] and classified diseases based on the unique concept identifiers. At ten ranking
cutoffs (10%, 20%, . . . 100%), we calculated percentages of mental diseases among retrieved diseases.
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2.2.2 Reposition drugs
Drug repositioning algorithm We developed a drug prioritization approach to systematically reposition drugs from
SCZ-related diseases to treat SCZ. We first ranked drugs based on the number of SCZ-related diseases that they
could treat as well as the ranking scores of these diseases. The drug prioritization algorithm is defined as: Rdrug =
n∑

i=1

R disease i, wherein n is the number of SCZ-related diseases that a drug can treat and R disease i is the disease

ranking score (output from the network-based disease ranking algorithm). During our study, we found that certain
drugs were consistently ranked highly when both actual and random PDNs were used. For example, the drug “chlor-
diazepoxide” was ranked at top 0.32% based on the actual PDNs and at top 0.36% based on random PDNs. We
designed a reprioritization strategy by taking into accounts of drug ranking scores derived from random networks. A
drug was ranked highly if and only if it was ranked highly for actual PDNs and low for the random PDNs. The drug
reprioritization algorithm is defined as: RRdrug = Rdrug/R

′
drug, where Rdrug is the ranking score of a drug based

on the actual PDN and R′drug is the ranking score of the same drug based on random PDNs.

2.2.3 Evaluation and comparison
De-novo validation using 18 known SCZ drugs as evaluation dataset We evaluated PhenoPredict CDN using 18
FDA-approved SCZ drugs. Since SCZ and its associated drug treatment pairs were removed from the inputs to the
repositioning algorithm, the evaluation was in fact a de-novo validation. We calculated rankings of 18 FDA-approved
SCZ drugs among all retrieved drugs. The recall, mean and median rankings of these drugs were calculated. We
compared validation performances across four TreatKBs separately and in combination.

Compare PhenoPredict CDN to PREDICT in novel predictions Since the ultimate goal of any drug repositioning
algorithms is to find novel drugs for a given disease, we compared PhenoPredict CDN to PREDICT in novel pre-
dictions instead of validation of FDA-approved SCZ drugs. We evaluated the performance using the following three
evaluation datasets individually and combined: (1) 195 SCZ drugs that were extracted from 172,888 clinical trials; (2)
50 SCZ drugs that were extracted from 43,811 ongoing clinical trials initiated in 2012 and after; (3) 114 SCZ drugs
that were extracted from over 21 million MEDLINE abstracts; and (4) 263 SCZ drugs extracted from all clinical trials
and MEDLINE abstracts. The 18 FDA-approved drugs were removed from these evaluation datasets.

The output from PhenoPredict CDN was a ranked list of 2,484 drugs. Note that these predictions were made with the
prior knowledge of SCZ was removed from the inputs: SCZ was removed from SCZ-related diseases and SCZ-drug
treatment pairs were removed from TreatKB. The novel predictions from PREDICT was a list of drugs that were
classified as positive (classification probability greater than 0.50). A total of 593 drugs were included in PREDICT,
among which 79 drugs were classified as positives for SCZ. The 79 drugs along with their corresponding probabilities
(ranging from 0.543-0.994) are publicly available. We assumed that the rest 524 drugs were predicted as negatives for
treating SCZ. We assigned each negative a value that was randomly picked from 0.0 to 0.5. We repeated this process
for ten times and generated ten ranked list of drugs for PREDICT.

We used Precision-Recall (PR) curves instead of Receiver Operator Characteristic (ROC) curves to evaluate and com-
pare PhenoPredict CDN to PREDICT. Studies have shown that in domains where the number of negatives greatly
exceeds the number of positives such as in drug repositioning and many other biomedical classification domains, ROC
curves, not PR curves, can present an overly optimistic view of an algorithm’s performance [30]. Using each of the
three evaluation datasets as gold standard, we calculated precisions at 10 different recall cutoffs (0.1, 0.2, ... 1.0) for
both PhenoPredict CDN and PREDICT and plotted the PR curves. The PR curves for PREDICT were then aver-
aged across ten datasets ( the PR curves for these ten datasets were very similar, therefore we did not generate more
datasets). Mean Average Precision (MAP), which approximates the area under the precision-recall curve [31], was
used to compare the performance of PhenoPredic CDN and PREDICT.

2.2.4 Analyze top-ranked repositioned drug candidates
We manually examined top 20 repositioned drug candidates by searching for supporting evidence from FDA approved
drugs, clinical trials, and published biomedical literature.
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3 Results

3.1 Compare four disease networks in ranking mental disorders among SCZ-related diseases
SCZ is a mental disorder and is known to share both phenotypes and genetics with other mental disorders including
bipolar disorders and depression. We used the rankings of mental disorders among SCZ-related diseases at different
ranking cutoffs to evaluate network construction and disease-ranking algorithms. As shown in Fig.1, SCZ-related
diseases retrieved from all four PDNs have similar ranking curves, with mental diseases enriched among top-ranked
diseases. Since PDN1 contains 14,645 diseases, which is 41% more diseases than other three PDNs, we used PDN1
in subsequent experiments.

0.00%	
  

2.00%	
  

4.00%	
  

6.00%	
  

8.00%	
  

10.00%	
  

12.00%	
  

14.00%	
  

16.00%	
  

18.00%	
  

5%	
   10%	
   20%	
   30%	
   40%	
   50%	
   60%	
   70%	
   80%	
   90%	
   100%	
  

Pe
rc
en

ta
ge
	
  o
f	
  m

en
ta
l	
  d
is
or
de

rs
	
  (%

)	
  

Ranked	
  SCZ-­‐related	
  diseases	
  (top	
  %)	
  

Rankings	
  of	
  mental	
  disorders	
  	
  among	
  ranked	
  SCZ-­‐related	
  
diseases	
  retrieved	
  from	
  four	
  disease	
  networks	
  

PDN1	
   PDN2	
   PDN3	
   PDN4	
  

Figure 1: Comparison of the rankings of mental disorders among ranked SCZ-related diseases retrieved from four
disease networks (PDN1, PDN2, PDN3, PDN4).

3.2 PhenoPredict CDN found all 18 FDA-approved SCZ drugs and ranked them highly
We validated the drug repositioning algorithm using 18 FDA-approved SCZ drugs. Since the TreatKB is an essential
component of PhenoPredict CDN, we compared the performance of the validation across four TreatKBs. As shown in
Table 1, when all four TreatKBs were combined, PhenoPredict CDN achieved a recall of 1.00, an average ranking of
6.05%, and a median ranking of 1.65%. The performances for individual TreatKBs were lower. These results demon-
strated that a comprehensive drug-disease treatment knowledge base was a critical component of PhenoPredict CDN.

TreatKB Recall Mean Median
FDA drug label 1.00 14.16% 8.63%
Post-market 1.00 5.76% 2.58%
Clinicaltrials 0.83 20.69% 8.53%
Literature 1.00 13.71% 1.98%
Combined 1.00 6.05% 1.65%

Table 1: Comparing recalls, mean, and median rankings of 18 FDA-approved SCZ drugs across four TreatKBs.

There was a big difference between the median ranking of 1.65% and the mean ranking of 6.05%, demonstrating a
skewed ranking distribution of these FDA-approved SCZ drugs. As shown in Fig.2, 17 of the 18 SCZ drugs were
ranked within top 10% except for prochlorperazine. Prochlorperazine is used to treat severe nausea and vomiting,
which are not SCZ comordities according to dCombKB, which explains why prochlorperazine was ranked low.
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Figure 2: Percent rankings of 18 FDA-approved drugs among all 2484 drugs. The combined TreatKB was used.

3.3 Compare PhenoPredict CDN to PREDICT in novel predictions

We plotted PR curves for PhenoPredict CDN and for PREDICT using 263 novel SCZ drugs that were extracted from
172,888 clinical trial reports and from 21 million MEDLINE records (Fig.3). As shown in the figure, PhenoPre-
dict CDN performed better than PREDICT. The mean average precision (MAP), which approximates the area under
the PR curve as 0.413 for PhenoPredict CDN and 0.197 for PREDICT, representing a 110.0% improvement.
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Figure 3: The Precision-Recall curves evaluated with 263 novel SCZ drugs from 172,888 clinical trial reports and 21
million MEDLINE records.

Fig. 4 shows the PR curves using 195 novel SCZ drugs extracted from 172,888 clinical trials. PhenoPredict CDN
performed better than PREDICT as shown in the PR curves. The MAP for PhenoPredict CDN was 0.332, represent-
ing a 137.1% improvement as compared to the MAP of 0.140 for PREDICT. Fig. 5 shown the PR curves when 50
novel SCZ drugs extracted from ongoing clinical trials were used. These 50 drugs may represent a newer generations
of SCZ drugs. The MAPs for both algorithms were lower than previous ones. PhenoPredict CDN performed better
than PREDICT as measured by PR curves. The MAP is 0.093 for PhenoPredict CDN and 0.030 for PREDICT, rep-
resenting a 210.0% improvement. Fig. 6 shows the PR curves when 114 novel SCZ drugs extracted from biomedical
literature were used. PhenoPredict CDN performed better than PREDICT as shown by PR curves. The MAP for
PhenoPredict CDN was 0.343, representing a 230.0% improvement as compared to MAP of 0.104 for PREDICT.
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Figure 4: The Precision-Recall curves evaluated with 195 novel SCZ drugs from 172,888 clinical trials.
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Figure 5: The Precision-Recall curves evaluated with 50 novel SCZ drugs from 43,811 ongoing clinical trials.

In summary, PhenoPredict CDN performed better than PREDICT across all evaluation datasets. Two facts may ac-
count for this significant improvement. First, PREDICT used disease-disease similarity matrix from HPO that mainly
contains phenotypic description of rare Mendelian disorders. One of the major limitations in using interrelationships
among rare Mendelian disorders for drug repositioning is that many of these diseases have no drug treatments them-
selves, which could greatly limit the potential in transferring drug treatments among phenotypically related diseases.
PhenoPredict CDN instead used disease interrelationships from dCombKB, which contains 23,041 diseases including
both common complex diseases and rare Mendelian disorders. Second, we used a comprehensive treatKB that consists
of drug-disease treatment pairs extracted from multiple complementary resources and PREDICT used drug-treatment
pairs derived from FDA drug labels only. We have shown that drug repositioning using this comprehensive TreatKB
performed better than using TreatKB derived from FDA drug labels alone (Table 1).

3.4 Top-ranked drug candidates
Table 2 shows top 20 repositioned drug candidates, all of which have supporting evidences from FDA drug labels,
clinical trials, or biomedical literature for their potential treatment benefits in SCZ patients. Among these 20 drugs,
seven are FDA-approved drugs. These specific examples demonstrated the potential of our disease-comorbidity guided
drug repositioning strategy. The complete list is at http://nlp.case.edu/public/data/SCZ_CDN.
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Figure 6: The Precision-Recall curves evaluated with 114 novel SCZ drugs from 21 million MEDLINE abstracts.

Rank Drug Evidence Rank Drug Evidence
1 quetiapine FDA-approved 11 clozapine FDA-approved
2 sertraline NCT00169988,

NCT00531518
12 trazodone NCT00659919

3 risperidone FDA-approved 13 valproic acid NCT00194025,
NCT01094249,
NCT02011750

4 alprazolam PMID3289523,
PMID1348161,
PMID12516314

14 lithium NCT00202306
NCT00183443
NCT00202293

5 olanzapine FDA-approved 15 donepezil NCT01490567,
NCT00465283,
NCT00206947

6 fluoxetine NCT00531518,
NCT02022709

16 memantine NCT02001103
NCT00757978
NCT00097942

7 aripiprazole FDA-approved 17 sulpiride NCT00654576,
NCT02307396

8 citalopram NCT00893256,
NCT00047450,
NCT01032083,
NCT01032083

18 bupropion NCT01111149,
NCT00307203

9 haloperidol FDA-approved 19 lorazepam NCT00797277,
NCT00431184,
NCT00159133

10 levetiracetam PMID12609283,
PMID19265183

20 ziprasidone FDA-approved

Table 2: Top 20-ranked repositioned drug candidates. NCT**: SCZ drugs from clinical trials. PMID**: SCZ drugs
from biomedical literature. FDA-approved SCZ drugs are highlighted.
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4 Discussion
The key to any computational drug repositioning systems is the availability of relevant data in machine-understandable
format. While large amount of genetic, genomic and chemical data are publicly available, large-scale higher-level
disease and drug phenotypic data are limited. In this study, we demonstrate that the disease-comorbidity relationship
data that we extracted from biomedical literature has great potential in drug repositioning for complex diseases with
unknown pathophysiological mechanisms such as SCZ. Intuitively, disease-comorbidity data does not necessarily
work well for all diseases. In the future, we will systematically test PhenoPredict CDN on other diseases and examine
its performances across disease classes. Even though we demonstrate that PhenoPredict CDN had better performance
than PREDICT in predicting drug candidates for SCZ across different evaluation datasets, our goal for this study is not
to build a comprehensive drug repositioning system. Instead, our goal is to demonstrate the usefulness of dCombKB
in drug repositioning. To build a more encompassing prediction system, other levels of disease-and drug-related data
such as genetics and genomics may be necessary. In addition, other disease and drug phenotypic data, for example
drug side effects and disease manifestations, may further improve prediction performances.
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