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Abstract

Diabetes mellitus (DM) during pregnancy has long-lasting implications for the fetus, including 

cardiovascular morbidity. Previously, we showed that endothelial colony forming cells (ECFCs) 

from DM human pregnancies have decreased vasculogenic potential. Here, we evaluate whether 

the molecular mechanism responsible for this phenotype involves the transcription factor, 

Mesenchyme Homeobox 2 (MEOX2). In human umbilical vein endothelial cells, MEOX2 

upregulates cyclin-dependent kinase inhibitor expression, resulting in increased senescence and 

decreased proliferation. We hypothesized that dysregulated MEOX2 expression in neonatal ECFCs 

from DM pregnancies decreases network formation through increased senescence and altered cell 

cycle progression. Our studies show that nuclear MEOX2 is increased in ECFCs from DM 

pregnancies. To determine if MEOX2 is sufficient and/or required to induce impaired network 

formation, MEOX2 was overexpressed and depleted in ECFCs from control and DM pregnancies, 

respectively. Surprisingly, MEOX2 overexpression in control ECFCs resulted in increased network 

formation, altered cell cycle progression, and increased senescence. In contrast, MEOX2 

knockdown in ECFCs from DM pregnancies led to decreased network formation, while cell cycle 

progression and senescence were unaffected. Importantly, migration studies demonstrated that 

MEOX2 overexpression increased migration, while MEOX2 knockdown decreased migration. 

Taken together, these data suggest that altered migration may be mediating the impaired 

vasculogenesis of ECFCs from DM pregnancies. While initially believed to be maladaptive, these 
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data suggest that MEOX2 may serve a protective role, enabling increased vessel formation despite 

exposure to a DM intrauterine environment.

According to the Center for Disease Control’s National Diabetes Statistics Report for 2014, 

29 million Americans have diabetes mellitus (DM). In 2012, there were 1.7 million newly 

diagnosed DM cases, demonstrating that the occurrence of this disease continues to increase 

at an alarming rate (Centers for Disease Control and Prevention, 2014). DM in women of 

childbearing years is of particular concern. As many as 10% of pregnancies are complicated 

by DM (Buchanan et al., 2012). Hyperglycemia poses a risk to not only afflicted mothers, 

but to their children as well. Fetal exposure to DM in utero can lead to a multitude of 

adverse fetal effects that are immediately recognized upon delivery including congenital 

anomalies, macrosomia, and hypoglycemia (Hay, 2012). Additionally, compelling evidence 

demonstrate that adverse outcomes can extend far beyond the neonatal period including 

increased risk of developing the metabolic syndrome, insulin resistance, type 2 DM, obesity, 

and high blood pressure (Pettitt et al., 1983, 1988; Martin et al., 1985; Charles et al., 1994; 

Silverman et al., 1998; Cho et al., 2000; Gillman et al., 2003; Armitage et al., 2005; Boney 

et al., 2005; Schaefer-Graf et al., 2005; Fetita et al., 2006). Furthermore, exposure to 

multiple adverse intrauterine conditions can lead to diseases later in life (Hofman and 

Cutfield, 2006; Simeoni and Barker, 2009; Ghulmiyyah et al., 2011; Reichetzeder et al., 

2016). Impaired functions of stem and progenitor cells may contribute to the pathogenesis of 

these chronic conditions (Ingram et al., 2008).

While it is becoming appreciated that exposure to the DM milieu in utero can result in long-

term health consequences, the specific mechanisms behind these pathologies remain largely 

unknown. Individuals with DM are at an increased risk of developing cardiovascular 

complications (Winer and Sowers, 2004), which is often preceded by endothelial 

dysfunction (Avogaro et al., 2011; Hoffman, 2014). It is therefore plausible that many of the 

cardiovascular complications experienced by children of DM mothers arise from an inability 

to maintain vascular health. To examine this hypothesis, an endothelial progenitor 

population involved in angiogenesis and vasculogenesis, endothelial colony forming cells 

(ECFCs) were studied. Previous studies from our lab showed that ECFCs from DM 

pregnancies are dysfunctional. These cells display both increased senescence and decreased 

proliferation in vitro. Further, DM-exposed ECFCs also exhibit impaired vessel formation 

both in vitro and in vivo (Ingram etal., 2008). While it is evident that ECFCs isolated from 

cord blood have extensive proliferative capacity and vasculogenic properties, the 

mechanisms responsible for these phenotypes remain largely unknown.

Due to the numerous long-term adverse effects of intrauterine exposure to DM, a critical 

need exists to better understand the regulators of this pathophysiological phenotype. One 

potential protein of interest is Mesenchymal Homeobox 2 (MEOX2). MEOX2 is a 

transcription factor that is expressed in all cells of the cardiovascular system (Gorski and 

Walsh, 2003). When overexpressed in human umbilical vein endothelial cells (HUVECs), 

MEOX2 upregulates expression of the cyclin-dependent kinase inhibitors p16 and p21 

(Gorski and Leal, 2003; Chen et al., 2007; Douville et al., 2011). Increased MEOX2 

expression also enhances senescence (Douville et al., 2011) and decreases proliferation 
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(Gorski and Leal, 2003). Given that ECFCs from DM pregnancies exhibit increased 

senescence and reduced vasculogenesis, we tested whether MEOX2 has an important role in 

contributing to these abnormal phenotypes.

Materials and Methods

Umbilical cord blood collection

Following informed consent, umbilical cord blood samples were collected from healthy 

pregnancies and pregnancies complicated by types 1 and 2 DM. All pregnancies were 

singleton gestations. Women with preeclampsia, hypertension, or other illnesses known to 

affect glucose metabolism were excluded. Infants born with identified chromosomal 

abnormalities were excluded. This protocol was approved by the Institutional Review Board 

at the Indiana University School of Medicine.

Cell culture

ECFCs were cultured from the umbilical cord blood by the Angio BioCore at the Indiana 

University Simon Cancer Center as previously described (Ingram et al., 2008). Early passage 

ECFCs (<passage 6) were used for experiments. For routine culture, ECFCs were grown in 

Endothelial Growth Media 2 (EGM2) (Lonza, Walkersville, MD) containing an additional 

10% fetal calf serum (FCS) (Atlanta Biologicals, Flowery Branch, GA) and antibiotic-

antimycotic solution (Corning, Manassas, VA). HeLa (ATCC Cat# CCL-2, RRID: 

CVCL_0030) and Lenti-X 293T cells (ATCC Cat# CRL11270, RRID: CVCL_4401) were 

cultured in Dulbecco’s Modified Eagle Medium (DMEM) (Corning) containing 10% FCS 

and antibiotic-antimycotic solution.

Western blotting

Nuclear lysates were obtained using the NE-PER Nuclear and Cytoplasmic Extraction 

Reagents Kit (ThermoFisher, Waltham, MA). Equal amounts of lysate were loaded on 

precast 4–12% bis-tris gels (Life Technologies, Grand Island, NY), separated by SDS-

PAGE, and transferred to nitrocellulose membranes (BioRad, Hercules, CA). Membranes 

were immunoblotted with the following primary antibodies: mouse anti-Lamin A/C (Cell 

Signaling Technology, Danvers, MA Cat# 2032, RRID: AB_2136278), mouse anti-MEOX-2 

[JJ-7] (Santa Cruz Biotechnology, Dallas, TX Cat# sc-81971, RRID: AB_1126131), rabbit 

anti-CDKN2A/p16INK4a [EP4353Y3] (Abcam, Cambridge, UK) (Abcam Cat# ab81278, 

RRID: AB_1640753), rabbit anti-SP-1 (Cell Signaling Technology Cat# 5931, RRID: 

AB_10621245). Membranes were incubated in secondary antibodies conjugated to 

horseradish peroxidase (BioRad). Blots were developed with Supersignal West Femto 

(ThermoFisher), exposed to film, and compiled in Photoshop CS6 (Adobe Photoshop CS6, 

RRID: SCR_014199). Band intensity was quantified using ImageJ 1.45s (ImageJ, RRID: 

SCR_003070).

Generation of lentivirus encoding MEOX2 cDNA and short hairpin (sh) MEOX2 constructs

The lentiviral vector plasmid (pUC2CL6IPwo), packaging accessory plasmids (pCD/NL2 

and pCD/NL-BH), and envelope plasmid (pVSVG) were generous gifts from Helmut 

Hanenberg (Heinrich Heine University School of Medicine, Düsseldorf, Germany) 
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(Gavvovidis et al., 2012; Blue et al., 2014). MEOX2 cDNA (RC501948, OriGene 

Technologies, Inc., Rockville, MD) was subcloned into pUC2CL6IPwo. The lentiviral 

vector plasmid (pGIPZ) containing an shMEOX2 construct was obtained from GE 

Dharmacon (Lafayette, CO) (RHS4430–200162184; Clone ID: V2LHS_207280). Both 

lentiviral vectors contain a puromycin resistance cassette, which enabled selection of 

transduced cells. Lentiviral particles were produced by transfection of Lenti-X 293T cells 

with the appropriate lentiviral vector (1.16 μg/ml), a packaging accessory plasmid (1.16 μg/

ml), and a VSVG envelope plasmid (1.67 μg/ml) using Fugene 6 (Roche Applied Science, 

Indianapolis, IN). The pUC2CL6IPwo vector required the use of the pCD/NL2 packaging 

plasmid, while the pGIPZ vector was tat-dependent and required the pCD/NL-BH packaging 

plasmid. Lentiviral supernatants were collected, and filtered through a 0.45-μm asymmetric 

polyethersulfone filter unit (ThermoFisher). Supernatants were used immediately or stored 

at —80°C for future use.

Lentiviral transduction of ECFCs

ECFCs were plated at 250,000 cells per dish in 100 mm type I collagen-coated tissue culture 

dishes. The following day, lentiviral supernatant was added to each dish at dilutions of 1:2–

1:10. The media was changed 24 h after transduction, and cells were incubated overnight at 

37°C. Transduced cells were selected in media containing 1 μg/ml puromycin 

(ThermoFisher) for 2 days. MEOX2 expression was evaluated by Western blotting to 

confirm overexpression or knockdown.

siRNA transfection

ECFCs from diabetic pregnancies were transfected with short-interfering RNAs (siRNAs) 

(20 μM) using Lipofectamine RNAiMAX (ThermoFisher) according to the manufacturer’s 

instructions. ECFCs were transfected with either a non targeting smart-pool siRNA 

(siControl) (D-001810–10-05, ON-TARGETplus, GE Dharmacon) or human MEOX2 

siRNA (siMEOX2) (J-012176–08, ON-TARGETplus, GE Dharmacon). Media was changed 

after 24 h. Cells were passaged 48 h following transfection and plated for cell-cycle analysis, 

matrigel network formation, and transwell migration assays. MEOX2 expression was 

examined by Western blotting to confirm knockdown 3 days following transfection.

Flow cytometric analysis of p16 expression

ECFCs were harvested using trypsin (Corning), and permeabilized and fixed with Cytofix/

Cytoperm (BD Biosciences, San Jose, CA). Cells were stained with the PE mouse anti-p16 

(BD Biosciences Cat# 556561, RRID:AB_396465), and analyzed on an LSRII (Becton 

Dickinson, San Jose, CA) in the Indiana University Simon Cancer Center Flow Cytometry 

Core. HeLa cells, which have detectable levels of p16 at baseline, were used as a positive 

control. A minimum of 10,000 events was recorded per sample. Mean fluorescence intensity 

was quantified using FlowJo Single Cell Analysis Software vX.0.6 (FlowJo, RRID: 

SCR_008520).

GOHN et al. Page 4

J Cell Physiol. Author manuscript; available in PMC 2019 February 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Senescence assays

ECFCs were plated in type I collagen-coated six-well tissue culture plates at 10,000 cells per 

well. After 3 days, senescence-associated β-galactosidase staining was performed as 

previously described (Blue et al., 2014). At least 100 total cells per well were scored, and the 

percentage of b-galactosidase positive cells was determined.

Cell-cycle analysis

ECFCs were plated in 100 mm type I collagen-coated tissue culture dishes at 400,000 cells 

per dish. After 24 h, cells were incubated with BrdU labeling reagent (Invitrogen, Grand 

Island, NY) for 1 h. Cells were stained as previously described using Alexa Flour 488 mouse 

anti-BrdU (Invitrogen) and 7-AAD (Life Technologies) (Blue et al., 2015). Samples were 

analyzed by flow cytometry on the LSRII 407 nm laser and a minimum of 10,000 events 

were recorded per sample. Analysis was performed using FlowJo Single Cell Analysis 

Software vX.0.6.

Matrigel network formation assay

ECFCs were plated in 100 mm type I collagen-coated tissue culture dishes at 400,000 cells 

per dish. After 1 day in culture, cells were trypsinized and plated at 4,500 cells per well in 

triplicate in angiogenesis 15 μ-slides (Ibidi USA, Inc., Madison, WI). Wells were coated 

with 10 μl matrigel matrix (Corning) and cells were plated in EGM2 media. Phase contrast 

images were obtained using a Spot camera (Spot Imaging, Sterling Heights, MI) on an 

Axiovert 35 microscope (Zeiss, Thornwood, NY) at times indicated in the figure legend. The 

number of closed networks per well was scored and averaged for each condition.

Transwell migration assays

ECFCs were plated in 100 mm dishes at 400,000 cells per dish. After 1 day in culture, cells 

were serum-starved in Endothelial Basal Media 2 (EBM2) (Lonza) for 1 h and then 

trypsinized. Cells were plated on type I collagen-coated 8.0 mm pore size transwell inserts 

(Corning). ECFCs were plated at 3–5 × I04 cells per insert. The number of cells was kept 

constant for each replicate. Inserts were placed in 24-well dishes containing EGM2, 10% 

FCS, and antibiotic antimycotic solution, and incubated for 4h at 37°C. Transwell surfaces 

were wiped with cotton swabs to remove non-migrated cells and then fixed with cold 100% 

methanol for 15 min. After fixation, cells were washed with phosphate-buffered saline and 

stained with 1% crystal violet in 10% acetic acid for 10 min at room temperature. After brief 

destaining, phase contrast images were obtained using a Spot camera on an Axiovert 35 

microscope, and the number of migrated cells was scored.

Statistical analysis

Data illustrated are mean ± SEM. Paired and unpaired t-tests and repeated measures 2-way 

ANOVAs were conducted when appropriate, as denoted in the figure legends. Prism 6 

(Graphpad Prism, RRID: SCR_002798) was used for all statistical analyses, and 

significance was noted when P < 0.05.
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Results

MEOX2 is increased in ECFCs from DM pregnancies

To determine whether nuclear MEOX2 is increased in ECFCs from DM pregnancies, 

Western blotting analyses were conducted. These data confirmed increased nuclear MEOX2 

in ECFCs from DM pregnancies compared to control samples (Fig. 1A and B). While some 

heterogeneity in MEOX2 levels was evident in DM-exposed samples, nuclear MEOX2 was 

consistently higher in these samples compared to controls.

MEOX2 overexpression is sufficient to alter senescence, cell cycle progression, and 
network formation of ECFCs

MEOX2 has been implicated in upregulating pI6 to cause senescence HUVECS (Douville et 

al., 2011). Previously, we showed that ECFCs from DM pregnancies have increased 

senescence, decreased cell cycle progression, and decreased network formation (Ingram et 

al., 2008). Therefore, we questioned whether increased MEOX2 expression in control 

ECFCs was sufficient to induce impaired function. To test this hypothesis, MEOX2 was 

overexpressed in ECFCs from control pregnancies using a lentiviral vector. ECFCs 

transduced with an empty lentiviral vector were used as a control. Overexpression was 

confirmed by Western blotting (Fig. 2A).

Because pI6 is a known mediator of senescence (Ekholm and Reed, 2000; Lundberg et al., 

2000), pI6 expression was initially examined. MEOX2 overexpression in control ECFCs 

resulted in an increase in pI6 compared to ECFCs transduced with the empty vector (Fig. 

2A). To further validate this result on a single-cell basis, flow cytometric analysis was 

employed to detect intracellular pI6. These data confirmed an increase in pI6 in a subset of 

ECFCs that overexpress MEOX2 (Fig. 2B and C). Additionally, β-galactosidase senescence 

assays showed that MEOX2 overexpression increased the number of senescent cells (Fig. 2D 

and E).

Our previous data demonstrate that ECFCs from DM pregnancies have reduced proliferation 

(Ingram et al., 2008). Therefore, we questioned whether increased MEOX2 was sufficient to 

alter cell cycle progression of control ECFCs. MEOX2 overexpression altered cell cycle 

progression measured by flow cytometry (Fig. 2F and G). Specifically, increased MEOX2 

resulted in an increase in the proportion of ECFCs in the G1 phase and a decrease in the 

proportion of ECFCs in the G2 phase. The proportion of ECFCs in S phase was unaltered.

Given that MEOX2 overexpression in control cells led to increased senescence and altered 

cell cycle progression, the effect of MEOX2 on ECFC vasculogenic function was evaluated 

in vitro. Surprisingly, MEOX2 overexpression in control ECFCs increased the number of 

closed networks compared to the empty vector controls (Fig. 2H and I). Further, MEOX2 

overexpression in DM samples also increased the number of closed networks compared to 

the empty vector controls (Supplemental Fig. SIA and B). Together, these data suggest that 

MEOX2 overexpression is sufficient to induce changes in senescence, cell cycle progression, 

and network formation. However, there is a disconnect between the observed phenotypes, 

suggesting that MEOX2 regulation of senescence and cell cycle progression does not 

negatively impact overall network formation.
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MEOX2 is required to alter network formation, but not senescence or cell cycle 
progression

To determine whether MEOX2 was required to induce changes in ECFCs from DM 

pregnancies, MEOX2 was depleted using either an shRNA or siRNA approach. Knockdown 

was confirmed by Western blotting for both approaches (Fig. 3A and B). Despite effective 

MEOX2 knockdown, levels of ECFC senescence were no different compared to ECFCs 

transduced with shControl (Fig. 3C and D). Further, flow cytometric cell-cycle analysis 

indicated that MEOX2 knockdown in ECFCs from DM (Fig. 3E and F) and control 

(Supplemental Fig. S2A and B) pregnancies did not alter cell cycle progression. To examine 

whether MEOX2 knockdown improved network formation of DM-exposed ECFCs, matrigel 

assays were conducted. Although MEOX2 knockdown in control ECFCs did not affect 

network formation (Supplemental Fig. S2C and D), MEOX2 knockdown in ECFCs from 

DM pregnancies resulted in decreased network formation compared to siControls (Fig. 3G 

and H), complimentary to the MEOX2 overexpression assays (Fig. 2H and I).

MEOX2 alters migration in ECFCs

Together, the data indicate that MEOX2 is both sufficient and required to alter network 

formation, supporting a regulatory role in vasculogenesis. Migration is a critical step in 

establishing vascular networks (Rahfii and Lyden, 2003). Therefore, ECFC migratory 

capacity was first examined in ECFCs from control and DM pregnancies. A 50% reduction 

in migration was observed in ECFCs from DM pregnancies (25.3 ± 3.0 vs. 12.7 ± 2.5 

ECFCs/high power field, n = 6, P < 0.01 by unpaired t-test), congruent with our previously 

published network formation data (Ingram et al., 2008). To examine a potential regulatory 

role of migration, MEOX2 was overexpressed in ECFCs from control and DM pregnancies, 

and depleted in ECFCs from DM pregnancies. Interestingly, MEOX2 overexpression in 

ECFCs from control (Fig. 4A and B) and DM (Supplemental Fig. S1C and D) pregnancies 

increased migration, consistent with the observed increases in network formation (Fig. 2H 

and I). Conversely, MEOX2 knockdown in ECFCs from DM pregnancies decreased 

migration (Fig. 4C and D), congruent with decreased network formation (Fig. 3G and H). 

Collectively, these data suggest that upregulated nuclear MEOX2 in DM-exposed ECFCs is 

a compensatory mechanism to enhance migration and vasculogenesis.

Discussion

Fetal exposure to a diabetic intrauterine environment can lead to a multitude of adverse 

effects throughout the life of a child (Pettitt et al., 1983, 1988; Martin et al., 1985; Charles et 

al., 1994; Silverman et al., 1998; Cho et al., 2000; Gillman et al., 2003; Armitage et al., 

2005; Boney et al., 2005; Schaefer-Graf et al., 2005; Fetita et al., 2006). While the 

predisposition for the development of chronic conditions is becoming widely accepted as a 

point of great clinical concern, the underlying molecular mechanisms contributing to the 

development of these disorders are largely unknown. In these studies, we found evidence 

that the transcription factor, MEOX2, is likely involved in regulating vascular network 

formation.
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Previously, MEOX2 was shown to increase cellular senescence, via upregulation of cyclin-

dependent kinase inhibitors p16 and p21, and decrease proliferation in HUVECs, suggesting 

that MEOX2 serves a maladaptive role (Douville et al., 2011). Initially, MEOX2 

overexpression in control ECFCs increased p16 expression and senescence, and decreased 

cell cycle progression, which is consistent with the data reported in the literature (Douville 

et al., 2011). However, knockdown of MEOX2 in ECFCs from DM pregnancies did not alter 

senescence or cell cycle progression. Because differences were not seen in the knockdown 

samples, these data suggest that MEOX2 alone is not sufficient to alter senescence or 

proliferation in cells from DM pregnancies. ECFCs from DM pregnancies were exposed to 

long-term dynamic changes in glycemia, hyperinsulinemia, dyslipidemia, and other 

metabolic and inflammatory perturbations over the course of 9 months. It is likely that this 

exposure has caused alterations in the expression and/or function of additional proteins, 

which may also regulate senescence and proliferation. Therefore, we speculate that altering 

MEOX2 levels independently of these additional proteins is not sufficient to induce changes 

in the senescent or proliferation phenotypes. Nevertheless, MEOX2 impacted network 

formation. Specifically, overexpression of MEOX2 in ECFCs from control and DM 

pregnancies increased network formation. Conversely, MEOX2 knockdown in ECFCs from 

DM pregnancies resulted in decreased network formation. These data suggest that MEOX2 

does regulate ECFC network formation, but this regulation is independent of alterations in 

senescence or cell cycle progression. Moreover, instead of serving a maladaptive role in 

vasculogenesis, MEOX2 expression in ECFCs may serve to enhance network formation.

Research addressing the role of MEOX2 in vasculogenesis is limited. Consistent with the 

data presented here, moderate MEOX2 overexpression positively correlated with network 

formation in human and mouse brain endothelial cells (BECs) (Soto et al., 2016). Further, 

MEOX2 depletion in human BECs and MEOX2 heterozygous mice reduced network 

formation in vitro and in vivo, respectively (Wu et al., 2005; Soto et al., 2016). Taken 

together, these physiologically relevant data also suggest a protective role of MEOX2 in 

regulating vasculogenesis.

Because our data suggest that MEOX2-regulation of DM-exposed ECFC network formation 

was not due to alterations in senescence or cell cycle progression, ECFCs were examined for 

migration differences. Migration is a critical step in establishing vascular networks (Rahfii 

and Lyden, 2003). However, few studies examine the role of MEOX2 in cellular migration. 

In HUVECs, adenoviral infection with vectors containing either human or rat MEOX2 

cDNAs decreased migration, though this phenotype was only observed at high 

concentrations of viral particles per cell (Patel et al., 2005). In contrast, we showthat 

MEOX2 overexpression in ECFCs from control and DM pregnancies increases migration, 

while MEOX2 knockdown in ECFCs from DM pregnancies reduces migratory function. 

These migration data correlate with the observed effects of MEOX2 on ECFC network 

formation, suggesting a possible connection between MEOX2-regulation of these two 

phenotypes. In ECFCs, MEOX2 appears to enhance network formation in matrigel by 

increasing the migratory capacity of ECFCs. Given the apparent discrepancy between 

previous findings in HUVECs and our data, we speculate that MEOX2 function may differ 

across cell types (Patel et al., 2005) or under different experimental conditions. While 

HUVECs do contain ECFCs (Ingram et al., 2005), the enrichment for ECFCs in the total cell 
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population is highly variable between samples and dependent on culture methods. HUVECs 

are routinely studied as a source of differentiated endothelial cells, raising the possibility that 

differentiation status of endothelial cells may affect the role of MEOX2. Here, primary 

human ECFCs isolated from multiple uncomplicated and DM pregnancies were utilized to 

ensure reproducibility and to enhance the validity of the results. Given our previous data 

demonstrating that later passage ECFCs exhibit alterations in function (Blue et al., 2014), 

we consistently utilized early passage cells (<6). It is unclear whether a similar approach 

was taken in prior studies (Patel et al., 2005). Nevertheless, the consistency of our findings 

in numerous control and DM-exposed ECFCs support the supposition that MEOX2 has an 

important role in the regulation of migration and vasculogenesis.

Given the identification of a link between MEOX2-regulation of migration and in vitro 

network formation, future studies are needed to identify the cellular and molecular 

mechanisms responsible. In order for ECFCs to migrate to form de novo networks, cells 

must adhere to extracellular matrix (ECM) proteins, degrade the surrounding ECM, and 

engage in cytoskeletal rearrangement through actin remodeling (Ridley et al., 2003). 

Ultimately, detailed studies that directly assess each of these processes are warranted in 

order to discover the molecular underpinnings of ECFC dysfunction following intrauterine 

DM exposure.

Importantly, differential MEOX2 expression in humans has been shown to have important 

clinical implications linked to vascular dysfunction. For example, reduced MEOX2 is 

associated with increased cardiac dysfunction, coronary heart disease, and Alzheimer’s 

disease (Wu et al., 2005; Coppiello et al., 2015; Yang et al., 2015; Soto et al., 2016). 

Because these disorders often result in poor quality of life, enhanced morbidities, and 

increased mortality, an improved understanding of whether MEOX2 has a direct pathologic 

role in the development of these diseases is of utmost importance. Our studies in DM-

exposed ECFCs have provided insight into the role of MEOX2 in the regulation of migration 

and network formation. Future mechanistic studies could be applied to other disease states, 

enabling a more complete understanding of these pathologic conditions, and ultimately 

resulting in future therapeutic advances.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
ECFCs from DM pregnancies have increased nuclear MEOX2. (A) Representative Western 

blot. Nuclear lysates from ECFCs were separated by SDS-PAGE. Blots were probed for 

MEOX2 and SP-1, as a loading control. (B) Quantitation of nuclear MEOX2 expression. n = 

8 control, n = 11 DM, *P < 0.05 by unpaired t-test.
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Fig. 2. 
MEOX2 overexpression in control ECFCs increases senescence, alters cell cycle 

progression, and enhances network formation. MEOX2 was overexpressed in control ECFCs 

using lentiviral transduction techniques. (A) Representative Western blot illustrating 

MEOX2 and p16 expression. Nuclear lysates were analyzed for MEOX2, p16, and SP-1 as a 

loading control. Numbers represent separate transductions of ECFCs from different 

pregnancies. (B) Representative gating strategy of intracellular p16 expression in transduced 

ECFCs. p16 expression was measured by intracellular flow cytometry staining. Solid line 

represents empty vector control. (C) Quantitation of p16 + cells by flow cytometry. 

Unstained HeLa cells were used as a negative control. HeLa cells stained with PE mouse 

anti-p16 were used as a positive control. n = 4 transductions, ***P < 0.001 by paired t-test. 

(D) Representative images from 3-day senescence-associated-β-galactosidase assays with 

transduced ECFCs (100 × magnification). Scale bars represent 100 μm. (E) Quantitation of 

3-day senescence-associated-β-galactosidase assays, n = 4 transductions, *P < 0.05 by 

paired t-test. (F) Representative gating strategy to measure cell cycle progression of 

transduced ECFCs. Cell-cycle analysis was conducted using flow cytometric analysis of 

BrdU and 7-AAD staining. (G) Quantitation of cell-cycle analysis of transduced ECFCs, n = 

3 transductions, ***P < 0.001 by repeated measures 2-way ANOVA. (H) Representative 
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images from matrigel network formation assay with transduced ECFCs at 8h post-plating 

(50× magnification). Scale bar represents 200 μm. (I) Quantitation of matrigel network 

formation assay with transduced ECFCs at 8 h post-plating, n= 3 transductions, *P < 0.05 by 

paired t-test.
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Fig. 3. 
MEOX2 knockdown in ECFCs from DM pregnancies does not alter senescence or cell cycle 

progression, but decreases network formation. MEOX2 was knocked down in cells from DM 

pregnancies using shRNA or siRNA techniques. (A) Representative Western blot depicting 

MEOX2 expression when knocked down by shRNA. Nuclear lysates analyzed for MEOX2. 

Lamin A/C was used as a loading control. Numbers represent separate transfections of 

ECFCs from different pregnancies. (B) Representative Western blot showing MEOX2 

expression when knocked down by siRNA. Nuclear lysates analyzed for MEOX2. SP-1 was 

used as a loading control. Numbers represent separate transfections of ECFCs from different 

pregnancies. (C) Representative images from 3-day senescence-associated-β-galactosidase 

assays with transduced ECFCs (100× magnification). Scale bars represent 100 μm. (D) 

Quantitation of 3-day senescence-associated-β-galactosidase assays, n = 9 transductions, P > 
0.05 by paired t-test. (E) Representative gating strategy to measure cell cycle progression of 

transfected ECFCs. Cell-cycle analysis was conducted using flow cytometric analysis of 

BrdU and 7-AAD staining. (F) Quantitation of cell-cycle analysis of transfected ECFCs, n = 

9 transfections, P > 0.05 by repeated measures 2-way ANOVA. (G) Representative images 

from matrigel network formation assay with transfected ECFCs at 8 h post-plating (50× 

magnification). Scale bar represents 200 μm. (H) Quantitation of matrigel network formation 

GOHN et al. Page 16

J Cell Physiol. Author manuscript; available in PMC 2019 February 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



assay with transfected ECFCs at 8h post-plating, n = 12 transfections, **P < 0.01 by paired 

t-test.
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Fig. 4. 
MEOX2 alters ECFC migration. (A) Representative images of transwell migration assay 

with transduced ECFCs (320 × magnification). Scale bar represents 30 μm. MEOX2 was 

overexpressed in ECFCs from control pregnancies using lentiviral techniques and cells were 

subjected to a transwell migration assay. Cells were stained with 1% crystal violet. (B) 

Quantitation of transwell migration assay with transduced ECFCs, n = 5 transductions, *P < 

0.05 by paired t-test. (C) Representative images of transwell migration assay with 

transduced ECFCs (320× magnification). Scale bar represents 30 μm. MEOX2 was knocked 
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down in ECFCs from DM pregnancies using siRNA techniques, and cells were subjected to 

a transwell migration assay. Cells were stained with 1% crystal violet. (D) Quantitation of 

transwell migration assay with transfected ECFCs, n = 6 transfections, **P < 0.01 by paired 

t-test.
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