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BACKGROUND: Limited evidence is available regarding the association between heat exposure and morbidity in Brazil and how the effect of heat expo-
sure on health outcomes may change over time.

OBJECTIVES: This study sought to quantify the geographic, demographic and temporal variations in the heat-hospitalization association in Brazil
from 2000-2015.

METHODS: Data on hospitalization and meteorological conditions were collected from 1,814 cities during the 2000-2015 hot seasons. Quasi-Poisson
regression with constrained lag model was applied to examine city-specific estimates, which were then pooled at the regional and national levels using
random-effect meta-analyses. Stratified analyses were performed by sex, 10 age groups, and 11 cause categories. Meta-regression was used to exam-
ine the temporal change in estimates of heat effect from 2000 to 2015.

RESULTS: For every 5°C increase in daily mean temperature during the 2000-2015 hot seasons, the estimated risk of hospitalization over lag 0-7 d
rose by 4.0% [95% confidence interval (CI): 3.7%, 4.3%] nationwide. Estimated 6.2% [95% empirical CI (eCl): 3.3%, 9.1%] of hospitalizations were
attributable to heat exposure, equating to 132 cases (95% eCI: 69%, 192%) per 100,000 residents. The attributable rate was greatest in children
<S5 years and was highest for hospitalizations due to infectious and parasitic diseases. Women of reproductive age and those >60 years had higher
heat burden than men. The attributable burden was greatest for cities in the central west and the inland of the northeast; lowest in the north and eastern
coast. Over the 16-y period, the estimated heat effects declined insignificantly at the national level.

ConcLusIONS: In Brazil’s hot seasons, 6% of hospitalizations were estimated to be attributed to heat exposure. As there was no evidence indicating
that thermal adaptation had occurred at the national level, the burden of hospitalization associated with heat exposure in Brazil is likely to increase in

the context of global warming. https://doi.org/10.1289/EHP3889

Introduction
Brazil is the fifth most populous country and has the ninth largest
economy in the world (The World Bank 2017a, 2017b). Paralleling
Brazil’s significant economic development over recent decades has
been the substantial gains in health outcomes: Over the past thirty
years, Brazil’s age-standardized mortality rate and years of life lost
have fallen by 34% and 41%, respectively (IHME 2016). However,
the increase in life expectancy and unchanged morbidity rate in
Brazil’s population has been accompanied by an enormous burden on
health care, particularly among the older population (IHME 2016).
Traditional and lifestyle risk factors (such as cigarette smok-
ing, diabetes, and high blood pressure levels) explain a substantial
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proportion of Brazil’s growing burden of disease (Prince et al.
2015). However, increasing evidence highlights the role that cli-
matic factors, such as high temperature, can play in the determina-
tion of health outcomes. For example, in the United States,
extreme heat has been associated with a 23% increase in the risk of
hospitalization for asthma in the summer months (Soneja et al.
2016). Similarly, in China, the risk of all-cause emergency room
visits has been reported to increase by 15% following exposure to
extreme heat (Zhao et al. 2017).

In Brazil, the mean temperature has been increasing 25%
faster than the global average since 1910, implying that the pop-
ulation may be particularly exposed to the effects of increasing
temperature relative to other populations (NOAA 2017). To
date, most of the evidence regarding the health effects associ-
ated with heat exposure has been derived from populations in
East Asia, Europe, and North America, with comparatively little
information from Brazil (Bai et al. 2014; Gronlund et al. 2014,
Michelozzi et al. 2009). However, Brazil’s unique geographic
and climatic features and substantial regional economic disparity
may mean that any previously observed heat—morbidity associa-
tions may differ significantly within and across the Brazilian pop-
ulation. In addition, most previous studies tended to report on
only a single or few diseases within the same population (Basu
et al. 2012; Fletcher et al. 2012; Ha and Kim 2013). This report-
ing precludes a more sensitive assessment of the relationship
between heat exposure and disease incidence, which may vary
according to disease outcomes (Bai et al. 2016; Michelozzi et al.
2009).

In this study, we used a national dataset to quantify the geo-
graphic, demographic, and temporal variations in the association
between heat exposure and risk of hospitalization from all causes
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and cause-specific hospitalization in the Brazilian population dur-
ing the hot seasons from 2000 to 2015.

Methods
Data Collection

City-specific data on hospitalization were collected between
1 January 2000 and 31 December 2015 through the Brazilian
Unified Health System. Only cities that had complete data for the
entire 16 y of study duration were included in this analysis. Overall,
1,814 cities (>78% of national population) contributed to the analy-
sis. The cities were located in five regions: the north, northeast, cen-
tral west, southeast, and south (Figure S1). Information included
date of admission, sex, age, and primary diagnosis, which was then
divided into 11 main cause categories according to the 10th
Revision of International Classification of Diseases (ICD-10) (see
Table S1), and 10 age groups (04, 5-9, 10-19, 20-29, 30-39, 40—
49, 50-59, 60-69, 70-79, and >80 years).

Daily maximum and minimum temperatures during the study
period were downloaded from a 0.25° X 0.25° Brazilian meteoro-
logical dataset (Xavier et al. 2016). City-specific data were collected
from the grid overlaying the centroid of each city (Zhao et al. 2018).
Daily mean temperature, the mean of maximum and minimum tem-
peratures, was applied as the thermal index in this study to analyze
the heat—hospitalization association. We also collected observed
data on daily mean temperature and relative humidity from 193 city-
specific meteorological stations between 2000 and 2012 from the
Brazilian National Institute of Meteorology. Data on city-specific
population were downloaded from the Brazilian Census 2000 and
2010 (http://www.ibge.gov.br/censo/, http://www.censo2010.ibge.
gov.br/). In 2010, the size of population for the cities included in this
study ranged from 7,903 to 11,253,503 people.

In this study, to estimate the effect of heat exposure on risk of
hospitalization, analyses were restricted to the hot season, which
was defined as the hottest four consecutive months for each city
during 2000-2015. By using this definition for the hot season, we
were able to take into consideration the wide climatic variation
across Brazil’s large geographic area (Alvares et al. 2013; Guo
et al. 2017).

Statistical Analysis

Heat-hospitalization association. A two-stage approach was per-
formed to assess the associations between heat exposure and risk
of hospitalization for all-causes and cause-specific. First, a quasi-
Poisson regression with constrained lag model was applied for
the time-series data for each city:

Yy, ~ poisson ()
Log(w;,) = o+ cb(Tem;,) + BStrata;, + yDOW,, + dHoliday;,

ey

where Y}, is the daily counts of hospitalization in city i on day ¢ dur-
ing hot seasons. o is the intercept; cb(Tem;,) is the cross-basis func-
tion to fit the lagged effect of daily mean temperature. Strata;, is the
stratum combining the year and calendar month to control for the
intraseasonal pattern and long-term trend. As a time-stratified case—
crossover design, it provides a flexible alternative to control for tem-
poral trends in the interrupted time-series analysis (Armstrong et al.
2014; Guo et al. 2011). DOW;, is a categorical variable to control for
day of the week. Holiday;, is a binary variable to control for public
holidays. B, v, and 6 are the coefficients. Our analysis indicated that
the relationship between heat exposure and hospitalization was lin-
ear and lagged for 0-7 d. Therefore, a linear function was used for
the temperature dimension, with 0—7 lag d and three degrees of free-
dom (df) for lag dimension in the cross-basis function.
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In the second stage, the city-specific estimates were pooled at
the regional and national levels using a random-effect meta-analysis
with maximum likelihood estimation. This method has been used to
estimate the average exposure—response association by assuming a
normal distribution of city-specific parameters (Gasparrini et al.
2012a; Gasparrini and Armstrong 2013). Stratified analyses were
performed by sex, age, and cause category. The heat—hospitalization
association was described as the percentage change in the estimated
risk of hospitalization [with 95% confidence intervals (CIs)] over
lag 0—7 d per 5°C increase in daily mean temperature during hot sea-
sons. The differences in estimated associations across regions,
population subgroups, and cause categories were tested using the
random-effect meta-regression, respectively (Guo 2017). For exam-
ple, when testing for the sex difference, the city-specific estimates
for men and women were entered as the dependent variable, and the
binary predictor (men and women) was entered as the independent
variable.

Attributable hospitalizations. For each city, the number of
hospitalizations attributable to heat exposure in city i on day ¢
(DAN;,) was estimated using the method described by Gasparrini
and Leone (2014), with empirical CIs (eCIs) estimated using
Monte Carlo simulation (5,000 random samples):

DAN;; = (RR;; — 1) /RR;; X Ave_case, 2)

where RR;; is the cumulative risk of hospitalization in the follow-
ing 0-7 d associated with the daily mean temperature in city i on
day ¢, in comparison with the minimum temperature value during
the hot seasons. Ave_case;, is the moving average of daily hospi-
talization counts in city i in the following 0-7 d since day ¢, con-
sidering that the heat-hospitalization lasted for up to seven days.
The total number of attributable hospitalizations in city i (AN;)
was calculated by summing DAN;; during 2000-2015. The attrib-
utable fraction (AF;) in city i was calculated by dividing AN; by
the total number of hospitalizations during the study period.

Some of the smaller cities had a relatively low number of daily
hospitalizations, which might result in spurious exposure-response
associations. To mitigate this issue, city-specific associations were
predicted by the best linear unbiased prediction (BLUP). This
method has been widely used in multicountry studies (Gasparrini
etal. 2015b; Guo et al. 2018). In summary, the heat-hospitalization
association in each city was estimated using Equation 1. Then,
city-specific cumulative effect estimates were applied as the de-
pendent variable in a meta-regression, whereas city-specific aver-
age temperatures of hot seasons and temperature ranges of hot
seasons and a categorical variable representing regions were
included as predictors. The BLUP of the cumulative association in
each city was derived by the meta-regression. When calculating at-
tributable hospitalizations in the elderly, we combined the three
older age-groups (60—69, 70-79, and >80 years) into >60 years
due to the grouping limitation of the Brazilian Census 2000 and
2010 datasets.

Long-term change in the heat-hospitalization association.
Temporal change in the heat-hospitalization association during the
16-y period was assessed using a two-stage strategy. In the first
stage, the city-year—specific effects were estimated using Equation 1.
In the second stage, a random-effect meta-regression model was
performed to examine the annual variation in the heat effect. The
years were entered as the independent variable (linear), and the
city-year—specific coefficients were entered as the dependent
variable (weighted by variances) (Bauters et al. 2016; Zhao et al.
2018).

Sensitivity analyses. Sensitivity analyses were performed to
test the robustness of the results by changing the lag of temperature
from 07 to 0-9 d and the df of lag days from three to five. We com-
pared the performance of gridded and station-based temperature
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data and assessed the confounding effect of relative humidity using
data from 193 city-specific meteorological stations between 2000
and 2012. We also tested the linearity of the heat-hospitalization
association using a natural cubic spline with two df for the tempera-
ture dimension.

All data analyses were conducted using R software (version 3.4.1;
R Core Team), with “dlnm” and “mvmeta” packages used for the
first-stage and second-stage analyses, respectively (Gasparrini et al.
2010; Gasparrini 2011). The residual heterogeneity in the meta-
analysis was quantified using the Cochran Q test and the I° statistic.
P value <0.05 (two-sided) was considered as statistically significant.

Results

The average daily mean temperature of the 1,814 cities was 25.3°C
(range: 18.1°C-30.3°C) in the hot seasons between 2000 and 2015
(Table 1). Cities in northern Brazil had higher daily mean tempera-
tures than those in the south. During the study period, there were
49,145,997 hospitalizations (sex ratio: 1.4 women:1 men), equat-
ing to 2.1% of all residents being hospitalized during every hot
season. Children aged 0—4 y and adults >60 years had the highest
hospitalization rates (3.1% and 3.9%, respectively), whereas chil-
dren aged 5-9 y had the lowest rate (0.9%). The mean number of
daily hospitalizations in the smallest and largest cities were 4
(median: 4; interquartile range: 2—-6) and 1,597 (median: 1,530;
interquartile range: 1,227-1,787) cases, respectively.

Heat-Hospitalization Association

At the national level, the estimated risk of hospitalization increased
by 4.0% (95% CI: 3.7%, 4.3%) per 5°C increase in daily mean tem-
perature over lag 07 d, ranging from the lowest in the south [2.9%
(95% CI: 2.4-3.5%)] to the highest in the northeast [6.3% (95%
CI: 5.4-7.1%)] (Figure 1; for results of the significance tests see
Table S2). The value of the I? statistic was 29% at the national
level and varied by region: 14% in the southeast, 20% in the cen-
tral west, 25% in the northeast, 41% in the south, and 43% in the
north. Despite the geographic difference in the cumulative effect
estimates, the heat—hospitalization associations showed similar
lag patterns across the five Brazilian regions (Figure S2): The

estimates were highest during the first day of exposure and
declined thereafter.

Associations between heat exposure and hospitalization were
not significantly different for men [4.2% (95% CI: 3.7-4.6%)] and
women [3.7% (95% CI: 3.4-4.1%)] over lag 0-7 d (Figure 2,
Table S2). However, an age-sex difference was apparent: on the
whole, the estimated cumulative effect was highest in children
04y [8.8% (95% CI: 7.9-9.6%)], followed by 5-19 y, and in the
elderly >80 years. By contrast, the effect estimate was lowest in
adults 50-79 y (1.3% on average). The estimated effect of heat
was stronger for older women (particularly those >80 years) than
for men (for results of significance tests, see Table S3). By com-
parison, the estimated risk of hospitalization in men 10-39 y was
more substantial than in women. Estimates for men, women, and
all age groups indicated positive associations between heat and
hospitalization during lag 0-2 d, followed by a decrease in hospi-
talization (relative risk <1) thereafter (Figure S3).

Cause-specific analysis indicated that hospitalizations for ten
cause categories were positively associated with heat exposure
over lag 0-7 d, with the exception of cardiovascular admissions
(Figure 3). Specifically, the estimated effects were highest in hos-
pitalizations for infectious and parasitic diseases, and for endo-
crine, nutritional, and metabolic diseases (Figure 3 and Table
S2). The effect estimates in most cause categories appeared posi-
tively on lag 0-2 d and were followed by a decrease in hospitali-
zation (relativerisk <1) thereafter (Figure S4). For cardiovascular
admissions, there was an immediate increase in the estimated
heat effect after exposure and a substantial hospitalization decline
in the following days.

Attributable Hospitalizations

During the 16-y hot seasons, assuming a causal relationship, an
estimated 3,070,360 (95% eCI: 1,600,393, 4,468,577) cases could
be attributable to heat exposure over lag 0-7 d (Table 2). This
accounted for 6.2% (95% eCI: 3.3-9.1%) of the total hospitaliza-
tions, equating to 132 cases (95% eCI: 69-192%) per 100,000
residents nationwide. The estimated age-standardized rate (ASR)
of attributable hospitalizations was the highest in the central west

Table 1. Distribution of enrolled hospitalizations and temperature features in the 1,814 Brazilian cities during the 2000-2015 hot seasons.

Average city-specific daily mean

Crude (age-standardized) temperature (°C)

No. of enrolled city Population coverage (%) No. of cases hospitalization rate (%) Mean Minimum Maximum
National 1,814 78.4 49,145,997 2.1 (2.1) 253 18.1 30.3
Region
North 28 26.3 1,271,435 2.0 (2.1) 27.7 20.8 32.1
Northeast 662 78.0 13,823,251 2.1(2.2) 27.1 22.0 30.9
Central West 128 80.7 3,847,427 2.2(2.3) 26.3 17.4 31.8
Southeast 622 87.0 22,077,029 2.0 (2.0) 24.2 16.4 29.5
South 374 83.2 8,126,855 2.2(2.3) 234 14.0 30.0
Sex
Men — — 20,232,358 1.8 (1.8) — — —
Women — — 28,912,721 2.524) — — —
Age (years)
04 — — 5,456,097 3.1(-) — — —
5-9 —_ — 1,693,045 0.9 (-) — — —
10-19 — — 5,141,581 1.2(-) — — —
20-29 — — 9,621,821 2.3(-) — — —
30-39 — — 6,835,872 1.9 (-) — — —
40-49 — — 5,402,941 1.8 (-) — — —
50-59 — — 4,907,819 2.3(-) — — —
60-69 — — 3,969,895 39(-) — — —
70-79 — — 3,253,568 39(-) — — —
>80 — — 2,144,441 3.9 (-) — — —
Note: —, data not available. The hot season was defined as the hottest four consecutive months for each Brazilian city during 2000-2015. Data on hospitalization were extracted via

the Brazilian Unified Health System. Data on population were collected from Brazilian Census 2000 and 2010. The temperature features in the 1,814 cities were calculated by averag-
ing the mean, minimum and maximum daily mean temperatures in each city during the 2000-2015 hot seasons.
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Figure 1. Cumulative association between heat exposure (5°C increase in daily mean temperature) and hospitalization over lag 0—7 d by region during 2000-2015
hot seasons. Data on hospitalization were extracted from 1,814 cities via the Brazilian Unified Health System. City-specific heat-hospitalization associations were
estimated using quasi-Poisson regression with constrained lag model, which were then pooled at the regional and national levels using random-effect meta-analyses.

Long-term trend and intra-seasonal variation, day of the week and holidays were controlled for.

and followed by the northeast, with no substantial difference in
the other three regions. The majority of cities with attributable
rates >219per 100,000 were located in the central west and
inland of the northeast, whereas cities along the eastern coast and
in the north had the lowest attributable rates (Figure S5).

Although there was no substantial sex difference on the
whole, the age difference was observed (Table 2 and Table S4);
for both sex groups, the estimated attributable rate was much
higher in children 0—4 y in comparison with adults. The attribut-
able rates in women 20-29 y and >60 years were much higher
than those in men of the same age groups. Of all cause categories,
the attributable crude rate and ASR were highest in hospitaliza-
tions for infectious and parasitic diseases, both approximating to
40 cases per 100,000 residents nationwide during the hot season
per year (Figure S6).
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Long-Term Change in Heat—Hospitalization Association

Figure 4 shows the change in coefficient of the estimated associa-
tion between heat exposure and hospitalization over lag 0-7 d
between 2000 and 2015. There was a nonsignificant declining
trend in the heat effect on the risk of hospitalization at the national
level. However, at the regional level, significant increases were
observed in the southeast and the north, whereas significant
declines were observed in the central west and the south.

Results of Sensitivity Analyses

Sensitivity analysis showed that our results were robust after chang-
ing the lag of temperature from 0—7 d to 0-9 d and the df of lag days
from three to five, and adding data on relative humidity (Table S5).
The difference between gridded and station-based temperature data
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Figure 2. Cumulative association between heat exposure (5°C increase in daily mean temperature) and hospitalization over lag 0-7 d by sex and age-group
during 2000-2015 hot seasons. Data on hospitalization were extracted from 1,814 cities via the Brazilian Unified Health System. City-specific heat—hospitaliza-
tion associations were estimated using quasi-Poisson regression with constrained lag model, which were then pooled at the national level using random-effect
meta-analyses. Long-term trend and intra-seasonal variation, day of the week and holidays were controlled for.
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Figure 3. Cumulative association between heat exposure (5°C increase in daily mean temperature) and hospitalization over lag 0-7 d by cause category during
20002015 hot seasons. Data on hospitalization were extracted from 1,814 cities via the Brazilian Unified Health System. City-specific heat-hospitalization
associations were estimated using quasi-Poisson regression with constrained lag model, which were then pooled at the national level using random-effect meta-
analyses. Long-term trend and intra-seasonal variation, day of the week and holidays were controlled for.

was also minimal. The result of the linear test indicated that the
heat-hospitalization association was linear (Figure S7).

Discussion

This paper reports the first nationwide study to comprehensively
examine the geographic, demographic, and temporal variations in
the association between heat exposure and risk of hospitalization
in the Brazilian population. We observed adverse effects of heat on
a range of health outcomes in the Brazilian population that were

greatest in children and the elderly. Assuming a causal exposure
pathway, approximately 6% of Brazilian hospitalizations (equiva-
lent to 132 cases per 100,000 residents) could be attributable to
heat exposure during every hot season, with the attributable ASR
greatest for infectious and parasitic admissions. Temporal change
was negligible at the national level but varied by region over the
16-y study period.

Despite using different methodologies and exposure defini-
tions, the relationship between heat exposure and hospitalization
that we observed in Brazil is similar to findings from populations

Table 2. Hospitalizations (with 95% empirical confidence intervals) attributable to heat exposure over lag 0—7 days in the 1,814 Brazilian cities during 2000—

2015 hot seasons by region, sex and age.

Annual attributable rate
(per 100,000 population)

Attributable cases Attributable fraction (%) Crude Age-standardized

National 3,070,360 (1,600,393, 4,468,577) 6.2 (3.3,9.1) 132 (69, 192) 132 (54, 205)
Region

North 64,315 (6,738, 118,833) 5.1(0.5,9.3) 102 (11, 188) 124 (-82, 307)

Northeast 867,155 (269,494, 1,434,051) 6.3 (1.9, 10.4) 135 (42, 223) 146 (51, 235)

Central West 316,024 (138,043, 481,681) 8.2 (3.6, 12.5) 182 (80, 278) 180 (43, 305)

Southeast 1,313,757 (841,652, 1,765,259) 6.0 (3.8, 8.0) 120 (77, 162) 117 (62, 169)

South 496,648 (384,860, 605,893) 6.1 (4.7,7.5) 140 (108, 170) 123 (55, 189)
Sex

Men 1,381,501 (725,616, 2,004,986) 6.8 (3.6,9.9) 120 (63, 175) 121 (35, 200)

Women 1,682,369 (857,792, 2,468,353) 5.8(3.0,8.5) 143 (73, 209) 141 (52, 225)
Age (years)

04 686,394 (368,162, 972,421) 12.6 (6.7, 17.8) 393 (211, 556) —

5-9 180,592 (76,158, 274,766) 10.7 (4.5, 16.2) 98 (41, 149)

10-19 385,259 (281,882, 485,903) 7.5(5.5,9.5) 92 (67, 116) —

20-29 600,819 (199,159, 982,670) 6.2 (2.1, 10.2) 143 (47, 233) —

30-39 436,899 (187,161, 675,904) 6.4 (2.7,9.9) 119 (51, 185) —

40-49 265,505 (84,602, 437,748) 4.9 (1.6,8.1) 88 (28, 145)

50-59 154,272 (19,231, 284,036) 3.1(0.4,5.8) 71 (9, 130) —

60-69 47,951 (50,214, 142,711) 1.2 (-1.3,3.6) 90 (-27,201) —

70-79 45,603 (—43,252, 130,920) 1.4 (-1.3,4.0) 90 (—27,201) —

>80 122,564 (28,364, 210,802) 5.7 (1.3,9.8) 90 (=27, 201)

Note: Heat exposure for calculating attributable burden was defined as the increase in daily mean temperature during 2000-2015 hot seasons (the hottest four consecutive months for
each city), compared with the minimum daily mean temperature. The best linear unbiased prediction of the cumulative association in each city was used to calculate the attributable

burden.
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Figure 4. Annual change in coefficient of the cumulative association between heat exposure (5°C increase in daily mean temperature) and hospitalization over
lag 0-7 d by region during 2000-2015 hot seasons. Data on hospitalization were extracted from 1,814 cities via the Brazilian Unified Health System. Random-
effect meta-regression models were conducted, with “years” as the independent continuous variable (linear) and city-year-specific estimates as the dependent

variable.

in other countries. A Vietnamese study reported that for every
1°C rise in daily mean temperature, the risk of hospitalization
increased by 1.3% over lag 0—6 d in 13 tropical provinces during
2002-2014 (Phung et al. 2016). Another study conducted in 114
American cities reported an association between exposure to
extreme heat and a 3% increase in the risk of all-cause hospitaliza-
tion over lag 0-7 d during the 1992-2006 hot seasons (Gronlund
et al. 2014). In Australia and China, 6% and 4% of current day’s
emergency admissions were attributable to daily heat exposure
during summer, respectively (Cheng et al. 2018).

Substantial evidence exists to support a causal relationship
between heat exposure and impaired functioning of many physio-
logical systems. Both human and animal studies have demonstrated
that exposure to high temperatures may disturb the secretion, trans-
portation, and targeting of hormones, that could lead to endocrine,
nutritional, and metabolic disorders (Faure et al. 2016; Kang et al.
2017). Some researchers have found that dehydration and hyper-
thermia compromise kidney function (Hansen et al. 2008; Williams
et al. 2012). Heat-induced release of Interleukin-1 or Interleukin-6
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has been shown to trigger an inflammatory response, resulting in re-
spiratory distress syndrome (Kaldur et al. 2016; Michelozzi et al.
2009). Exposure to high temperatures has also been associated with
a range of maternal and perinatal conditions, such as preterm birth
and psychological stress during pregnancy (Carolan-Olah and
Frankowska 2014; Lin et al. 2017). The associations observed in the
current study between heat exposure and hospitalization for skin
and muscle problems or injury are also in agreement with previous
reports on heat rash and edema, or increased violent crime during
hot days (Caspani et al. 2004; Grubenhoff et al. 2007; Raleigh et al.
2014).

Numerous studies have examined the impact of heat exposure
on cardiovascular disease (Goldie et al. 2018; Tsangari et al.
2016). Potential physiopathologic mechanisms are that exposure
to extreme heat is potentially associated with adverse changes in
blood viscosity, plasma cholesterol, heart rate, and blood pressure,
and increased oxidative damage to the arteries (Halonen et al. 2011;
Kaldur et al. 2016; Radin et al. 2018). In our study, cardiovascular
hospitalization was positively associated with heat on the first
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exposure day, but the cumulative association was negative due to
the large hospitalization displacement on subsequent days.
Moreover, this negative cumulative association may reflect high
rates of mortality subsequent to prolonged heat exposure, particu-
larly among the most vulnerable population subgroups, such as the
elderly and individuals with established cardiovascular disease. In
support of this finding, a study covering 12 European cities reported
a negative association for cardiovascular admissions but a positive
association for cardiovascular deaths in the same population
(Michelozzi et al. 2009).

Previously, the health impact associated with heat exposure
has been attributed to an insufficient response of the body’s ther-
moregulatory capacity (Gasparrini et al. 2012b; Guo et al. 2014).
However, the high effect estimates for infectious, parasitic, and
digestive diseases in this study imply that some ecological and
behavioural factors may also contribute to the heat-health path-
ways. For example, evidence indicates that a variety of pathogens
and vectors have advanced proliferation or survival in warmer envi-
ronments, contributing to the epidemics of water- and food-borne
diseases during the hot season (Bennet et al. 2006; Bentham and
Langford 2001). Greater consumption of cold, contaminated water
and uncooked food during hot days may stimulate gastrointestinal
perturbation or facilitate the transmission of bacteria (Farthing et al.
2013; Thompson et al. 1983).

Findings from previous studies and our observations have
shown that some health outcomes are more associated with high
temperature than are other diseases. However, the attributable
heat burden at the population level may exhibit a heterogeneous
pattern. For example, although with similar estimated risks of
hospitalization, the attributable ASR was higher for infectious
and parasitic diseases than for endocrine, nutritional, and meta-
bolic diseases in Brazil. This evidence should not be overlooked
when developing protective strategies against high temperatures.

Demographic factors are important effect modifiers for the
association between heat exposure and human health, such that
women, children, and the elderly may be at greater risk during hot
days (Basu 2009; Phung et al. 2016). In line with these studies, we
found that for the entire Brazilian population, the youth and the el-
derly >80yearsold had higher heat susceptibility than adults
below age 80 did, possibly due to immature or impaired physiolog-
ical systems against heat exposure (Committee on Sports Medicine
Fitness 2000; Landrigan and Garg 2005). Our analyses indicated
that the heat-hospitalization association and the associated attrib-
utable fraction were lowest for individuals at or around retirement
age (50-79 y). This finding matches some mental-behavioural
changes in this population that may benefit their health, such as
less occupational stress and more time for healthier lifestyles (e.g.,
balanced diet) (Laranjeira et al. 2010; Monteiro et al. 2007).

Overall, no substantial sex difference was found in the heat
effect and the attributable fraction of hospitalization. However, a
marked sex—age difference was observed. Similar to findings in
Australia and the United Kingdom (Hajat et al. 2007; Tong et al.
2014), older women in Brazil were more vulnerable to heat expo-
sure than were men, possibly due to the effects of menopause on
their thermoregulatory capacity. In comparison, the higher esti-
mated risk in adolescent boys and middle-age men than in women
may be explained by the males’ higher levels of outdoor activities.
The exception was among women of reproductive age, for whom,
although they had low estimated risk of heat-related hospitaliza-
tion, the attributable rate of hospitalization was still high due to the
vast number of hospitalizations in this population subgroup.

Geographic variation in the relationship between temperature
and health has been previously reported in other countries (Baccini
et al. 2008; Phung et al. 2016). In Brazil, we found that the heat—
hospitalization association varied by region, with individuals in the
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northeast most susceptible, whereas those in the south were least
susceptible to heat. This finding likely reflects the fact that southern
Brazil has a higher proportion of adults aged 50-79 y than does
northern Brazil who are less affected by high temperatures relative
to other population subgroups (IBGE 2013). However, imbalance
in the population distribution within Brazil distorted the compari-
son of regional difference in attributable heat burden on the popula-
tion level. This imbalance is also true for other countries with high
levels of population migration. To address this issue, we calculated
the ASRs of hospitalization attributable to heat. Our results indi-
cated that the estimated heat-related burden indeed varied across
Brazil after population adjustment; although it was broadly compa-
rable in the north, southeast, and south, the ASR was highest in the
central west, followed by the northeast. This variation suggests
that there are region-specific characteristics that influence the rate
of hospitalization due to heat exposure. For example, because the
main occupation in the central west is agriculture, the average time
spent outdoors per capita (and hence, exposure to heat) is likely to
be high in this region (The Brazil Business 2013). In contrast, the
northeast region has a more constant temperature relative to other
regions, which mitigates the local attributable hospitalization bur-
den over the hot season (Alvares et al. 2013).

Evidence from studies conducted in high-income countries,
including the United States, Japan, and Spain, suggests that there has
been a substantial decline in the effect of heat exposure on major
health outcomes (such as mortality) during the 20th century (Barreca
et al. 2016; Gasparrini et al. 2015a). Researchers speculated that this
decline is a result of various factors, such as physiological adaptation
to heat and improvements in infrastructure (e.g., building insulation,
air-conditioning) associated with increased economic development
(Anderson and Bell 2011; Gasparrini et al. 2015a; Vicedo-Cabrera
et al. 2018). Despite Brazil’s impressive economic growth and sig-
nificant improvements in health outcomes over recent decades
(IBGE 2013; The World Bank 2017¢), the association between heat
exposure and hospitalization has remained temporally unchanged at
the national level during the 2000-2015 hot seasons. This finding
suggests that minimal adaptation to heat has occurred within the
Brazilian population at the national level. However, the regional var-
iations (i.e., temporal increases in the north and southeast, declines in
the central west and south, and nonsignificant change in the north-
east) indicate a complicated geographic pattern in thermal adapta-
tion. Additional studies are needed to explore whether this regional
variation is modified by a range of local characteristics relevant to
behavior, culture, and geography.

This study has several strengths. First, to the best of our knowl-
edge, ours is the largest research study to characterize the relation-
ship between heat exposure and cause-specific hospitalization and
to examine the geographic, demographic, and temporal variations
in the association. Second, this study included information on
more than three-quarters of the Brazilian population, and thus our
findings, particularly the city-specific estimates, are likely to be
representative of the general population. Third, considering the ge-
ographic location and climatic diversity of Brazil, our results are
also likely to be relevant to populations from other countries in
South America. However, several limitations warrant brief discus-
sion. First, the use of gridded temperature data rather than personal
measurement may have introduced measurement error, resulting in
an underestimation of the size of the observed associations.
Second, we were unable to assess the modification effect of air pol-
lution because of the lack of data from most Brazilian cities.
However, previous findings have indicated that the heat-health
associations from the effects of air pollution on health outcomes
are robust (Guo et al. 2016; Zhao et al. 2017). Third, we were
unable to provide the sex-specific ASRs for the 11 cause-specific
categories because of the small sample sizes for some of the
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categories. Finally, we were unable to make any inference as to the
possible mechanistic pathways governing the relationship between
heat exposure and cause-specific outcomes because of the lack of
data on clinical information and other sociodemographic and
health-related factors.

Conclusions

In the Brazilian population, exposure to high temperature was
associated with a broad range of cause-specific hospitalizations
between 2000 and 2015, in particular those hospitalizations due
to infectious and parasitic diseases. The burden of hospitalization
associated with heat exposure was not uniformly distributed
across the population, but varied by age, sex, and region, as well
as by underlying disease or health condition. The lack of evi-
dence for demonstrable thermal adaptation at the national level
over the study period implies that any future increases in mean
temperature, as predicted by various climate change scenarios,
will result in an increase in the attributable hospitalization burden
in the Brazilian population. This increase is particularly true for
residents dwelling in the north and southeast.
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