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Abstract 

Conversations especially between a clinician and a patient are important sources of data to support clinical care. To 

date, clinicians act as the sensor to capture these data and record them in the medical record. Automatic speech 

recognition (ASR) engines have advanced to support continuous speech, to work independently of speaker and deliver 

continuously improving performance. Near human levels of performance have been reported for several ASR engines. 

We undertook a systematic comparison of selected ASRs for clinical conversational speech. Using audio recorded 

from unscripted clinical scenarios using two microphones, we evaluated eight ASR engines using word error rate 

(WER) and the precision, recall and F1 scores for concept extraction. We found a wide range of word errors across 

the ASR engines, with values ranging from 65% to 34%, all falling short of the rates achieved for other conversational 

speech. Recall for health concepts also ranged from 22% to 74%. Concept recall rates match or exceed expectations 

given measured word error rates suggesting that vocabulary is not the dominant issue.  

Introduction 

While our diagnostic armamentarium continues to grow, obtaining the patient’s history is still considered a critical 

step in delivering high quality, safe and cost-effective care.  Some older studies demonstrated the gap that exists 

between the content of those conversations and the data recorded in the medical record. Zuckerman et al, for example, 

compared tape-recorded conversations with patient records and found significant omissions in crucial categories such 

as reason of visit and degree of disability; Romm et al compared contemporaneous notes recorded by an independent 

observer to the medical record and a found a 71%-73% accuracy for diagnosis, tests and information related to the 

current illness, and even lower accuracy for medical history.1,2 More recently, Johnson et al. attempted to support 

clinicians by using automatic speech recognition (ASR).3  Even more recently, Zafar et al. evaluated the performance 

of speaker trained ASRs and found better levels of accuracy.4 Gür, in his dissertation, described his attempts to 

measure the performances of two state-of-the-art automatic speech recognition engines for the task of transcribing 

clinical conversations.5 He found WERs over 100% for both untrained ASR engines evaluated and efforts to refine 

language models yielded little if any improvement.  Interesting, the study found that the mean WER was lower (64.5% 

and 79.2%) for doctors than for patients (91.0% and 91.0%).  Selected ASR engines have been evaluated on a clinical 

question answering task and it has been shown that domain adaptation with a language model improves the accuracy 

in interpreting spoken clinical questions significantly.6 

ASR has improved significantly over the last 40 years.7 Particularly with the advent of deep learning approaches, 

automatic speech recognition (ASR) has advanced rapidly with each ASR engine reporting dramatic improvements 

and approaching if not exceeding human speech recognition capabilities. In March of 2017, for example, IBM 

announced that they had improved on their previous benchmark of 6.95% to achieve a word error rate of 5.5% on the 

TELEPHONE dataset though performance was poorer (10.3%) on the CallHome dataset.8  Human recognition was 

pegged at 5.1% and 6.8% for the TELEPHONE and CallHome datasets respectively. This is the just the most recent 

of a string of announcements and publications reporting performance in the range of 3.7% for short phrases to 6.8% 

for the TELEPHONE dataset.9,10   

Recent work in the clinical domain shows promise as well.  Edwards et al. achieved a WER of 16% using a neural 

network based ASR algorithm built for dictational speech and Chung-Cheng reported a WER of 18.3% for recognition 

of clinical conversation speech.11,12 

Given this remarkable progress and the potential value of capturing clinical observations directly from conversations, 

we wanted to understand the performance of selected contemporary, readily available ASR engines when applied to 

conversational clinical speech and specifically the potential to extract clinical meaning from these conversations, we 

conducted a systematic comparison of eight ASR engines. 
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Methods 

ASR engines were included if they employed contemporary speech recognition approaches, including examples that 

have reported “better than human” performance and are widely accessible (potentially for a fee).  

We created clinical scenarios for the consultation part of a clinical encounter for 11 encounters likely to be seen in an 

ambulatory primary care practice.  We constructed the scenarios based on the family practice clinical scenarios created 

by CMS for their “Road to 10” campaign.13 The scenarios provide a detailed description of the patient presentation 

but did not provide any suggested dialog or suggested descriptions. We recorded unscripted simulated clinical 

interviews based on these clinical scenarios with two different physicians in the provider role and seven different non-

physician adults playing the role of the patient. All participants were native English speakers. The simulated 

encounters were recorded in a quiet office with the participants seated directly in front of two different microphones: 

a Razer Seirēn Pro® digital microphone in omnidirectional mode (Razer, San Francisco, CA 

https://www.razerzone.com/gaming-audio/razer-seiren) and a Microsoft Kinect 2.0® (Microsoft, Redman, 

Washington). The Razer includes three 14 mm custom tuned condenser capsules in an array software configurable 

into four different recording patterns with 24-bit analog-to-digital converter. The Kinect includes a four-microphone 

array with 24-bit analog-to-digital converter and local signal processing including acoustic echo cancellation and noise 

suppression 

 The audio was digitally recorded in Windows Media Audio format (Microsoft) and encoding, in 32 bit stereo at 

44,100 Hz using Window Recorder for the Razer and in Free Lossless Audio Codec or FLAC format (the xiph open 

source community) and encoding with 16 bit depth mono at 44,100 Hz using Microsoft Kinect Studio for the Kinect. 

Razer files were converted to the same format as the Kinect files.  These FLAC files were submitted to the ASR 

engines. In preparation for the study, we assessed the potential effect of speaker segmentation on ASR engine 

performance and found no improvement thus, we did not incorporate speaker segmentation into the analysis approach. 

The recordings were professionally transcribed and annotated with metadata including speaker and time index. 

We chose four performance metrics: Word Error Rate (WER) and precision, recall and F1 score for clinical concepts.  

We chose WER because it is the metric most often reported in the ASR literature and will allow us to compare the 

results in our specific use case with published results. Since our focus is on information extraction rather than creating 

a complete transcript, we included the precision, recall and F1 score.  

Custom Python code was written to normalize the text and then use the Levenshtein algorithm as implemented in 

https://pypi.python.org/pypi/python-Levenshtein/0.12.0 to identify substitutions, deletions, insertions, and correct 

word rates using the transcript as the reference. These values were then used to compute the unweighted word error 

rates (WER).   

Concepts were extracted from the transcripts and the output for each clinical scenario from each ASR engine 

microphone pair file using a commercially available NLP service and open source NLP service (CLiX NOTES, 

Clinithink, Bridgend CF31 1LH, UK) and biomedical annotator (https://bioportal.bioontology.org/annotator). The 

number of concepts were counted for each document and matched across documents to determine the precision, recall 

and F1 scores.  The code was validated by manual feature extraction and comparison of results. 

We computed the outcome measures for each conversation and then report the means of those outcomes across all 

conversations, scenarios and microphones. 

Results 

There is a total of 34 recordings of unscripted, simulated, clinical interviews averaging approximately five and one-

half minutes in length and containing an average of 1,824 words each. An average of 33% of the total word count in 

the human transcript was unique. This was parsed into grammatical parts of speech resulting in 23.4% verbs, 19.4% 

other, 14.9% nouns, 12.4% adverbs, 12% pronouns, 8.5% adjectives, and 9.3% both conjunctions or interjections as 

illustrated in Figure 1.  Eight ASR engines were tested on each of the 34 recordings, resulting in a total of 272 textual 

outputs.  The ASR engines tested are listed in Table 1.  
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Figure 1—Characterization of the grammatical parts of speech in the conversational text.  Verbs representing 23.4% and nouns 

at 14% represent the largest parts of speech.   

 

 
Table 1 -- The table lists specifics of the eight ASR engines evaluated 

ASR Engine Name Short Name 
Category Version 

Tested 
URL 

Bing Speech API BING 
Cloud 

Streaming 
1.0 

https://www.microsoft.com/cognitive-services/en-
us/speech-api 

Google Cloud Speech API Google Cloud 1.0 https://cloud.google.com/speech/ 

IBM Speech To Text IBM 
Cloud 

Streaming 
1.0 

https://www.ibm.com/watson/developercloud/speech-
to-text.html 

Azure Media Indexer MAVIS 
Cloud 

1.0 
https://docs.microsoft.com/en-us/azure/media-
services/media-services-index-content 

Azure Media Indexer 2 
Preview 

MAVIS v2 
Cloud 

2.0 
https://docs.microsoft.com/en-us/azure/media-
services/media-services-process-content-with-indexer2 

Nuance.SpeechAnywhere Nuance 
Health 

Focused 
3.2 https://www.nuancehealthcaredeveloper.com/  

Amazon Transcribe 
Preview 

Transcribe 
Cloud 

1.0 
https://aws.amazon.com/transcribe/  

Mozilla DeepSpeech DeepSpeech Local 0.1 https://github.com/mozilla/DeepSpeech/wiki 

 

Table 2 provides a few illustrative examples of the output from two ASR engines and the human transcription 

process for a Kinect recording. The output from one of the ASR engines is very difficult to read with many 

substitutions, insertions and deletions. Medications names occurred frequently in the recordings and were almost 

never correctly recognized. 

 

 

 

Adjective, 0.09

Adverb, 0.12

Conjunction, 0.05

Interjection, 0.05

Noun, 0.15

Pronoun, 0.12

Verb, 0.23

Other, 0.19

Parts of Speech

Adjective Adverb Conjunction Interjection Noun Pronoun Verb Other
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Table 2 -- The table provides selected examples of output form human transcription, DeepSpeech and MAVISv2 ASR engines 

from an encounter for a pre-op clearance (scene 1). 

Human Transcription DeepSpeech MAVIS v2 

—  Okay, all right, and have you ever 

taken any medication for it? [0:00:47.8] 

 

—  I have taken some medication over 

time, yeah. [0:00:51.2] 

 

—  All right, are you taking anything 

today? [0:00:53.9] 

 

—  No, not today.  [0:00:55.6] 

The doctor gave me something, but I’m not 

taking it. [0:00:59.5] 

 

—  Oh, all right.  [0:01:00.4] 

Let’s take a look here.  [0:01:02.3] 

It looks like they gave you some 

metoprolol succinate.  [0:01:05.3] 

That can sometimes be a costly medication. 

[0:01:11.6] 

 

—  Yeah, it’s super expensive.  [0:01:12.6] 

That’s why I don’t take it. [0:01:13.8] 

 

 

 

 

om kiy rt i have y er takeng any medication 

for it ir have takof sombeoe redocation o 

rtone hardi ire you taking anything today 

ah no not today do tor give yeusolfthing 

rout my taket a l right me't tak a look here 

il leos lik they gave you son matopral a 

suxcitny am ah i tac can sometimes be a 

costly manicangios is se expensip that's 

wha l sogood larry ave y 

 

 

OK alright I Have you ever taken any 

medication for it I have taken some 

medicine medication overtime here. 

 

NOTE Confidence: 0.8099813 

 

00:00:51.780 --> 00:00:55.390 

All right are you taking anything today. 

 

NOTE Confidence: 0.8462618 

 

00:00:55.760 --> 00:01:06.060 

No not today doctor gave me something 

but I'm not taking it all right let's take a 

look here looks like they gave you some 

mto prolo succinate. 

 

NOTE Confidence: 0.7029915 

 

00:01:06.950 --> 00:01:18.650 

Ah that can sometimes be a costly 

medication such better that's why I'm 

saying it all right have  

 

Table 3 below, is a sample of the raw data output from the Levenshtein distance algorithm characterizing the type of 

word error as an insertion, substitution or deletion.  

 
Table 3 — Levenshtein output from one encounter.  Enumerates the variation in ASR and microphone errors across one 

conversation.    

 

ASR Engine Microphone Correct Deletions Insertions Substitutions WER

transcribe kinect 830 67 75 171 0.29

transcribe razer 830 67 75 171 0.29

speech kinect 804 133 33 131 0.28

speech razer 803 138 34 127 0.28

watson kinect 836 77 83 155 0.29

watson razer 836 77 83 155 0.29

deepspeech kinect 578 61 107 429 0.56

deepspeech razer 577 63 107 428 0.56

dragon kinect 599 371 6 98 0.44

dragon razer 529 456 5 83 0.51

bing kinect 674 203 53 191 0.42

bing razer 674 203 53 191 0.42

mavis kinect 746 126 26 196 0.33

mavis razer 746 126 26 196 0.33

mavis2 kinect 858 66 50 144 0.24

mavis2 razer 841 67 45 160 0.25
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Figure 2 shows the variation in performance across the ASR engines (listed alphabetically) evaluated.  The WER 

ranged from 35% with Microsoft’s Mavis2 engine to 65% with DeepSpeech. 

 

 
 

Figure 1-- The bar chart shows the word error rate by ASR engine 

Figure 3 illustrates the precision, recall and F1 score for concept retrieval.   

 

 

Figure 3-- The radar chart visualizes the precision, recall and F1 for clinical concepts for each ASR using human transcription 

as the gold standard. The concepts were extracted using both a commercially available NLP engine and an open source NLP. 

The blue dots represent F1 scores, the green dots the recall and the red dots the precision. 

Discussion 

The achievable performance of contemporary ASR engines, when applied to conversational clinical speech as 

measured by WER and clinical concept extraction, is disappointing with WERs of approximately 50% and concept 

extraction rates of approximately 60%.  The best performing ASR engine achieved a 35% WER and 73% recall rate. 

Remarkably high average word error rates were observed for some ASR engines because of large numbers of 
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insertions and deletions which resulted in WERs of 86% for some clinical scenarios. There are a limited number of 

use cases where this level of performance is adequate. Insertions, for example, might lead to a symptom or finding 

that the patient doesn’t have being identified which creates potential for inappropriate actions that could harm the 

patient.  Omissions may represent less risk since we anticipate that these concepts would be captured other ways 

including the very important role of the provider. In most use cases we anticipate, a significant number of omissions 

or insertions will dramatically limit the value if the user cannot have high confidence in the results.  Even if clinical 

concepts were perfectly captured, errors in other words will limit the confidence in the result.  Substitutions of “no 

uterus” for “normal uterus”, or the converse, could have important clinical implications.  As is so often the case, for 

clinical care, the tolerance for errors and for wasted effort identifying and correcting those errors is limited. This 

intolerance is both because of the implications for the patient, and consequently the time typically required to address 

these errors from overburdened and expensive clinicians. 

These results are reasonably consistent with Gur’s findings and the WER of 45.5% calculated for the nursing 

vocabulary in Souminen et al.’s recent study of nursing changeover notes that were read.14 The ASR engines continue 

to evolve rapidly.  There was meaningful improvement from MAVIS to MAVIS v2 for example and we expect this 

trend to continue. The Google Brain team's research demonstrated that a WER of 18% for clinical conversations, 

providing evidence that at least that level of performance and potentially better should be achievable. 

One of the primary limitations of this study is that the clinical conversations is the use of simulated clinical 

conversations. As described, we took several steps to limit the impact of this approach including providing specific 

scenarios but using an unscripted approach.  Further, we believe these findings as an upper bound of the performance 

that is achievable today with readily accessible ASR engines because the recordings were obtained under near ideal 

conditions. Recordings obtained during actual clinical practice are likely to have a good deal more noise, volume 

fluctuation and to be of lower quality since speakers will often be more distant and not facing the microphones directly. 

Another limitation is that these results represent a snapshot in the evolution of these ASR engines.  They continue to 

evolve rapidly and we expect performance to continue to evolve. 

Conclusion 

We believe that it is useful to understand the level of performance achievable with readily available contemporary 

ASR engines to guide thinking about how this technology might be used to support clinicians.  The modest level of 

performance suggests that we need to focus on improving ASR engine performance before we can adopt these 

technologies for conversational speech for a broad range of clinical use cases. 
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