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Abstract

Purpose of Review—The goal of this review is to summarize current understanding of 

pharmacogenetics and pharmacogenomics in chemotherapy-induced cardiotoxicity.

Recent Findings—Most of the studies rely on in vitro cytotoxic assays. There have been several 

smaller scale candidate gene approaches and a handful of genome-wide studies linking genetic 

variation to susceptibility to chemotherapy-induced cardiotoxicity. Currently, pharmacogenomic 

testing of all childhood cancer patients with an indication for doxorubicin or daunorubicin therapy 

for RARG rs2229774, SLC28A3 rs7853758, and UGT1A6*4 rs17863783 variants is 

recommended. There is no recommendation regarding testing in adults.

Summary—There is clear evidence pointing to the role of pharmacogenetics and 

pharmacogenomics in cardiotoxicity susceptibility to chemotherapeutic agents. Larger scale 

studies are needed to further identify susceptibility markers and to develop pharmacogenomics-

based risk profiling to improve quality of life and life expectancy in cancer survivors.
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Introduction

Despite recent advances in cancer treatment, cardiotoxicity can result from traditional 

chemotherapy agents such as anthracyclines, as well as newer targeted therapies, such as 

trastuzumab, leading to significant morbidity and mortality [1–4]. Radiation therapy alone 
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and in combination with chemotherapy can also contribute to cardiotoxicity [5, 6]. These 

adverse effects can occur early or late, with early effects occurring within 1 year after 

exposure and late effects occurring a year or more after exposure. Now that patients with 

cancer are living longer, these cardiotoxicity effects are becoming increasingly recognized 

and cardio-oncology is emerging as a multidisciplinary field to advance our ability to 

diagnose, treat, and prevent these potentially devastating side effects.

The most common sign of chronic cardiotoxicity is asymptomatic systolic or diastolic 

dysfunction, leading to irreversible heart failure and even death [2], which makes close long-

term monitoring by experienced healthcare providers critical. In one trial evaluating 

trastuzumab, cardiotoxicity was defined as one or more of the following: [1] 

cardiomyopathy characterized by a decrease in cardiac LVEF that was either global or more 

severe in the septum, [2] symptoms of congestive heart failure (CHF), [3] associated signs of 

CHF, including but not limited to S3 gallop, tachycardia, or both, and [4] decline in LVEF of 

at least 5% to less than 55% with accompanying signs or symptoms of CHF, or a decline in 

LVEF of at least 10% to below 55% without accompanying signs or symptoms [3]. 

However, cardiotoxic effects can range from coronary heart disease, pericardial disease, 

valvular disease, cardiomyopathy, and arrhythmias [7] and there are no standardized 

definitions or diagnostic criteria for cardiotoxicity.

Furthermore, conventional biomarkers show changes only after damage to the heart has been 

done. Once CHF develops, mortality increases to 50%. Standardized guidelines on how to 

best screen patients are much needed, as well as the identification of novel predictive 

biomarkers and genetic risks prior to chemotherapeutic treatment or development of heart 

failure symptoms and signs. This review summarizes the types of chemotherapeutic agents 

associated with cardiotoxicity, the known pharmacogenetics of chemotherapy-induced 

cardiotoxicity, and presents the future role of genomics.

Materials and Methods

A literature review was performed using PubMed to identify articles and case reports in the 

English literature between August 1973 and August 2017 on the clinical description, 

molecular mechanism, genetics, and treatment of chemotherapy-induced cardiomyopathy. 

Combinations of search terms including chemotherapy and cardiotoxicity, anthracycline and 

cardiomyopathy, antibody or targeted treatment and cardiotoxicity, mechanisms of cardiac 

dysfunction and chemotherapy and radiation, risk factors for cardiotoxicity and 

chemotherapy and radiation, pharmacogenetics or pharmacogenomics and cardiotoxicity, 

and screening for cardiotoxicity were used. Identified articles and case reports were 

reviewed, and the related reference lists were also searched to include additional studies. 

Studies pertaining to pharmacogenetics of chemotherapy-induced cardiotoxicity are 

included in this review.

Chemotherapeutic Agents that Cause Cardiotoxicity

Different chemotherapy agents cause cardiotoxicity through a wide variety of mechanisms, 

causing not only cardiomyopathy but also hypercoagulable states, arrhythmia, and 
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inflammation [4]. Anthracyclines such as daunorubicin, doxorubicin, and mitoxantrone are 

the most well-studied and cause dose-dependent cardiomyopathy and congestive heart 

failure [1, 5–8]. These agents work against cancer by cross-linking topoisomerase IIα to 

DNA and directly intercalating with DNA, resulting in DNA damage, apoptosis, 

mitochondrial injury, increased reactive oxygen species [6], and programmed cell death [9]. 

Interestingly, cardiomyocytes do not express topoisomerase IIα like tumor cells, but 

topoisomerase IIβ which can similarly complex with anthracyclines and result in cell death 

and decreased mitochondrial biogenesis [10, 11]. This is important because dexrozaxane is a 

cardioprotectant that has been shown to decrease incidence and severity of cardiotoxicity 

from anthracycline exposure [12–14] and acts through inhibition of both isomers of 

topoisomerase II as well as by chelating free iron and decreasing free radical generation 

[15–17].

Trastuzumab is a targeted antibody against Her2/neu amplification in certain breast cancers 

[18, 19]. It also has direct toxic effects on the heart and can potentiate anthracycline-

mediated damage [10, 11]. The Her2 pathway is known to be involved in normal 

development of cardiomyocytes and conditional mutations of the HER2 receptor in 

cardiomyocytes lead to dilated cardiomyopathy [20]. Furthermore, trastuzumab has been 

shown to downregulate autophagy in primary cardiomyocytes leading to increased reactive 

oxygen species [21].

Taxanes such as paclitaxel and docetaxel act by disrupting microtubule formation. They can 

primarily cause arrhythmias, bradycardia, and myocardial ischemia [22, 23] thought to be 

due to abnormalities in calcium handling [24] and histamine release, resulting in conduction 

abnormalities [25]. The effect of taxanes has been found to worsen when administered with 

Her2 inhibitors and anthracyclines [26, 27].

Tyrosine kinase inhibitors such as imatinib, dasatinib, and nilotinib disrupt signaling 

pathways responsible for cancer progression by competing with the ATP binding site of 

oncogenic tyrosine kinases that are constitutively active often through mutation or 

translocation [28, 29]. A mouse model for imatinib-induced cardiotoxicity suggests effects 

in mitochondrial function and cardiomyocyte death through c-Jun N-terminal kinase 

activation and cardiomyocytes exposed to i-matinib in culture undergo both apoptosis and 

necrosis [30].

Angiogenesis inhibitors such as bevacizumab and multi-targeted tyrosine kinase inhibitors 

such as sunitinib and dasatanib, intended at least in part to target tumor vasculature, can 

cause QT prolongation with progression to torsade de pointes (TdP) and sudden death [31]. 

Angiogenesis inhibitors can also lead to hypertension by inhibiting NO synthase, causing a 

decrease in NO production and subsequently vasoconstriction [32–34].

Fluoropyrimidines, such as 5-fluorouracil (5-FU), capecitabine, and gemcitabine, are anti-

metabolites that inhibit thymidylate synthase [35]. This class of chemotherapy agents can 

cause chest pain, myocardial infarction, arrhythmia, CHF, and cardiogenic shock and sudden 

death [36, 37]. 5-FU seems to induce vasoconstriction while capecitabine causes coronary 

artery thrombosis, arteritis, or vasospasm [38–40]. Other proposed mechanisms include 
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endothelial damage, such as dilated or ruptured vessels, thrombosis, and effects on red blood 

cells potentially leading to a thrombogenic state [39, 41, 42].

Evidence in Support of the Role of Genetics in Cardiotoxicity

Known risk factors for cardiotoxicity include cumulative dose (e.g., for anthracycline), 

concomitant cardiac irradiation, higher individual doses, shorter infusion time, older than 65 

years of age, female sex, and cardiovascular comorbidity. Of these, cumulative dosage and 

irradiation with cardiac involvement are the strongest independent risk factors [43]. 

According to the 2017 American Society of Clinical Oncology Clinical Practice Guideline 

on the Prevention and Monitoring of Cardiac Dysfunction in Survivors of Adult Cancers, 

patients who received the following types of treatments are considered to be at increased risk 

for developing cardiac dysfunction: (1) high-dose anthracycline (e.g., doxorubicin ≥ 250 

mg/m2, epiuribin ≥ 600 mg/m2), (2) high-dose radiotherapy (RT ≥ 30 Gy where the heart is 

in the treatment field), (3) low-dose anthracycline in combination with low-dose 

radiotherapy where the heart is in the treatment field, (4) low-dose anthracycline or 

trastuzumab plus any of the following risk factors, including ≥ cardiovascular risk factors 

(e.g., smoking, hypertension, diabetes, dyslpidemia, and obesity), age ≥ 60, and 

compromised cardiac function (e.g., borderline LV EF 50 to 55%, history of myocardial 

infarction, and ≥ moderate valvular heart disease), (5) low-dose anthracycline followed by 

trastuzumab (sequential therapy) [44]. According to the International Late Effects of 

Childhood Cancer Guideline Harmonization Group on long-term surveillance, pediatric 

patients who receive anthracycline dose of ≥ 100 mg/m2 and chest radiation dose ≥ 15 Gy 

are at moderate to high risk of developing cardiomyopathy long-term [45]. Yet, 

chemotherapy dosages that lead to toxic responses vary considerably among individual 

patients. For instance, doxorubicin dosages of 1000 mg/m2 are tolerated by some patients, 

whereas others develop acute cardiotoxicity after 200 mg/m2. Such findings demonstrate 

that there is likely no “safe” anthracycline dose where cardiotoxicity will not occur. 

Anthracycline-induced cardiotoxicity can occur idiosyncratically in patients without known 

risk factors. Cardiomyopathy has been reported in survivors who received doses well below 

250 mg/m2 [46]. The wide variation in the inter-individual susceptibility to anthracyclines 

begs the question of whether genetic determinants or predisposition plays a role in 

chemotherapy-induced cardiotoxicity.

Studies Examining Heritability and Genetic Determinants of Chemotherapy-

Induced Cytotoxicity

In vitro studies minimize interindividual variability due to complex interactions on the 

whole organism level. Frick et al. developed a drug screening platform using a panel of 

genetically diverse mouse inbred strains. The aim was to examine interstrain differences in 

normal, noncancerous immune cell viability following chemotherapeutic cytotoxic insult. 

Drug effects were investigated by comparing selective chemotherapeutic agents, such as 

BEZ-235 and selumetinib, against conventional cytotoxic agents targeting multiple 

pathways, including doxorubicin and idarubicin. Splenocytes were isolated from 36 isogenic 

strains of mice. Cells were incubated with chemotherapeutic compounds of different 
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dosages. Cellular phenotypes (e.g., viability) were analyzed using flow cytometry, yielding 

interstrain variation for measured endpoints in different immune cells. The generated 

doseresponse curves showed that the calculated heritability for the viability of immune cells 

was higher with anthracyclines than the novel targeted therapies agents. The heritability of 

viability of T cells exposed to idarubicin was 90.5%. The heritability of B cells exposed to 

doxorubicin was 81.6%. In addition, Pearson correlations in IC50 among T and B cells and 

monocytes exposed to idarubicin and doxorubicin were statistically significant, indicating 

correlative effects of different anthracycline agents on immune cell toxicity. The authors 

identified cell lines of variable sensitivity to chemotherapeutic agents, i.e., B cells versus T 

cells, and aim to identify robust, replicable endpoints of cellular response to drugs that 

provide the starting point for identifying candidate genes and cellular toxicity pathways for 

future validation in human studies. While this study did not examine heritability in 

cardiomyocytes, this study suggests that the heritability for anthracycline cardiotoxicity may 

be significant [47].

In addition, there have been a number of pharmacogenetic studies of chemotherapy-induced 

cytotoxicity using human lymphoblastic cell lines. Studies have demonstrated that sensitivity 

to cytotoxicity induced by cisplatin, 5-fluorouracil, and docetaxel are heritable traits [48, 

49]. These findings suggest that there is a significant genetic contribution to susceptibility to 

the cytotoxic effects of chemotherapy.

In an unbiased genome-wide linkage-directed association study using the online CEU 

dataset from the HapMap project, including 31,312 high-frequency single nucleotide 

polymorphisms (SNPs) covering 1278 genes, and 86 lymphoblastoid cell lines phenotyped 

for daunorubicin sensitivity, they found that the heritability for the IC50 for daunorubicin 

was 0.29 (p =8× 10−7) [50]. Nonparametric linkage analysis showed the highest LOD score 

of 3.18 reaching genome-wide significant for the 4q28.2–32.3 region at a daunorubicin 

concentration of 0.05 umol/L. The association studies identified 137 SNPs from 30 genes to 

be significantly associated with daunorubicin cardiotoxicity, including SNPs in INPP4B on 

chromosome 4 and SNPs in CDH13 on chromosome 16. Pathway analyses showed 

phosphatidylinositol signaling system, GPI-anchored proteins, and axon guidance pathways 

to be over-represented in the candidate gene list. This study suggests that daunorubicin-

induced cardiotoxicity is a likely polygenic heritable trait, with different genes contributing 

at different concentrations [51].

In another study, pharmacologic outcomes for daunorubicin, etoposide, carboplatin, 

cisplatin, cytarabine, pemetrexed, 5′-deoxyfluorouridine, vorinostat, methotrexate, 6-

mercaptopurine, and 5-fluorouracil were evaluated. Cellular growth rate and drug-induced 

cytotoxicity were significantly, directly related for all drugs except vorinostat. Cellular 

growth rate was found to be under appreciable genetic influence (h2 = 0.30–0.39) with five 

suggestive linkage regions across the genome. Not surprisingly, a percentage of SNPs that 

significantly associate with drug-induced cytotoxicity also associate with cellular growth 

rate (P ≤ 0.0001) [52].

A randomized placebo-controlled trial was conducted to evaluate the efficacy of angiotensin 

II antagonist candesartan to prevent or reduce cardiotoxicity due to trastuzumab in patients 
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with breast cancer [53]. Although there were no differences using left ventricular ejection 

fraction as the primary outcome, the Ala1170Pro homozygous ERBB2 genotype was 

associated with a lower risk of cardiotoxicity. Of note, previous studies looking at the 

Ala1170Pro ERBB2 SNP have shown conflicting results with at least one study with similar 

results and a smaller retrospective study showing no correlation with the Ala1170Pro 

ERBB2 SNP and cardiotoxicity in breast cancer patients [54, 55].

Studies of Chemotherapy-Induced Cardiotoxicity in Mice and Humans

Indeed, there is increasing evidence in mice and humans supporting the roles of genetics and 

in oncologic drug response and toxicity. For example, overexpression of the multiple drug 

resistance gene MDR1 protects the heart from the toxic effect of doxorubicin [56]. 

Linschoten et al. described two women with breast cancer who developed severe heart 

failure within months after chemotherapy. Genetic screen revealed truncating frameshift 

mutations in TTN, encoding the myofilament titin, in both women. Truncations in TTN are 

the most common cause of the familial and sporadic dilated cardiomyopathy. These findings 

suggest that a genetic predisposition to dilated cardiomyopathy may be an important 

contributor to chemotherapy-induced cardiomyopathy [57•].

The variation in susceptibility to chemotherapy-induced cardiotoxicity has been postulated 

to be due to common polymorphisms in genes related to the metabolism of chemotherapy or 

iron levels, sensitivity to cell cycle inhibitor, cytoskeleton, or direct toxicity. There have been 

close to a dozen studies linking candidate genetic variation to cardiotoxicity [58, 59•, 60•, 

61, 62••, 63–65]. The general approach is described as follows. In one of the largest 

candidate approach studies, involving 1697 subjects, genes involved in metabolism of 

reactive oxygen species, drug transport and metabolism, DNA repair, endothelial physiology, 

the renin-angiotensin-aldosterone system, muscle contraction and structure, inflammation, 

and cell cycle were selected [65]. Polymorphisms for 73 genes were genotyped from 

peripheral blood lymphocytes of patients with non-Hodgkins lymphoma and tested for 

association with acute and chronic cardiotoxicity. A total of six variants showed nominal 

statistically significant (P < 0.05) association with anthracycline cardiotoxicity. Chronic 

ACT was associated with a variant in the NAD(P)H oxidase subunit NCF4, which is 

responsible for down regulation of the enzyme. Acute ACT was associated with two SNPs in 

other subunits of the same enzyme: p22phox and RAC2. In addition, acute ACT was 

associated with three polymorphisms in the transmembrane efflux transporters of 

anthracyclines, multi-drug resistance protein 1 (MRP1) and multi-drug resistance protein 2 

(MRP2). The authors addressed the problem with multiple testing using a permutation 

analysis to see what are the chances of observing five associated genes nested within two 

functional groups. The overall P value was 0.08, indicating that the findings could be 

generated by chance in < 1 of 12 replicas of the study. Nonetheless, the authors concluded 

that a significant association between anthracycline-induced cardiotoxicity and genetic 

polymorphisms of the NAD(P)H oxidase and efflux transporters (MRP1 and MRP2) was 

found. Overall, most candidate gene studies are limited by small patient numbers, lack of 

replication studies and functional data (66••). A systemic review of 28 candidate gene 

association studies examined 84 different genes and 147 single nucleotide polymorphisms 
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[67]. Three risk variants in genes ABCC2, CYBA, and RAC2 significantly increased the risk 

for anthracycline-induced cardiotoxicity.

One of the first genome-wide association studies for anthracycline-induced cardiotoxicity 

was published in 2015. The discovery cohort consisted of 280 patients of European ancestry 

treated for childhood cancer. The study identified a nonsynonymous variant (rs2229774, 

p.Ser427Leu) in RARG as being significantly associated with anthracycline-induced 

cardiotoxicity (P = 5.9 × 10−8) [66••]. This finding was replicated in similar cohorts of 96 

European and 80 non-European patients. RARG is highly induced in mouse cardiocytes 

after injury [68] and is known to bind the topoisomerase IIß promoter [69]. This finding 

suggests that RARG could be a clinically significant biomarker for anthracycline-induced 

cardiotoxicity.

Another genome-wide association study was conducted in childhood cancer survivors with 

and without cardiomyopathy [70••]. A modifying SNP rs1786814 on the CELF4 gene was 

identified as an independent risk factor for anthracycline-induced cardiotoxicity in those in 

the treatment group (P = 1.14 × 10–5), possibly via a pathway that involves the expression of 

abnormally spliced TNNT2 variants.

Linschoten et al. recently published a review article that assessed the body of literature by 

ten criteria, including assessment of population stratification, statistical methodology, and 

replication of findings [71]. They identified 40 studies: 34 exploring genetic risk factors for 

anthracycline-induced cardiotoxicity (n = 9678) and six studies related to trastuzumab-

associated cardiotoxicity (n = 642). The majority (35/40) of studies had a candidate gene 

approach, whereas five genome-wide association studies have been performed. They 

identified 25 genetic variants in 20 genes and two intergenic variants reported significant at 

least once. The overall validity of studies was limited, with small cohorts, failure to assess 

population ancestry and lack of replication. The authors concluded that the SNPs with the 

most robust evidence up to this point are CELF4 rs1786814 (sarcomere structure and 

function), RARG rs2229774 (topoisomerase-2β expression), SLC28A3 rs7853758 (drug 

transport), UGT1A6 rs17863783 (drug metabolism), and one intergenic variant 

(rs28714259) (Table 1). All but the intergenic variant rs28714259 is found on popular direct-

to-consumer genotyping service, such as 23andme’s genotyping platform. Existing evidence 

supports the hypothesis that genetic variation contributes to chemotherapy-related cardiac 

dysfunction. Although many variants identified by this systematic review show potential to 

improve risk stratification, future studies are necessary for validation and assessment of their 

value in a diagnostic and prognostic setting. A summary of the evidence for genetic variants 

modulating chemotherapy-related cardiac dysfunction is outlined in a table in Linschoten et 

al. [71].

Recommendations for Genetic Testing

The Canadian Pharmacogenomics Network for Drug Safety (CPNDS) Clinical Practice 

Recommendations Group examined individual genetic markers for the level of evidence in 

support of its role in discriminating individuals at low, moderate, or high risk of 

anthracycline-induced cardiotoxicity. They concluded that three SNPS in three genes 
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currently have the strongest evidence as pharmacogenomic markers for anthracycline-

induced cardiotoxicity. These associations have been replicated at least twice in large well-

characterized patient populations with clinically relevant effect sizes (OR > 3 or < 0.3). They 

recommended pharmacogenomic testing in all childhood cancer patients with an indication 

for doxorubicin or daunorubicin therapy for RARG rs2229774, SLC28A3 rs7853758, and 

UGT1A6*4 rs17863783 variants [72]. Based on an overall risk stratification, taking into 

account genetic and clinical risk factors, a number of management options including 

increased frequency of echocardiogram monitoring, follow-up, as well as therapeutic options 

within the current standard of clinical practice can be initiated. As most of the studies so far 

have been performed in pediatric patients, receiving doxorubicin and daunorubicin, the 

generalizability of these findings to adults and other anthracycline is unknown. As such, 

pharmacogenomic testing is currently not recommended in adult patients and in children 

receiving other types of anthracyclines. Further research in adults and other 

chemotherapeutic agents is needed to improve the diagnostic and prognostic role in 

predicting chemotherapy-induced cardiotoxicity. Outcomes studies will also be needed to 

demonstrate that such early risk stratification and intervention lead to a meaningful 

difference in hard clinical endpoints such as the development of cardiac morbidity and 

mortality.

Conclusions: Future Avenues

The number of survivors of cancer is growing at an increasing pace. Chemotherapy-induced 

cardiotoxicity will represent an increasing health burden for the foreseeable future. 

Chemotherapeutic agents cause cardiotoxicity through multiple mechanisms that are subject 

to genetic influences. Understanding the pharmacogenomics holds the promise of 

maximizing benefits and minimizing harm.

This review has described the initial identification of risk-associated genetic polymorphisms. 

Larger studies will be needed to confirm existing and identify novel associations. A major 

barrier to the advance of the field has been small cohort sizes. Typically, large consortia 

supported by substantial funding will be required.

Genetic polymorphisms described above are present on most whole-genome arrays. 

Institutions pioneering precision healthcare already have access to genotype data. The 

general approach is to superimpose genotypes and clinical data over a large number of 

patients across an entire health system. This approach can quickly increase cohort sizes and 

to study additional cardiotoxic agents, such as trastuzumab, tyrosine kinase inhibitors, and 

immunotherapy. If multiple such institutions collaborate, replication of findings in clinical 

applications such as genomic risk profiling can be done quickly.

In spite significance advances, gaps in the understanding of cardiotoxicity mechanisms 

remain. Risk modifying polymorphisms shed light on mechanisms of toxicity. Most of 

polymorphisms affecting chemotherapy-induced cardiotoxicity are expected to be common. 

Thus, polymorphism-specific therapeutic options may be possible.
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As we build knowledge around the genetic polymorphisms that account for the 

interindividual differences in cardiotoxicity, we will be better at assessing risks of 

chemotherapeutic options and individualizing treatment plans. We will march one step 

closer to the promise of optimized care for each patient.
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