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Aim: We examined maternal prepregnancy anthropometry and cord blood DNA methylation. Methods:
Associations between maternal measures (i.e., weight, height, waist circumference, hip circumference,
skinfolds, leptin) and methylation β-values at each CpG (measured by the Infinium MethylationEPIC Bead-
Chip) were estimated among 391 singletons. Results: Total of 18% of mothers were obese (body mass
index ≥ 30) and 27% centrally obese (waist-to-hip ratio ≥ 0.85). One Bonferroni significant CpG with
respect to obesity (cg02975187) and two with central obesity (cg12053563, cg12549355) were identified
(p < 6 × 10-8). A suggestive association (p < 10-6) was observed at SFRS8 with increasing body mass index.
SFRS8 was previously identified with propensity for weight gain in adults. Conclusion: While associations
identified with multiple measures related to maternal adiposity suggest different pathways, methylation
differences were small in magnitude.
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Nationwide, the prevalence of obesity in the US remains high [1], and about 20% of pregnant women conceive with
a body mass index (BMI) over 30 kg/m2 [2]. Maternal obesity increases risk of macrosomia, large for gestational age
and preterm birth. It has also been tied to increased childhood/adulthood adiposity and cognitive impairment [3–5].
It is now clear that a major mechanism through which prenatal exposures induce life-long effects on health is
epigenetics [6]. Thus, examination of maternal obesity on newborn DNA methylation using an epigenome wide
approach could identify fetal genes influenced by maternal obesity.

The Pregnancy and Childhood Epigenetics (PACE) consortium identified methylation sites associated with
prepregnancy maternal BMI by meta-analysis of 19 cohorts (n = 9340) using the Infinium HumanMethylation450K
chip on newborn DNA [7]. Over 9000 CpG sites were initially associated with maternal BMI examined linearly with
percent DNA methylation. The group concluded that of these sites, eight may be causally related as associations were
stronger with maternal rather than paternal BMI and direction of associations persisted to adolescence. However,
the findings are considered preliminary since the magnitude of methylation differences were so small they may
not be meaningful (<0.2%) [7]. Also, some of these studies used microarrays with relatively limited coverage [7].
Prior to this PACE investigation, other studies, including a few which also contributed data to the consortium, had
identified yet other sites associated with maternal BMI [8–10].

Previous studies relied on BMI as the measure of adiposity from mostly self-reported prepregnancy weight and
height. Thus, more direct measures of adiposity taken before pregnancy could be helpful in deciphering the impact of
maternal adiposity by reducing measurement error. Also, central adiposity, as measured by waist circumference and
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in relation to subcutaneous fat by measured waist-to-hip ratio (WHR), is more strongly associated with metabolic
dysregulation than high BMI. The genetic basis of these types of adiposity also differ, leading to individuals with
propensity to deposit adiposity in different areas of their body [11], particularly in women [12]. Skinfold thicknesses
may also better reflect total body fat, whereas leptin provides a measure of adipocyte function. Thus, we aimed
to determine whether maternal prepregnancy adiposity measures (by BMI, waist/hip circumferences, skinfolds,
serum leptin) are associated with the DNA methylation pattern of newborn cord blood in a preconception cohort
using the Illumina EPIC microarray.

Materials & methods
Study population
The Effects of aspirin in gestation and reproduction (EAGeR) trial (2007–2011; NCT00467363) randomized
women to LDA (i.e., 81 mg LDA and 400 μg folic acid) or placebo plus folic acid prior to pregnancy, to determine
whether LDA could improve live birth rates in women who previously experienced one or two prior pregnancy
losses [13]. Women between 18 and 40 years old, with a history of one or two prior pregnancy losses, no history of
infertility, actively trying to conceive and with regular menstrual cycles of 21–42 days during the past year, were
eligible for the trial. Among women who conceived during follow-up, 597 live births occurred. Beginning in 2009,
the trial collected 10 ml cord blood from over 90% of the deliveries in the Utah site. IRB approval was attained
prior to enrollment (UT, USA; IRB #1002521).

Anthropometric measures
Maternal BMI (kg/m2) was calculated based on clinically measured weight and height at baseline prior to pregnancy.
BMI categories followed standard WHO definitions with BMI < 25.0 as reference (due to only 9 women who
are underweight BMI < 18.5), 25.0- < 30.0 as overweight and BMI ≥ 30 as obese. Waist and hip circumference
(cm) as well as subscapular, suprailiac and triceps skinfolds were also measured at baseline prior to pregnancy.
Skinfolds were summed together and examined as one measure. WHR above 0.85 was used to define central
obesity by WHO criteria [14]. Baseline preconception anthropometrics were collected prior to randomization. Visits
occurred during days 2–4 of each participant’s menstrual cycle. Participants were followed for up to six cycles
while attempting pregnancy and then throughout pregnancy for those that conceived. The median time between
the baseline preconception visit and the 8-week gestation visit during pregnancy was 4 months (range from 3 to
8 months). Hence, anthropometric measures were taken approximately 2 months prior to women’s estimated day
of conception.

Laboratory methods
Leptin was measured from maternal blood samples collected at baseline prior to pregnancy using ELISA (3.3%
interassay CV). Cord blood was centrifuged and separated into plasma and buffy coat. Samples were thereafter frozen
at -80◦C and in 2017 shipped to the University of Minnesota for DNA extraction and analysis. We processed 429
cord blood buffy coat samples; 30 samples did not have sufficient DNA for analyses and a total of 391 mother–child
pairs were included in the analysis. DNA underwent bisulphite conversion with standardized kits (e.g., Zymo EZ
DNA MethylationTM kit, Zymo, CA, USA; Supplementary Figure 1). The Infinium MethylationEPIC BeadChip
microarray was used to measure genome-wide DNA methylation [15,16].To control for batch effects, samples were
randomly ordered. Samples from two EAGeR newborns one male and one female yielding high amounts of DNA
were used as internal controls. DNA from the female newborn was replicated 11 times and DNA from the male
newborn was replicated ten times. A female and male were chosen to ensure sex differences in reproducibility may
be examined. Plate and positions were tracked to account for technical variability in analyses.

Statistical analysis
Data cleaning
Methylation data were processed using the minfi package in R [17], including the identification of failed probes and
scaling with Illumina control probes to determine methylation values. The β value was determined for each of the
CpG sites by the fluorescent signals (β = Max (M, 0)/[Max(M,0) + Max(U, 0) + 100) [18]. β values approaching
1 are completely methylated and those close to 0 are unmethylated. Background and dye-bias corrections were
applied.
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Quantile normalization was used to normalize β values between two types of probes [19]. The purpose of this
step is to eliminate potential probe type bias (type I vs II probes). Cell type mixture was then estimated on the full
set of normalized data (FlowSorted.CordBlood.450K package) [20]. Principal component analysis was performed
to further detect outliers and samples mismatched in sex compared against information from electronic medical
records. 5 samples with sex mismatch were further excluded. We extracted the detection p-value for each methylation
measure (per site per sample) and filtered data which failed detection p-value (p > 0.01). β values were replaced
as missing if either detection p-value > 0.01 or bead counts < 3. We removed samples and CpG sites with low
passing rate (<97%) based on detection p-value and bead counts. After probe removal, 831,807 CpG probes
remained. Probes identified from the EPIC chip which may be affected by gene polymorphisms or can potentially
cross-hybridize were further removed [21].

Modeling exposure
We evaluated the association between maternal adiposity and methylation differences. Maternal BMI was modelled
both continuously and as 2-level BMI categories (reference nonobese vs obese). Waist circumference, WHR, SST
and leptin were examined continuously. Central obesity was modeled dichotomously.

Modeling outcomes
Linear mixed effects models were used to test associations between methylation β values at each CpG site and
exposures of interest with adjustment for covariates. Batch effects (as covariates of chip and row) were accounted
for through random effects. To account for multiple testing, Bonferroni correction which divided the alpha level of
0.05 with the number of CpGs tested was applied (p < 6.01 × 10-8 = 0.05/831,807). We did not further account
for testing of each of the anthropometric measures as central adiposity may differ in impact from total adiposity
(i.e., waist circumference vs BMI).

Covariates
Covariates evaluated include maternal age, race, smoking status, income, marital status, parity, infant sex and cell
count distribution. To be parsimonious, the final models included maternal age, income, infant sex and cell count
distribution as marital status, race, smoking and parity were not associated with maternal obesity (all p > 0.7). Cell
counts were estimated based on a recent cord blood reference using minfi in R [20], including B-cell, CD-4+ T
cells, CD-8+ T cells, granulocytes, monocytes, NK-cells and nucleated red blood cells (RBC). A major difference
previously identified between adult versus cord blood cell count distribution in terms of DNA contribution from
buffy coat samples is the proportion of nucleated RBCs [20]. In sensitivity analysis, models were also run without
adjustment for infant sex and/or cell count.

Annotation
The Illumina database was primarily used for identifying gene annotations except where missing, in which case
UCSC genome browser was searched to augment genes within 5 kb of the CpG site.

Results
Women averaged 28 years of age, were predominantly white (97%), married (95%) and had more than high school
education (90%). (Table 1) BMI averaged 25.2 kg/m2, with 18% obese and 27% centrally obese. Maternal obesity
was not associated with smoking (p = 0.79), marital status (p = 0.84) or parity (p = 0.99). It was, however, associated
with lower income (p = 0.01). Although this study was nested in a randomized trial of LDA, methylation did not
differ by aspirin treatment groups (data not shown). Prepregnancy BMI was correlated with waist circumference
(r = 0.88), WHR (r = 0.44), sum of skinfolds (SST; r = 0.71) and leptin (r = 0.82).

We identified several associations between methylation sites and maternal obesity, which were Bonferroni
genome-wide significant (p < 6.01 × 10-8). (Table 2) One CpG was associated with maternal obesity defined
by BMI (i.e., cg02975187 on chromosome 22). In examining the distribution of the methylation at this site by
obesity status (Supplementary Figure 2), there was a cluster of newborns from obese women with high levels of
hypomethylation in this region. The clustering might suggest a single nucleotide polymorphism cis- or trans-acting
with the CpG identified. However, we lacked genotype data to directly confirm. One CpG was hypomethylated
in newborns of mothers with central obesity as defined by WHR (i.e., cg12053563 on chromosome 14). No other

future science group www.futuremedicine.com 189



Research Article Yeung, Guan, Mumford et al.

Table 1. Maternal characteristics of newborns with DNA methylation data in effects of aspirin in gestation and
reproduction.
Characteristics Mean (SD) or n (%)

N 391†

Age (years) 28.37 (4.48)

White 379 (97%)

High school or more 350 (90%)

Parous 232 (59%)

Married 373 (95%)

2 previous losses 133 (34%)

Randomized to LDA 200 (51%)

Never smoke 357 (91%)

Male infant sex 190 (49%)

Gestational diabetes 9 (2%)

BMI (kg/m2) 25.16 (5.56)

Normal weight 227 (59%)

Overweight 92 (24%)

Obese 69 (18%)

Weight (kg) 69.31 (16.87)

Height (cm) 165.31 (15.63)

Waist circumference (cm) 85.38 (13.47)

Hip circumference (cm) 105.22 (11.79)

Waist-to-hip ratio 0.81 (0.07)

Central obesity (WHR ≥ 0.85) 107 (27%)

Subscapular skinfold (units) 19.95 (9.20)

Suprailiac skinfold (units) 22.35 (10.86)

Triceps skinfold (units) 25.41 (9.72)

Sum of skinfolds (units) 67.71 (27.16)

†Three women were missing weight at baseline, 1 was missing skinfold measures.
BMI: Body mass index; LDA: low dose aspirin; WHR: Waist-to-hip ratio; SD: Standard deviation.

associations were Bonferroni significant but suggestive associations (p < 1 × 10-6) included one CpG associated
with obesity and eight additional CpGs with central obesity.

For the continuous measures of adiposity and leptin, no Bonferroni significant associations arose (Table 2). Of
the six suggestive sites associated with continuous BMI, four of them were identified regardless of adjustment for
infant sex and cell count (Supplementary Table 1), while two were only identified after adjustment (cg02918970
on chromosome 14, cg13460858 on chromosome 21). The CpGs identified using other measures of adiposity
were compared against the sites for BMI to better understand the overlap in the identified sites. The two CpGs
identified for waist circumference (cg05072085, cg14420357) were also associated with BMI, suggesting they may
not be specific for central adiposity. Leptin also was associated with this latter site (cg14420357). However, the
two CpG sites with WHR did not overlap with sites associated with BMI. Most associations were with decreased
methylation, except for SST, which tended to be associated with increased methylation. No overlap was seen for
these six suggestive CpGs and others. Nine additional CpG sites were identified in association with preconception
leptin levels, not identified by any of the anthropometric measures. Although there was correlation between the
associations for leptin and BMI, no sites were strongly associated with both phenotypes. These observations suggest
that the maternal adiposity as measured by BMI differs from maternal adipocyte function as measured by leptin.
Genome inflation in all models was minimal (Supplementary Table 2).

In sensitivity analysis, we evaluated the impact of model adjustment. Supplementary Table 1 shows associations
minimally adjusted for maternal age and income. Twelve CpG sites were Bonferroni genome-wide significant with
continuous BMI (p < 6 × 10-8) and 59 additional sites had suggestive levels of significance (p < 6 × 10-6). Four
associations reached Bonferroni genome wide significance for other measures of adiposity (Supplementary Table
1; cg05072085 with WC, cg13536409 with SST, cg10578324 with leptin) but were attenuated (p < 6 × 10-6)
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after adjustment for cell count and infant sex. We also compared results additionally adjusting for sex but not cell
count with those adjusting for cell count. The greatest impact of cell count adjustment was on the BMI results.
Supplementary Table 3 shows the 14 Bonferroni corrected significant associations when models were adjusted for
only age, sex and income in comparison to when models were additionally adjusted for cell count. 11 of these genes
were no longer even suggestively significant (p > 1 × 10-6) after cell count adjustment. As expected, some of the
CpGs removed were related to the immune pathway (e.g., RAB44, ITGB2), although for most, the gene functions
are unclear with regard to methylation differences.

Discussion
In this epigenome wide analysis, we found that maternal adiposity as clinically measured prior to pregnancy does
not have a strong impact on offspring DNA methylation patterns at birth. Prepregnancy obesity as defined by BMI
was associated with a Bonferroni corrected significant association identified (cg02975187; FLJ41941) and central
obesity was associated with one further CpG. However, the biological relevance of these three sites are uncertain.
Further suggestive associations were found with BMI and other measures of adiposity prior to pregnancy.

CpGs identified with BMI at or near gene regions include cg02918970 (STOX1), cg03550075 (SFRS8),
cg02975187 (FLJ41941), cg14420357 (SYNJ2), cg02236945 (MFSD6), cg05072085 (WISP1) and cg13460858
(BARX1). The first four CpGs were in the introns of the genes and the latter three are near (±5 kb) the listed gene.
Of these, SFRS8 methylation in subcutaneous adipose tissue was recently found to be associated with propensity
to gain weight [22]. In LIPOGAIN, weight gain in response to high fat feeding for 7 weeks among 31 individuals,
was predicted by baseline adipose tissue DNA methylation levels of multiple genes including SFRS8 based on the
Illumina 450K microarray [22]. The associated CpG identified (cg10437240) differed from the current analysis
(cg03550075), but suggests a potential mechanism of inheritance from mother to offspring. Of the other CpGs,
cg05072085 is near (∼4.5 kb) the WISP1 gene found to be associated with adipose tissue inflammation and
differentiation [23–25]. The other annotated genes have been previously identified primarily in the development
of some cancers where metabolic disturbance and/or insulin resistance played a role. In particular, we observed
that cg14420357 (i.e., SYNJ2) methylation was lower in association with multiple measures of adiposity including
BMI, waist circumference and leptin levels. Although no studies have reported its effects specific to methylation
differences, variants in the gene are associated with colorectal cancer [26,27]. Hence, they may serve to support
epidemiologic findings suggesting that maternal obesity confers offspring risk of colorectal cancer incidence,
particularly in men [28]. Shared common risk factors may also explain these associations. Nevertheless, the high
number of genes identified that also are related to cancer may be an artifact of CpGs being originally investigated
in tumor cells.

Heterogeneity remain for the associations between maternal obesity/BMI and offspring cord blood methylation
among studies [7]. Similar to PACE, previous associations were not replicated in our current analysis, including the
eight CpGs identified by the consortia for each unit increase in maternal BMI [7], the CpG identified among a
subgroup of black children from the Boston Birth Cohort (cg01422136) using the Illumina 27K beadchip [9], and
the CpGs from the Avon Longitudinal Study of Parents and Children (ALSPAC; 1991–1992) in their work prior
to joining the consortium [29]. The heterogeneity could be due to limitation of sample size or difference in targeted
population. However, when we compared our results to those publish in PACE, a general agreement is observed.
Among the top 104 CpG sites in PACE (Sharp et al., 2017; Supplementary Table 4), we have 96 CpG sites in
common after QC in our study. There were 33 CpG sites with p < 0.05 in our model 1 results, and 14 in model 2
results. A one-sided binomial test for null hypothesis of proportion = 0.05 gave a p-value of 2.9 × 10-19 for model
1 results comparison, and 0.0003 for model 2 comparison. The effects sizes also agree with what PACE reported
mostly (Supplementary Figure 3).

Since we were the only group to assess other measures of adiposity or leptin levels prior to pregnancy, our
results could not be compared with previous studies. For maternal central adiposity, while waist circumference was
similar to BMI, WHR was associated with methylation at two sites, one of which (cg05905044) is annotated to
TMEM220-AS1, a noncoding RNA on chromosome 17 with high expression in stomach, liver and intestinal tissues
but unknown in function [30]. A long noncoding RNA, LINC00675, near this region (∼3 kb) is associated with
tumor suppression in gastric cancer [31]. The other site (cg1284869) is not near a known gene region. The suggestive
associations between maternal preconception leptin and newborn methylation implicated yet different genes. Three
of the CpGs were located at genes tied to adiposity. Specifically, REPIN1 (cg16139161) is associated with adipocyte
cell size and glucose transport [32]. ZFHX3 (cg05364570) was identified by GWAS of rare obesity variants [33].
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MYT1L (cg01889485) is only expressed in neuronal tissues with protein functions tied to development of the fetal
nervous system. There also is some evidence of mutations in the gene being associated with cognitive disabilities
in children, along with development of obesity pointing to upstream dysregulation of the hypothalamus [34]. This
marker, if replicated, could explain ties between maternal obesity through leptin and potential neurodevelopmental
outcomes [35]. Two CpGs were located at or near genes related to cancer development. Cg01872122 was within
∼4.5 kb of MYO10, in the myosin subfamily and important for intracellular movements, has been implicated in
many cancers [36]. DNAAF1 (cg07637375) codes for cilium-specific proteins has been associated with testicular
cancer [37] and neural tube defects [38]. Neural tube defect risk linearly increases with maternal BMI [39] but the
specific role of leptin in these associations may be pursued [40]. SLCO2A1 (cg19625347) encodes for a prostaglandin
transporter protein involved in clearance of prostaglandin from numerous tissues with loss of function mutations
tied to chronic enteropathy [41]. Remaining sites had no known nearby genes (cg10578324, cg06542302). Similarly,
the sites associated with SST had no known function or were related to cancer/development. Moreover, these CpGs
were hyper- rather than hypomethylated as SST increased.

We show results by different covariate models (i.e., Model 1: age, income vs Model 2: age, income, sex, cell
type) as it is unclear whether infant sex and cell type distribution should be adjusted for and included in the
models. Newborn sex is not likely on the causal pathway since there is little evidence that maternal obesity alters
the secondary sex ratio [42], and preserving it in statistical adjustment is unlikely to be biased. On the other
hand, cell type is likely on the causal pathway between maternal adiposity and newborn methylation, with clear
evidence that immune cell distribution differs by maternal obesity at delivery [43]. In this setting, adjustment for
cell type may lead to ‘overadjustment’ [44]. Additionally, the cell count references, whether cord blood or otherwise,
may have inaccuracies leading to measurement error. Levels of DNA methylation from a mixture of cells are
intrinsically counting different cell types and not adjusting for cell count leaves results inconclusive for identifying
nonimmunologic pathways. DNA from cord blood is composed not just of leukocytes but of nucleated RBC [20],
further complicating matters. Importantly, genomic inflation was decreased with the addition of cell type in the
model and half of the CpGs were identified regardless of the covariates adjusted. We show how cell count adjustment
factors matter in the case of maternal BMI (Supplementary Table 3). As expected, it reduces associations with sites
particularly related to immune function. Potentially in investigations of how maternal obesity may lead to later risk
of offspring asthma or allergies [45] or other immunological disorders, adjustment of cell count should be carefully
considered.

In addition to statistical modeling, the heterogeneous results compared with previous studies may also be due
to the use of different microarrays and the assessment of obesity taken prior to pregnancy versus self-report.
Although self-reported weight and height are highly concordant with measured values, clinical measures are less
prone to measurement error. These and other differences make it difficult to conclude whether studies identifying
different CpGs suggest that they are not reproducible. On the other hand, residual confounding may have impacted
studies on different levels as maternal obesity has heterogeneous etiologies. DNA methylation is tissue specific, and
neonatal adipose tissue may be the more appropriate target for evaluating future risks of obesity. However, some
evidence in adulthood obesity suggests overlap in methylation of CpGs in white blood cells and adipose tissue [46].
In comparison to the 23 top sites commonly differentially methylated in both leukocytes and adipocytes [46], we
did not find overlap. Placental methylation may also provide more clues to differences [47]. Of note, we used
preconception levels of leptin which may differ from pregnancy levels of leptin as the placenta also is a source of
leptin [48]. However, as leptin plays a role in blastocyst formation and other early developmental pathways [48],
having preconception levels removes the issues of teasing apart sources of leptin if measures were taken only during
pregnancy.

Our study was strengthened by the measurement of all maternal anthropometry and leptin prior to pregnancy
by trained technicians in a clinical setting. The exposure assessment conducted is not subject to reporting errors.
Our study also had several limitations. Primarily, our sample size limited our ability to detect smaller effects.
However, similar to the large consortia findings [7], very small methylation differences were observed and it is
unclear how biologically meaningful these small differences are (<1%). While paternal adiposity might play a role
in conjunction with maternal adiposity [49], we lacked paternal information to evaluate further. We were also unable
to pyrosequence the CpGs but previous report shows high correlation between methylation measured by microarray
technologies and by pyrosequencing [50]. Lastly, folic acid is a known methyl donor and its provision to all women in
the study prior to conception and through pregnancy, while reducing a source of confounding, might have reduced
generalizability should folic acid modify the impact of maternal obesity on methylation differences. However,
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conflicting findings from animal models have suggested that folic acid could either be adiposity promoting [51]

or inhibiting [52,53]. More evidence on the impact of maternal folic acid and other dietary factors on newborn
methylation is required to further understand its role.

Conclusion & future perspective
In conclusion, maternal prepregnancy adiposity does not lead to profound alterations on cord blood methylation
in newborns. Further research is needed to understand the biological mechanisms through which maternal obesity
leads to transgenerational effects. Such examination includes potentially isolating specific cell types. Moreover, the
neonate’s own anthropometry, as influenced by parental adiposity in conjunction with other pregnancy exposures,
may be a more proximal determinant of cord blood DNA methylation. Future investigation of these connections
could also provide insight into the associations observed between birth size and risk of cardiovascular disease [54].
Unlike genetic studies, epigenetic studies are subject to confounding bias and thus greater use of randomized trial
designs could also help understand the causal influence of exposures on DNA methylation in the short and long
term.

Summary points

• DNA methylation in newborn cord blood was examined for differences by preconception measures of maternal
adiposity and leptin.

• Previous studies relied on maternal recall or used early pregnancy measures rather than preconception measures
which are not influenced by fetal/placental weight.

• The Illumina EPIC microarray was used, with data from 391 cord blood samples.

• After adjusting for estimated cell type composition, few associations at Bonferroni level of significance were
observed.

• A suggestive association between increased preconception body mass index and DNA methylation of the SFRS8
gene body was observed.

• SFRS8 was previously found to be associated with propensity for adult weight gain.

• Additional associations were observed depending on type of maternal measure (i.e., central adiposity vs total
adiposity by sum of skinfolds identified different CpGs).

• Hypomethlyation was largely observed with increasing adiposity/leptin except for sum of skinfolds.

• Differences in methylation in association with adiposity phenotypes were generally weak.

Supplementary data

To view the supplementary data that accompany this paper please visit the journal website at: www.futuremedicine.com/doi/full/
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