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Abstract 

Background:  Sequence information generated from next generation sequencing is often computationally phased 
using haplotype-phasing algorithms. Utilizing experimentally derived allele or haplotype information improves this 
prediction, as routinely used in HLA typing. We recently established a large dataset of long ERMAP alleles, which code 
for protein variants in the Scianna blood group system. We propose the phylogeny of this set of 48 alleles and identify 
evolutionary steps to derive the observed alleles.

Methods:  The nucleotide sequence of > 21 kb each was used for all physically confirmed 48 ERMAP alleles that we 
previously published. Full-length sequences were aligned and variant sites were extracted manually. The Bayesian 
coalescent algorithm implemented in BEAST v1.8.3 was used to estimate a coalescent phylogeny for these variants 
and the allelic ancestral states at the internal nodes of the phylogeny.

Results:  The phylogenetic analysis allowed us to identify the evolutionary relationships among the 48 ERMAP alleles, 
predict 4243 potential ancestral alleles and calculate a posterior probability for each of these unobserved alleles. 
Some of them coincide with observed alleles that are extant in the population.

Conclusions:  Our proposed strategy places known alleles in a phylogenetic framework, allowing us to describe 
as-yet-undiscovered alleles. In this new approach, which relies heavily on the accuracy of the alleles used for the 
phylogenetic analysis, an expanded set of predicted alleles can be used to infer alleles when large genotype data are 
analyzed, as typically generated by high-throughput sequencing. The alleles identified by studies like ours may be 
utilized in designing of microarray technologies, imputing of genotypes and mapping of next generation sequencing 
data.
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Background
Exact matching for alleles improved survival following 
bone marrow transplantation [1] and reduced alloim-
munization in chronically transfused patients [2–4]. 
Using computational algorithms, the large genotype 
datasets from next generation sequencing (NGS) can 
be phased into alleles or haplotypes [5, 6]. Using family 
relationships or applying experimentally confirmed allele 

information improves the inference accuracy, as routinely 
demonstrated in clinical HLA typing [7]. Blood group 
genes are less polymorphic than the highly variable, often 
shorter, HLA genes. Out of the 36 blood group systems 
and the genes encoding them, experimentally confirmed 
alleles are known for short genes only, such as ICAM4 
[8] and ACKR1 [9]. For longer genes, such as ABO and 
ERMAP of more than 20  kb, and linked genes, such as 
RHD and RHCE, most haplotypes had only been compu-
tationally predicted [10–12].

The ERMAP gene, located on chromosome 1, encodes 
the glycoprotein carrying the antigens of the Scianna 
blood group system (SC; ISBT 013) in humans [13–15]. 
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The single-pass transmembrane glycoprotein is likely 
involved in cell adhesion and recognized by immune cells 
[13, 16, 17]. The gene belongs to the butyrophilin (BTN) 
family which is a type 1 membrane protein of the immu-
noglobulin (Ig) superfamily [18]. The butyrophilin and 
butyrophilin-like proteins have recently been studied as 
potentially important immune regulators [19, 20].

We have previously assessed the nucleotide variations 
in the ERMAP gene and unambiguously identified 48 
alleles at 21,406 nucleotides each in 50 unrelated individ-
uals from 5 different populations [21]. We propose using 
the phylogeny of this set of 48 alleles and identifying evo-
lutionary steps to derive the observed alleles [22]. We 
predicted unobserved alleles at every internal node and 
their posterior probabilities. These inferred alleles, rep-
resented by sequences identified in the nodes, are pos-
sible candidates for alleles segregating in the population. 
Our new approach proposes a method of utilizing not-
yet-observed alleles, predicted by phylogeny, for phasing 
patient genotypes in clinical diagnosis and therapy.

Methods
The sequence information for 48 ERMAP alleles was 
retrieved from GenBank (KX265189–KX265236) [21]. 
The phylogenetic tree was rooted using the chimpan-
zee ERMAP sequence as outgroup (GenBank num-
ber NC_006468.4; range 42,268,258 to 42,295,767). 
Full-length sequences were aligned using the MAFFT 
version 7 program [23]. All of the 72 variable sites were 
extracted manually from the 48 ERMAP alleles [21]. The 
Bayesian coalescent algorithm implemented in BEAST 
v1.8.3 [24] was used to estimate a coalescent phylogeny 
for these variants and the allelic ancestral states at the 
internal nodes of the phylogeny. All analysis was done 
using default parameters. Internal node is a theoretical 
representation of a common ancestor between sampled 
alleles and are often extant in population level studies 
[25]. If more than one mutational or recombinational 
step is required to join some nodes, predicted alleles are 
incorporated to complete the tree [26].

We executed 4 independent runs of the program, each 
using the Tamura-Nei substitution model [27], a log-
normal relaxed clock model [28], and a constant-size 
coalescent model [29]. After 40 million generations the 
parameter estimates were examined and determined to 
have converged for each run. The allelic ancestral states 
at each node and their posterior probabilities were 
extracted manually from the maximum clade compatibil-
ity tree estimated from 9001 Markov chain Monte Carlo 
samples generated by the BEAST software. For the ances-
tral allele reconstructions, we generated a set of all pos-
sible ancestors for each node and selected the predicted 
allele with the highest posterior probability.

Results
A Bayesian phylogeny of 48 previously published ERMAP 
alleles was calculated (Fig. 1). Based on this phylogenetic 
tree, we predicted alleles, many of which may be extant 
in the population, particularly those of greater posterior 
probability. Our approach applied standard methods 
of phylogenetic inference, ancestral character recon-
struction and aimed to enrich the repertoire for a focal 
genomic region, of specific clinical interest.

Phylogeny
The Bayesian phylogenetic analysis of the 48 ERMAP 
alleles identified 13 nodes (Fig.  1, nodes A to L) and 4 
clades (Fig. 1, clades 1 to 4). The clades comprised clus-
ters of 5 to 12 alleles. Alleles were equally distributed 
between African American and Caucasian populations 
(Additional file 1: Fig. S1). For each clade, one observed 
allele was identified as the ancestral allele and had a pos-
terior probability of more than 0.60 (nodes I to L). The 
remaining 9 internal nodes had 8 predicted alleles as 
the most probable ancestors with the highest poste-
rior probabilities ranging from 0.235 to 0.792 (nodes A 
to H; Table  1). Thus, the phylogenetic tree comprised 4 
confirmed alleles and 8 predicted alleles (Table  1). The 
most likely ancestral allele (node A; posterior probabil-
ity = 0.235) for all 48 ERMAP alleles had only 4 nucle-
otide differences relative to our reference sequence 
(GenBank accession KX265235).

Ancestral allele prediction
From the phylogenetic tree, we extracted all possible 
ancestral alleles at each internal node (nodes A to L). A 
total of 4243 unique predicted alleles were computed and 
sorted according to their calculated posterior probability 
of being the true ancestor (Additional file 2: Excel file S1). 
Even though the posterior probabilities of the inferred 
ancestral alleles were often below the threshold for statis-
tical significance (0.95), the posterior probabilities of the 
next most likely predicted alleles dropped off dramati-
cally. The exceptions to this were at Node A (best pos-
terior probability = 0.23, next best = 0.19), Node B′ (0.52 
vs. 0.29), and Node I (0.62 vs. 0.34). In all other cases the 
posterior probabilities of the secondary inferred ancestral 
allele were less than half the greatest values.

Discussion
A phylogenetic analysis was applied to a set of 48 physi-
cally confirmed ERMAP alleles covering 5 populations 
worldwide [21]. We predicted 4243 unobserved alleles 
and their distinct posterior probabilities. The relatively 
small number of predicted alleles contrasted to the vastly 
larger number of theoretically possible alleles. The pre-
dicted alleles have a stronger support for being correct 
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and extant in the population because they are more likely 
ancestral to the observed alleles. We propose the concept 
of detecting unobserved, likely novel, alleles based on the 
phylogeny of verified alleles.

Previous computationally driven algorithms to phase 
NGS data such as read-backed phasing [30] and haplo-
type improver [31] remain very useful for phasing hap-
lotypes and alleles in a population sample but may fail 
when applied to a single observation in an individual 
patient. Our approach utilizes predicted alleles and their 

posterior probabilities along with the verified alleles as 
templates for phasing the genotypes detected in high-
throughput sequencing (Fig. 2), complementing the com-
putationally driven algorithms. This approach increases 
the effective number of templates available for phasing 
and thus the accuracy of phased haplotypes and alleles. 
When a previously unobserved allele matches one of the 
predicted alleles, its posterior probability allows to quan-
tify the reliability of the estimate for clinical decisions, 
such as in transfusion and transplantation settings, in a 

Fig. 1  Phylogenetic tree of 48 ERMAP alleles. The phylogeny of the 48 known ERMAP alleles was determined based on a standard Bayesian 
phylogenetic analysis. Branch width indicates posterior probability support (thick is ≥ 0.95 and thin is < 0.95). The colored circles represent sampled 
alleles that are also predicted ancestral alleles with the highest posterior probability. The 13 nodes are labelled A to L. Nodes B and B′ share the 
same allele with the greatest, but different, posterior probabilities (see Table 1)



Page 4 of 7Srivastava et al. J Transl Med           (2019) 17:43 

patient who bears a new allele. While the validation of 
the predicted alleles by applying our protocol was not 
performed in this study, the novel approach illustrates 
the potential use of phylogenetic data in a clinical diag-
nostic setting.

Our approach relies heavily on the accuracy of the 
alleles used for the phylogenetic analysis. Hence, refer-
ence sequences from online databases such as GenBank 
should be avoided as long as the information is not suf-
ficiently replicated or independently verified [32]. The 
prevalence of the 48 alleles derived from 5 populations 
worldwide, but may still bias the imputation of novel 
alleles. Hence, addition of other alleles that are consid-
ered accurate, although computationally rather than 
physically derived, will strengthen the phylogenetic anal-
ysis and contribute to phasing of haplotypes and alleles, 
such as computed from the 1000 Genomes project [33] 
and similar online databases.

In our previously published set of long range ERMAP 
alleles with 72 single nucleotide polymorphisms (SNPs), 
the number of theoretically possible alleles was 272 [21]. 

However, it is known that the majority of the haplotype 
diversity is constituted by only few common haplo-
types, which is constant in a given population [34]. Our 
algorithm restricts the possible ERMAP alleles from 272 
to 4243 only, some associated with greater probabil-
ity of being correct, but all as potential precursors of 
the experimentally verified extant alleles. With only 72 
variable nucleotide positions in our set of 48 ERMAP 
alleles [21], the vast majority of positions remained 
uninformative (21,334 of 21,406 nucleotides: 99.66%).

Our observation contrasts with the 2353 SNPs, 
including 66 out of our 72 SNPs, reported for this DNA 
stretch covering the ERMAP gene [35], most of them 
being rare and often not validated to the extent needed 
for clinical decision making. Increasing the sample size 
will result in the confirmation of many or most of the 
previously reported 2353 SNPs and also the identifica-
tion of novel SNPs in this DNA stretch. However, many 
of these SNPs will be specific for a small number of 
individuals resulting in a small global allele frequency.

Table 1  Predicted alleles at internal nodes of the ERMAP phylogeny

na not applicable
a  Alleles 1, 8, 12, 17, and 18 are experimentally confirmed alleles as published previously [21]. SPA03—SPA18 are predicted alleles (see Additional file 1: Table S1)
b  The nucleotides at the 72 SNP positions with variations are shown in 5′ to 3′ orientation (Table S2 in Srivastava et al. [21])
c  The posterior probabilities differ for SPA03 depending on its position in the phylogenetic tree (see Fig. 1)

Node Allelea Sequenceb Posterior 
probability

Status GenBank number

Reference Allele1 ATT​GGC​ACC​AGG​CCG​CCG​CCC​TGC​TTA​AGC​CCT​GGC​GTG​GTA​CTC​GTC​ACG​GTC​
CGC​CGG​GGC​CGG​ATT​AAA​

1 Observed KX265235

A SPA18 ------G--------------G--------T-----------
--T---------------------------

0.235 Predicted na

B SPA03 ------G--------------G------
--T-----------------------------------------

0.792c Predicted na

C SPA06 ------G----------A---G--------T-----------T-
T---------------------------

0.444 Predicted na

B′ SPA03 ------G--------------G------
--T-----------------------------------------

0.516c Predicted na

D SPA09 ------G----------A---G--------T---A-A-----T-
T---------------------------

0.608 Predicted na

E SPA04 ------G------------
--G--------------------------------------------------

0.747 Predicted na

F SPA07 ------G-------------TG--G--G-
-T-----------------------------------------

0.626 Predicted na

G SPA10 -C----G----------A---G--------T---A-A-----T-
T---------------------------

0.594 Predicted na

H SPA13 -C----G----------A---G----T---T---A-A-----T-
TC--------------------------

0.492 Predicted na

I Allele12 ---------------------G--------------------------------
------------------

0.621 Observed KX265198

J Allele18 G-----G---A--------TTG--G--G-
-T-----------------------------------------

0.674 Observed KX265204

K Allele08 ------G--------------G-----------
--T------------------------------------

0.888 Observed KX265194

L Allele17 -C----G----------A---G----T---T---A-A---C-T-
TC--------------------------

0.634 Observed KX265203
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While initially disregarding recombination as a major 
contributor, the subsequent analysis of the ERMAP 
sequences using the ClonalFrameML software [36] was 
also unable to detect any recombination event among the 
48 confirmed alleles. This observation could be explained 
by the small sample size, which will resolve with the 
accumulation of more data. Our observation may, how-
ever, be an actual feature of ERMAP alleles in the popula-
tion, because it is similar to the ABO gene, for which the 

detected recombinant alleles are also of low frequency 
[37]. As ERMAP alleles caused by recombination will 
eventually be found, they can be incorporated in the set 
of alleles used to compute the phylogenetic analysis.

Summary
By applying a Bayesian phylogenetic approach to 48 
alleles, more than 21  kb long and all experimentally 
verified, we predicted a large set of not-yet-observed 

Fig. 2  Algorithm to analyze genotypes and determine alleles using phylogeny data. Patient or blood donor genotype information for a particular 
gene is phased into alleles or haplotypes using statistical algorithms for clinical decisions. We propose a novel approach where the confidence for 
the inferred allele is based on verified, experimentally confirmed alleles and predicted alleles (see Fig. 1). The posterior probability of the predicted 
alleles is determined by a Bayesian phylogenetic analysis. Whenever a new allele is observed and experimentally confirmed, the phylogenetic 
analysis is in turn used to predict an updated set of alleles and their posterior probabilities. While this loop process continues, previously 
unobserved alleles will be encountered less frequently, as the set of confirmed allele increases
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alleles of the ERMAP blood group gene. We propose 
a strategy of using these predicted alleles and their 
associated probabilities of correctness in clinical diag-
nostics such as designing of microarray technologies, 
imputing of genotypes and mapping of NGS data.

Additional files

Additional file 1. Table S1. Predicted ERMAP alleles with posterior prob-
ability of greater than 0.10. Figure S2. Distribution of alleles in 5 ethnic 
groups. The number of alleles observed in 50 individuals, as previously 
reported in Srivastava et al. (Table S2) [21], are shown for the clades in the 
phylogenetic tree (see Fig. 1).

Additional file 2. Excel file S1. List of 4243 predicted alleles of ERMAP 
gene.

Authors’ contributions
WAF developed the study plan. KRW designed and performed computer 
modeling. Data were analyzed and discussed by all authors. KS and WAF wrote 
the manuscript. All authors read and approved the final manuscript.

Author details
1 Laboratory Services Section, Department of Transfusion Medicine, NIH Clini-
cal Center, National Institutes of Health, Bethesda, MD 20892, USA. 2 Bioinfor-
matics and Computational Biosciences Branch, Office of Cyber Infrastructure 
and Computational Biology, National Institute of Allergy and Infectious 
Diseases, Bethesda, MD, USA. 

Acknowledgements
We thank Harvey Gordon Klein for critical review of the manuscript; and 
Elizabeth Jane Furlong for English edits. We acknowledge the use of the High 
Performance Computing (HPC) cluster at the Office of Cyber Infrastructure 
and Computational Biology (OCICB), National Institute of Allergy and Infec-
tious Diseases (NIAID), Bethesda MD. The data and the new algorithm have 
been presented at the AABB Annual Meeting on October 9, 2017 [22].

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Data availability
All data analyzed in this study has been extracted from GenBank database 
(KX265189–KX265236). Additional file 2: Excel file S1 lists all the 4243 predicted 
alleles of ERMAP gene.

Ethics approval and consent to participate
Not applicable.

Funding statement
This work was supported by the Intramural Research Program (Project ID Z99 
CL999999) of the NIH Clinical Center.

Statement of disclaimer
The views expressed do not necessarily represent the view of the National 
Institutes of Health, the Department of Health and Human Services, or the U.S. 
Federal Government.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 4 January 2019   Accepted: 4 February 2019

References
	1.	 Tay GK, Witt CS, Christiansen FT, Charron D, Baker D, Herrmann R, Smith 

LK, Diepeveen D, Mallal S, McCluskey J, et al. Matching for MHC hap-
lotypes results in improved survival following unrelated bone marrow 
transplantation. Bone Marrow Transplant. 1995;15(3):381–5.

	2.	 Chou ST, Liem RI, Thompson AA. Challenges of alloimmunization in 
patients with haemoglobinopathies. Br J Haematol. 2012;159(4):394–404.

	3.	 Tournamille C, Meunier-Costes N, Costes B, Martret J, Barrault A, Gauthier 
P, Galacteros F, Nzouekou R, Bierling P, Noizat-Pirenne F. Partial C antigen 
in sickle cell disease patients: clinical relevance and prevention of alloim-
munization. Transfusion. 2010;50(1):13–9.

	4.	 Allen ES, Srivastava K, Hsieh MM, Fitzhugh CD, Klein HG, Tisdale JF, Flegel 
WA. Immunohaematological complications in patients with sickle cell 
disease after haemopoietic progenitor cell transplantation: a prospective, 
single-centre, observational study. Lancet Haematol. 2017;4(11):e553–61.

	5.	 Browning SR, Browning BL. Haplotype phasing: existing methods and 
new developments. Nat Rev Genet. 2011;12(10):703–14.

	6.	 Lloyd SS, Steele EJ, Dawkins RL. Analysis of Haplotype Sequences. In: 
Kulski JK, editor. Next Generation Sequencing-Advances, Applications 
and Challenges. InTechOpen; 2016. pp. 345–368. 

	7.	 Robinson J, Halliwell JA, Hayhurst JD, Flicek P, Parham P, Marsh SGE. The 
IPD and IMGT/HLA database: allele variant databases. Nucleic Acids Res. 
2015;43(Database issue):D423–31.

	8.	 Srivastava K, Almarry NS, Flegel WA. Genetic variation of the whole 
ICAM4 gene in Caucasians and African Americans. Transfusion. 
2014;54(9):2315–24.

	9.	 Schmid P, Ravenell KR, Sheldon SL, Flegel WA. DARC alleles and Duffy 
phenotypes in African Americans. Transfusion. 2012;52(6):1260–7.

	10.	 Calafell F, Roubinet F, Ramirez-Soriano A, Saitou N, Bertranpetit J, 
Blancher A. Evolutionary dynamics of the human ABO gene. Hum Genet. 
2008;124(2):123–35.

	11.	 Church DM, Schneider VA, Graves T, Auger K, Cunningham F, Bouk N, 
Chen HC, Agarwala R, McLaren WM, Ritchie GR, Albracht D, Kremitzki 
M, Rock S, Kotkiewicz H, Kremitzki C, Wollam A, Trani L, Fulton L, Fulton 
R, Matthews L, Whitehead S, Chow W, Torrance J, Dunn M, Harden G, 
Threadgold G, Wood J, Collins J, Heath P, Griffiths G, Pelan S, Graf-
ham D, Eichler EE, Weinstock G, Mardis ER, Wilson RK, Howe K, Flicek 
P, Hubbard T. Modernizing reference genome assemblies. PLoS Biol. 
2011;9(7):e1001091.

	12.	 Schneider VA, Graves-Lindsay T, Howe K, Bouk N, Chen HC, Kitts PA, 
Murphy TD, Pruitt KD, Thibaud-Nissen F, Albracht D, Fulton RS, Kremitzki 
M, Magrini V, Markovic C, McGrath S, Steinberg KM, Auger K, Chow 
W, Collins J, Harden G, Hubbard T, Pelan S, Simpson JT, Threadgold G, 
Torrance J, Wood JM, Clarke L, Koren S, Boitano M, Peluso P, Li H, Chin 
CS, Phillippy AM, Durbin R, Wilson RK, Flicek P, Eichler EE, Church DM. 
Evaluation of GRCh38 and de novo haploid genome assemblies dem-
onstrates the enduring quality of the reference assembly. Genome Res. 
2017;27(5):849–64.

	13.	 Su YY, Gordon CT, Ye TZ, Perkins AC, Chui DH. Human ERMAP: an eryth-
roid adhesion/receptor transmembrane protein. Blood Cells Mol Dis. 
2001;27(5):938–49.

	14.	 Xu H, Foltz L, Sha Y, Madlansacay MR, Cain C, Lindemann G, Vargas J, Nagy 
D, Harriman B, Mahoney W, Schueler PA. Cloning and characterization of 
human erythroid membrane-associated protein, human ERMAP. Genom-
ics. 2001;76(1–3):2–4.

	15.	 Wagner FF, Poole J, Flegel WA. Scianna antigens including Rd are 
expressed by ERMAP. Blood. 2003;101(2):752–7.

	16.	 Velliquette RW. Review: the Scianna blood group system. Immunohema-
tology. 2005;21(2):70–6.

	17.	 Ye T-Z, Gordon CT, Lai Y-H, Fujiwara Y, Peters LL, Perkins AC, Chui DHK. 
Ermap, a gene coding for a novel erythroid specific adhesion/receptor 
membrane protein. Gene. 2000;242(1–2):337–45.

	18.	 Afrache H, Gouret P, Ainouche S, Pontarotti P, Olive D. The butyrophi-
lin (BTN) gene family: from milk fat to the regulation of the immune 
response. Immunogenetics. 2012;64(11):781–94.

https://doi.org/10.1186/s12967-019-1791-9
https://doi.org/10.1186/s12967-019-1791-9


Page 7 of 7Srivastava et al. J Transl Med           (2019) 17:43 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ?  Choose BMC and benefit from: 

	19.	 Rhodes DA, Reith W, Trowsdale J. Regulation of Immunity by Butyrophi-
lins. Annu Rev Immunol. 2016;34:151–72.

	20.	 Di Marco Barros R, Roberts NA, Dart RJ, Vantourout P, Jandke A, Nuss-
baumer O, Deban L, Cipolat S, Hart R, Iannitto ML, Laing A, Spencer-Dene 
B, East P, Gibbons D, Irving PM, Pereira P, Steinhoff U, Hayday A. Epithelia 
use butyrophilin-like molecules to shape organ-specific gammadelta T 
cell compartments. Cell. 2016;167(1):203–18.

	21.	 Srivastava K, Lee E, Owens E, Rujirojindakul P, Flegel WA. Full-length 
nucleotide sequence of ERMAP alleles encoding Scianna (SC) antigens. 
Transfusion. 2016;56(12):3047–54.

	22.	 Srivastava K, Wollenberg KR, Flegel WA. Use of 48 ERMAP alleles, at 21,406 
nucleotides each, to predict haplotypes for genotype prediction from 
next generation sequencing data (abstract). Transfusion. 2017;57(Supple-
ment S3):44A.

	23.	 Katoh K, Standley DM. MAFFT multiple sequence alignment software 
version 7: improvements in performance and usability. Mol Biol Evol. 
2013;30(4):772–80.

	24.	 Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics 
with BEAUti and the BEAST 1.7. Mol Biol Evol. 2012;29(8):1969–73.

	25.	 Bryant D, Moulton V. Neighbor-net: an agglomerative method for the 
construction of phylogenetic networks. Mol Biol Evol. 2004;21(2):255–65.

	26.	 Lam JC, Roeder K, Devlin B. Haplotype fine mapping by evolutionary 
trees. Am J Hum Genet. 2000;66(2):659–73.

	27.	 Tamura K, Nei M. Estimation of the number of nucleotide substitutions in 
the control region of mitochondrial DNA in humans and chimpanzees. 
Mol Biol Evol. 1993;10(3):512–26.

	28.	 Rannala B, Yang Z. Inferring speciation times under an episodic molecular 
clock. Syst Biol. 2007;56(3):453–66.

	29.	 Drummond AJ, Nicholls GK, Rodrigo AG, Solomon W. Estimating muta-
tion parameters, population history and genealogy simultaneously from 
temporally spaced sequence data. Genetics. 2002;161(3):1307–20.

	30.	 McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, 
Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. The Genome 
Analysis Toolkit: a MapReduce framework for analyzing next-generation 
DNA sequencing data. Genome Res. 2010;20(9):1297–303.

	31.	 Long Q, MacArthur D, Ning Z, Tyler-Smith C. HI: haplotype improver using 
paired-end short reads. Bioinformatics. 2009;25(18):2436–7.

	32.	 Liu Y, Koyuturk M, Maxwell S, Xiang M, Veigl M, Cooper RS, Tayo BO, Li 
L, LaFramboise T, Wang Z, Zhu X, Chance MR. Discovery of common 
sequences absent in the human reference genome using pooled sam-
ples from next generation sequencing. BMC Genomics. 2014;15:685.

	33.	 The Genomes Project C. A global reference for human genetic variation. 
Nature. 2015;526(7571):68–74.

	34.	 Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, 
Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi 
C, Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D. 
The structure of haplotype blocks in the human genome. Science. 
2002;296(5576):2225–9.

	35.	 Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin 
K. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 
2001;29(1):308–11.

	36.	 Didelot X, Wilson DJ. ClonalFrameML: efficient inference of recombina-
tion in whole bacterial genomes. PLoS Comput Biol. 2015;11(2):e1004041.

	37.	 Olsson ML, Chester MA. Polymorphism and recombination events at the 
ABO locus: a major challenge for genomic ABO blood grouping strate-
gies. Transfus Med. 2001;11(4):295–313.


	The phylogeny of 48 alleles, experimentally verified at 21 kb, and its application to clinical allele detection
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Results
	Phylogeny
	Ancestral allele prediction

	Discussion
	Summary
	Authors’ contributions
	References




