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Over the past century, the dendrochronology technique of crossdating has

been widely used to generate a global network of tree-ring chronologies

that serves as a leading indicator of environmental variability and change.

Only recently, however, has this same approach been applied to growth

increments in calcified structures of bivalves, fish and corals in the world’s

oceans. As in trees, these crossdated marine chronologies are well replicated,

annually resolved and absolutely dated, providing uninterrupted multi-

decadal to millennial histories of ocean palaeoclimatic and palaeoecological

processes. Moreover, they span an extensive geographical range, multiple

trophic levels, habitats and functional types, and can be readily integrated

with observational physical or biological records. Increment width is the

most commonly measured parameter and reflects growth or productivity,

though isotopic and elemental composition capture complementary aspects

of environmental variability. As such, crossdated marine chronologies

constitute powerful observational templates to establish climate–biology

relationships, test hypotheses of ecosystem functioning, conduct multi-

proxy reconstructions, provide constraints for numerical climate models,

and evaluate the precise timing and nature of ocean–atmosphere inter-

actions. These ‘present–past–future’ perspectives provide new insights

into the mechanisms and feedbacks between the atmosphere and marine

systems while providing indicators relevant to ecosystem-based approaches

of fisheries management.
1. Background
In terrestrial systems, tree-ring data are well replicated from multiple individuals,

absolutely dated, and thus constitute the ‘gold standard’ of high-resolution

environmental archives. This level of accuracy is possible through crossdating,
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a technique that assumes some aspect of the environment

influences growth, varies over time, and thereby induces a

synchronous growth pattern among samples of a given popu-

lation and location. Starting at the increment formed during

the known year of collection, the synchronous pattern is

cross-matched among samples backward through time. If

an increment has been missed or falsely identified, the pat-

tern will be offset by a year relative to that in other

samples, beginning where the error occurred. Errors are

then confirmed and corrected by visually re-examining the

sample [1] (figure 1). The absence of dating errors ensures

high-frequency variability is not smeared, attenuated or

blurred, which allows for seamless integration among chronol-

ogies, instrumental climate histories and other observational

physical or biological records [2] (figure 1). Given the wide

application of this approach in forests around the globe, over

4500 tree chronologies are now publicly available through

the International Tree-Ring Data Bank (ITRDB; [3]), a rich

and diverse resource that has facilitated a number of highly

influential, broad-scale reconstructions of climate and disturb-

ance [4–6].

Over the past decade, an increasing number of studies have

demonstrated that the same powerful crossdating approach

can be applied to marine organisms (figure 2). A wide variety

of species spanning tropical to polar latitudes are long-lived,

form annual growth increments, and are represented in exten-

sive archival collections in fisheries laboratories and museums

around the world [7]. Archaeological and sub-fossil specimens

are available to further extend records back in time [8–10].

Resulting crossdated sclerochronologies continuously span

multiple decades to centuries, are comparable in quality to

tree-ring datasets, and capture signals representing a range

of depths, habitats, trophic levels and functional types [8,11].

These time series are of high value in marine systems where

instrumental records greater than 50 years or observational bio-

logical records greater than 20 years in length are uncommon

[12,13]. As such, this approach is unlocking a new, vast,

global array of data streams in the marine realm to reveal

relationships between biological processes and climate, hind-

cast past environmental variability, calibrate climate models

and identify key target variables for forecasting into the future.
2. Present
In many marine systems, the fundamental environmental

drivers of productivity or functioning remain poorly under-

stood. This is largely due to the scarcity of multidecadal

biological time series [12,13]. However, crossdated marine

sclerochronologies serve as growth proxies with the accuracy

and temporal extension required to quantify long-term

variability and establish robust statistical relationships with

observational environmental indices. For example, pro-

ductivity in the California Current along the west coast of

North America has long been assumed to be largely driven

by spring and summer conditions when coastal upwelling

is the strongest and most sustained. However, rockfish

(Sebastes spp.) chronologies derived from otolith increment

widths strongly relate to wintertime upwelling, the ampli-

tude of which varies greatly from year to year [14]. This

wintertime volatility is likely imprinted on biology via some

preconditioning the system for high productivity during the

upcoming warm season or its effects on growing-season
length. Moreover, fish increment-width sclerochronologies

have been integrated with other observational biological

time series such as seabird reproductive success and plankton

community composition to demonstrate climate-induced

covariance across taxa and trophic levels, which underscores

the importance of winter climate in biology [15,16]. Cross-

dated sclerochronologies and tree-ring chronologies have

also been used to document that broad-scale atmospheric

phenomena can simultaneously influence factors limiting

growth on land, such as precipitation, as well as factors limit-

ing growth at sea, such as coastal upwelling, to induce

covariance between marine and terrestrial ecosystem pro-

ductivity [11,17].

Patterns of synchrony reveal the extent and magnitude to

which environmental variability influences biological proces-

ses and afford some degree of predictive power, especially

when associated climate drivers can be determined. Indeed,

crossdating quantifies the extent to which growth anomalies

covary within and among populations, and provides exactly

dated and well-replicated biological time series with which

to identify this synchrony [9,18,19] (figure 2). Human impacts

may also be assessed, such as quantifying reduced resilience

of corals in heavily populated areas of the Mesoamerican

Reef to bleaching events [20]. Such information is highly rel-

evant to coral reef and fisheries management and aiding the

desired transition from single stock assessment to ecosystem-

based approaches. Crossdated marine chronologies could

inform multiple aspects of Integrated Ecosystem Assessment

by quantifying multidecadal ranges of variability, long-term

changes in biological reference points, climate drivers and

ecosystem indicators [21]. Integrating the growing networks

of crossdated sclerochronlogies with existing biological obser-

vational records has the potential to provide baseline

information on biological synchrony and the interactions

between climate and human influence.
3. Past
In the marine realm, sediment cores are the most commonly

used archives to provide long-term perspectives on environ-

mental variability prior to the instrumental record. These

archives often span multiple millennia, have been broadly

sampled across the ocean floor, and in some environments

may be sub-decadally resolved. Moreover, they capture a

diversity of microorganisms and geochemical proxies to

assess long-term environmental variability and biological

response [13,22–24]. Although crossdated marine sclero-

chronologies very rarely span multiple centuries and are

generally limited to the continental shelves (figure 2), they

are annually resolved, absolutely dated, and can be readily

calibrated against instrumental records to hind-cast pre-

industrial baselines, rates of change, and the frequency of

extreme events [8,25,26]. Relatively long crossdated sclero-

chronologies allow for the examination of the role that

natural external forcing (e.g. total solar irradiance and volca-

nic aerosols) and internal climate mechanisms and feedbacks

(e.g. ocean–atmosphere interactions, ocean circulation and

ice-related albedo feedbacks) play in driving past marine

variability [27]. For example, a millennial-length oxygen

stable isotope series from a crossdated bivalve shell growth

chronology demonstrated that oceanic changes near Iceland

generally preceded those in the atmosphere prior to the
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Figure 1. Crossdating for absolute dating control. (a) Synchronous growth among three Pacific geoduck samples from Dungeness Spit, Washington, USA. Each
decade is labelled with a dot; 2000 with three dots; 1950 with two dots. (b) Measurements of 30 Dungeness Spit samples after age-related growth declines
have been removed. Also shown is their mean (the chronology). (c) The Dungeness Spit chronology plus two other geoduck chronologies from southern British
Columbia, Canada. Superimposed is mean annual sea surface temperature anomaly for the British Columbia coast. Agreement within and among chronologies and
instrumental records corroborate absolute dating. (Online version in colour.)
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Figure 2. Crossdated marine chronologies. Locations of crossdated tree-ring chronologies available through the International Tree-Ring Data bank. Locations of
published marine sclerochronologies for which there was replication (generally n . 5) and at least some mention of visual cross-matching of patterns among
samples. Note: chronology metadata are provided in electronic supplementary material, table S1. (Online version in colour.)
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industrial period (CE 1000–1800); however, this relationship

reversed after CE 1800 likely reflecting anthropogenic influ-

ence on the climate [28].
For some species and locations, increment width is

strongly related to a single climate variable. Along the

western North America coastline, 70% of the variance in
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Pacific geoduck (Panopea generosa) chronologies can be

explained by regional sea surface temperature variability

[29,30]. In other cases, even when there is a high degree of

increment-width synchrony among individuals from a

given species and site, the environmental drivers of growth

rate are complex and less obvious [31–36]. However, other

measurement parameters such as isotope signatures, trace

and minor elements, or microstructures that are embedded in

the precisely dated material [9,25,28,37,38] may better reflect

climate variability, can often be mechanistically linked to

aspects of the environment, and used to robustly reconstruct

past environments. For example, regionally crossdated bivalve

series demonstrate highly synchronous Ba/Ca ratios in shell

aragonite potentially related to productivity dynamics [39].

Stable carbon (13C) isotope values [40] from exactly dated

increments provide constraints on carbon cycling and the so-

called Suess effect [41,42] through space and time. Moreover,

radiocarbon measurements from exactly dated increments

can be used to assess changes in circulation and provide tight

constraints for the marine reservoir effect [10,25,37]. One of the

factors that hinders more accurate 14C dating in marine sedi-

ment cores is the paucity of information about how the

marine reservoir age varied back through time. For the late

Holocene, crossdated marine sclerochronologies improve this

by eliminating dating uncertainty [10,37].

A useful property of sclerochronologies is that they

directly target marine environmental variability, including

fine-scale processes or those at depth that are not linked to

the atmosphere and are thus undetectable by land-based

archives [9,10,19,42–44]. Where tree-ring chronologies do

capture coupled ocean–atmosphere climate phenomena

such as the Pacific Decadal Oscillation, El Niño-Southern

Oscillation or Atlantic Multidecadal Oscillation, crossdated

marine archives offer complementary perspectives of habitat

and life history that provide a more robust estimate of past

climate than any single archive could provide individually

[29,45–47]. Finally, crossdated marine sclerochronologies

identify key climate drivers of marine ecosystem functioning,

which may be associated with atmospheric processes

that influence tree growth. This information provides novel

targets for tree-ring-based reconstructions. For example,

rockfish otolith chronologies in the California Current are

influenced by winter upwelling, which is driven by ano-

malies in atmospheric pressure that also drive drought on

land. Thus, moisture-sensitive blue oak (Quercus douglasii)
tree-ring chronologies can be used to reconstruct a 600-year

history of this key indicator of biological functioning and pro-

ductivity in the California Current marine ecosystem [11].
4. Future
The fundamental knowledge provided by crossdated sclero-

chronologies on the present and past, as described above,

are foundational to accurately predict the future of both

the climate system and the marine ecosystems. One such

approach is to use these records to compare with, calibrate,

test, benchmark or assimilate into general circulation

models (GCMs) [48]. Sclerochronological records can also

be used to assess longer-term bias, quantify the amplitude

and spatial patterns of uncertainties in GCM runs compared

to instrumental data products, and to evaluate climate

field reconstruction methods [49]. The quantification and
characterization of these uncertainties coupled with the

general improvement in our understanding of the forcing

mechanisms that drive the coupled ocean–atmosphere

climate system will ultimately facilitate the continued

improvement of the individual GCMs, enhancing the ability

of the numerical models to provide robust simulations of

likely future climate change. Numerical models can also be

used to identify and guide selection of sites where new chron-

ologies likely have maximum palaeoclimatic significance

[49,50]. Finally, crossdated marine chronologies can constrain

quasi/multi-decadal climate variability over the past few cen-

turies to millennia [9]. Such information can test and improve

the skill of numerical climate models, which poorly capture

variability in these spectral domains. Once crossdated sclero-

chronologies have been constructed [2], novel proxies, such

as nitrogen [51] and boron isotopes [52], or emerging geo-

chemical proxies, promise to provide essential constraints

on marine ecosystems, ocean acidification and climate. The

recent metagenomic discovery that bivalve shell carbonate

contains environmental DNA [53] heralds the possibility

of using crossdated shell series to reconstruct marine bio-

diversity across major anthropogenic transitions, enabling

reconstructions of marine ecosystem baselines and rates of

biodiversity loss. Ultimately, the long-term histories of

climate variability, its coupling with the atmosphere and

impacts on biology will be critical for understanding the

future climate change and ecosystem impacts.
5. Conclusion
For many long-lived fish and bivalve species, adequate repli-

cates for crossdatable chronologies can be obtained through

archival collections, especially if they are commercially

important species [7]. For some species such as tropical

corals, the expense of sampling can be high, but where repli-

cation is available, crossdating can yield annually resolved,

environmentally sensitive chronologies [20,25,54–56]. Cross-

dating may also be possible with increments (or layers) in

coralline algae, deep sea corals, sclerosponges, speleothems,

ice cores, varved sediment cores and perhaps in sub-annual

(daily or tidal) increments [57–59]. If increment widths are

not visually evident or lack adequate interannual variability,

crossdating could be attempted using chemical or mor-

phological properties such as trace and minor element

concentrations, isotope signatures, shell microstructures, or

even the brightness of the internal banding structure

[39,43,55]. Crossdating may not be feasible for short-lived

species (less than 15-year lifespan) given that time series are

insufficiently long to confidently match patterns among

individuals, even for sample sets with known collection

dates. However, environmentally sensitive, annually resolved

chronologies appear to be possible [60,61]. This likely reflects

the fact that dating errors are not as impactful in short-lived

species as long-lived species for which frameshifts can

have effects that extend over decades or centuries. Yet, in

the absence of crossdating there will remain some unknown

error rate and loss of high-frequency signals, the incidence

of which is likely to increase with length of the measurement

time series [2].

The main thrust of a growing body of literature

shows that crossdating is possible and practical for numerous

species and environments in the world’s oceans. Indeed,
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crossdating is the technique that truly defines the dendro-

chronological approach that has been so successful in

terrestrial systems. Given that high- and low-frequency sig-

nals are retained, these time series can be readily integrated

with one another or instrumental records, and further

combined with other archives such as sediment cores to

evaluate shared patterns in low-frequency time domains

[13,22,24,62]. Thus, crossdating and internal replication can

be broadly applied to evaluate linkages across ocean basins,

ocean–atmosphere connections, and covariance among

marine, terrestrial, and freshwater ecosystems. The appli-

cation and continued development of this technique is now

beginning to revolutionize our understanding of biological

and climatic processes in marine systems and their inter-

actions with the atmosphere across a range of temporal and

spatial scales.
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