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Abstract

Background: Epidemiologists often analyse binary outcomes in cohort and cross-

sectional studies using multivariable logistic regression models, yielding estimates of

adjusted odds ratios. It is widely known that the odds ratio closely approximates the risk

or prevalence ratio when the outcome is rare, and it does not do so when the outcome is

common. Consequently, investigators may decide to directly estimate the risk or preva-

lence ratio using a log binomial regression model.

Methods: We describe the use of a marginal structural binomial regression model to esti-

mate standardized risk or prevalence ratios and differences. We illustrate the proposed

approach using data from a cohort study of coronary heart disease status in Evans

County, Georgia, USA.

Results: The approach reduces problems with model convergence typical of log binomial

regression by shifting all explanatory variables except the exposures of primary interest

from the linear predictor of the outcome regression model to a model for the standardiza-

tion weights. The approach also facilitates evaluation of departures from additivity in the

joint effects of two exposures.

Conclusions: Epidemiologists should consider reporting standardized risk or prevalence

ratios and differences in cohort and cross-sectional studies. These are readily-obtained

using the SAS, Stata and R statistical software packages. The proposed approach esti-

mates the exposure effect in the total population.
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Background

Logistic regression models are commonly used by epidemi-

ologists to analyse binary outcome data from cohort and

cross-sectional studies.1 For rare events, the odds ratio

from such a logistic regression model approximates the

risk ratio well and is commonly used to do so. However,

when logistic regression is used to model common events,

the estimated odds ratio is not close to the risk ratio, and

will be further from the null. Because the risk and odds

ratios are based on the same quantities (i.e. the probabil-

ities of the outcome among the exposed and unexposed), it

might seem reasonable to conclude that one effect measure

can be readily derived from the other. A simple algebraic

conversion was described by, among others, Zhang and Yu

(1998) for this purpose.2

However, when an adjusted odds ratio is estimated by a

multivariable logistic regression model, the simple alge-

braic conversion proposed by Zhang and Yu will not yield

the adjusted risk ratio one might calculate, for example, by

classical Mantel-Haenszel methods.2,3 The reason for this

difference is that a summary adjusted odds ratio for an

exposure contrast is obtained under the assumption of a

constant odds ratio across strata of the covariates that are

confounders. Unfortunately, if the odds ratio is constant

over the strata defined by confounders, then the risk ratio

will vary over these strata.4

Given these difficulties, many authors have advocated

for direct modelling of the risk or prevalence ratio by

fitting a multivariable log binomial regression model.5–8

Of course if the underlying population risk model actually

conforms to the logistic model, direct modelling of the risk

or prevalence ratio will involve incorporating interaction

terms in the model or ignoring potentially important effect

measure modification by strata of covariates. Moreover,

unlike logistic regression, multivariable log binomial

regression models often suffer convergence problems.8

In the current paper we focus on the setting in which an

investigator wishes to compare the risk or prevalence of

disease between exposure groups, obtaining a summary

measure that is standardized to the confounder distribution

in the overall population. We describe the use of a

standardized log binomial model to estimate risk and

prevalence ratios in this setting. By employing standardiza-

tion to control confounding rather than a model for the

disease conditional on exposure and potential confound-

ers, investigators will tend to experience fewer problems

with model fit and convergence than those often encoun-

tered with multivariable log binomial regression.

Moreover, when the effect measure (e.g. the risk ratio)

varies across strata of covariates, this standardization

approach yields a useful, standardized summary effect

measure. We describe and illustrate this approach to esti-

mate standardized risk and prevalence ratios. We further

illustrate how this approach can facilitate evaluation of

risk and prevalence differences using linear binomial re-

gression, and assessment of whether the joint effects of ex-

planatory variables conform to a linear model.

Methods

Consider a study in which D denotes disease status and is a

binary outcome variable and E denotes exposure and is the

explanatory variable of primary interest. Let Z denote a

vector of explanatory variables that are potential con-

founders of the association between E and D; Z may

include binary, categorical and continuous variables. The

investigator wants to compare the risk or prevalence of

D between groups defined by E, obtaining a summary

measure that is standardized to the confounder distribution

in the overall population.

Standardized binomial regression models

Direct standardization is used by epidemiologists as one

method to control for confounding in analyses of exposure-

disease associations. The observed data are weighted so that

the exposure groups under comparison have the same distri-

bution of potential confounding factors in the weighted data.

Because standardization requires stratification by confound-

ers, covariates that were originally measured on a continuous

scale must be categorized for the purposes of standardiza-

tion, and problems with instability of estimation may occur

when the data are stratified by many confounders.9

Key Messages

• Standardized risk or prevalence ratios and differences are readily obtained using the SAS, Stata and R statistical soft-

ware packages.

• These quantities may be obtained by fitting a marginal structural binomial regression model.

• This approach reduces problems with non-convergence in covariate-adjusted log binomial models.

• The proposed approach estimates an exposure’s effect in the total study population, though other target populations

are also accommodated.
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Robins et al. proposed a flexible extension of classical

standardization methods.10 Under this approach, a weight

is assigned to each person that is equal to the inverse prob-

ability of receiving their own exposure conditional on their

confounder information. To estimate these weights in a

parametric setting, the investigator fits a regression model

for E as a function of the covariates, Z.

If the exposure variable of primary interest is binary,

then the weights needed for standardization may be esti-

mated from a logistic regression model for E with Z as

explanatory variables. The logistic model yields predicted

probabilities of exposure as a function of covariates Z. The

weight assigned to each individual equals the inverse of the

predicted probability that the person had the exposure

level of E¼ e that was in fact observed. In practice, weights

often are stabilized by multiplying each weight by the over-

all unadjusted probability of that person having exposure

level E¼ e.10,11

If E includes more than two levels, then a multinomial

regression model for E may be fitted.12 The model yields

predicted probabilities for each level of E as a function of

covariates Z; again, the weight assigned to each individual

equals the inverse of the predicted probability that the per-

son had the exposure level of E that was in fact observed.

In settings where the exposure categories are ordered, one

may wish to employ an ordered logistic regression model

to estimate the weights.13 If the exposure variable of inter-

est is continuous then, for practicality and simplicity, we

focus on the setting in which the exposure variable is cate-

gorized into quantiles (e.g. deciles); however, weights

could be formed using the density estimates returned from

a linear regression model.12 The weights needed for stand-

ardization may be estimated from a multinomial or

ordered logistic regression model for this categorized ver-

sion of E with Z as explanatory variables.8 The model

yields predicted probabilities for each quantile of E as a

function of covariates Z; and, the weight assigned to each

person equals the inverse of the predicted probability that

the person had the exposure quantile of E that was in fact

observed. When the continuous exposure E is categorized,

we suggest using the same exposure categories in the bino-

mial regression model for the outcome. Use of a different,

more finely categorized exposure variable in the binomial

regression model may reintroduce within-category con-

founding, reflecting residual bias not accounted for during

the weight construction.

Estimation of a summary standardized

effect measure

As in classical standardization, a summary effect measure

is obtained after weighting the observed data such that the

association between E and D in the weighted data is

unconfounded by covariates Z. This will yield the standar-

dized risk or prevalence at each level of E. This approach is

essentially a marginal structural binomial model for the

effect of a point treatment. Relative and absolute effect

measures (e.g. risk ratios and risk differences) may be

obtained for contrasts defined by E, by means of a simple

tabular analysis of the occurrence of D within levels of

E in these weighted data or by means of a regression model

that incorporates probability weights.

Because the standardized binomial regression model is a

weighted m-estimator,14 robust (Huber-White) or boot-

strap confidence intervals (CIs) are recommended.10

Figure 1 provides illustrative code for SAS, Stata and R to

estimate stabilized weights for a binary exposure variable

and then obtain an estimate (and associated 95% robust

confidence interval) for the standardized relative risk or

standardized risk difference. Suppose that a data set named

one includes a unique identifier for each person (id), a bin-

ary indicator of disease status (D), a binary exposure vari-

able (E) and covariates Z1 and Z2. The code in Figure 1

estimates the predicted probability of exposure (E¼ e)

given covariates Z1 and Z2 by fitting a logistic regression

model, creating a new data set (two) that includes all of the

observed data plus the predicted probability of exposure

given covariates. Next, the marginal probability of expos-

ure is estimated by fitting a logistic regression model with

no explanatory variables, which serves as the numerator

for the stabilized weight (sw), calculated in a new data set

(three). Robust confidence intervals can be obtained simply

by fitting a log binomial regression model for D with E as

the only explanatory variable to the weighted data to esti-

mate the risk ratio (or a linear binomial regression model

to estimate the risk difference), using the repeated state-

ment in SAS PROC GENMOD, the robust option in Stata

or the id argument in the geeglm function in R. Percentile

bootstrap confidence intervals can be calculated using the

code provided in Appendix 1 (available as Supplementary

data at IJE online).

Using the weighting approach described above, the total

study population (exposed and unexposed) serves as the

standard; this means that, in the weighted data, the

exposed and unexposed each have the distribution of cova-

riates, Z, observed in the total group. The resultant stand-

ardized effect measure is interpretable as a contrast of the

risk or prevalence of disease in the total group under com-

plete exposure and complete non-exposure. If there is het-

erogeneity of the effect measure over strata of covariates,

the resultant standardized summary measure (the differ-

ence or ratio of standardized risks or standardized preva-

lences) retains its intended meaning: it is an average of the

effect of the exposure in a population with distribution of
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SAS CODE  

/*Calculate denominators used in inverse probability weights  */ 
 proc logistic data = one descending; 
  model E = Z1 Z2; 
  output out = two predicted=ps;   

/*Create stabilized weights, using a null model with E as the dependent variable. */ 
 proc logistic data = two descending; 
  model E =  ; 
  output out=three predicted=marg_pr;   
 data three; 
  set three; 
  sw = E*marg_pr/ps + (1-E)*(1-marg_pr)/(1-ps);   

/*Fit a log binomial model to the weighted data for the E-D association, with robust variance */ 
 proc genmod data = three descending; 
  class id; 
  model D = E / link=log dist=bin ; 
  weight sw; 
  repeated subject=id / type=ind; 
  estimate 'rr' E 1 / exp; run; 

/*Fit a linear binomial model to weighted data for the E-D association with robust variance */ 
 proc genmod data = three descending; 
  class id; 
  model D = E / link=identity dist=bin ; 
  weight sw; 
  repeated subject=id / type=ind; run; 

STATA CODE  

*Calculate denominators used in inverse probability weights 
 logit E Z1 Z2 
 predict ps 

*Create stabilized weights, using a null model with E as the dependent variable 
 logit E 
 predict marg_pr 
 g sw=E*marg_pr/ps+(1-E)*(1-marg_pr)/(1-ps) 

*Fit a log binomial model to the weighted data for the E-D association, with robust variance 
 glm D E [pw=sw],family(binomial) link(log) robust 

*Fit a linear binomial model to the weighted data for the E-D association, with robust variance 
 glm D E [pw=sw],family(binomial) link(identity) robust 

R CODE 

# Calculate denominators used in inverse probability weights 
 E.out=glm(E~Z1+Z2,family=binomial(link="logit"), data=one, na.action=na.exclude) 
 ps=predict(E.out, type="response") 

# Create stabilized weights, using a null model with E as the dependent variable 
 sptw=one$E*mean(one$E)/ps+(1-one$E)*(1-mean(one$E))/(1-ps) 

# Fit a log binomial model to the weighted data for the E-D association, with robust variance 
# If ‘geepack’ package not installed, enter in console: install.packages(‘geepack’) library(geepack) 
 summary(geeglm(D~E, family=binomial(link="log"), weight=sptw, id=id, data=one)) 

# Fit a linear binomial model to the weighted data for the E-D association, with robust variance 
 library(geepack) 
 summary(geeglm(D~E, family=binomial(link="identity"), weight=sptw, id=id, data=one)) 

Figure 1. Sample code to estimate standardized relative risks and standardized risk differences.
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covariates, Z, that was seen in this study. Alternatively,

one could choose as the standard the exposed or unex-

posed group rather than the total study population.9 Also,

one could make comparisons other than that of everyone

exposed vs no one exposed.15,16

Joint Effects of Two Exposures

Suppose that there are two exposure variables of interest,

E and F. Assessment of whether there is a departure from

additivity of effects may be of interest, for example to

evaluate whether an intervention on E would have a larger

absolute effect jointly with exposure F than without expos-

ure F. A number of authors have considered assessment of

additive interaction in analysis of binary outcome data

using models for the log-odds of disease.17–21 Such

approaches require the assumption that the odds ratio

approximates the risk or prevalence ratio, and that the

relative excess risk due to interaction does not vary sub-

stantially across strata of covariates.22,23 Standardized risk

or prevalence can readily be compared in terms of risk or

prevalence differences; we propose a novel approach for

assessing additivity by fitting a weighted linear binomial

regression model to assess whether the joint effects of

explanatory variables conform to a linear model.

One set of weights may be derived from a logistic

regression model for E with Z as explanatory variables.

A second set of weights can be derived from a logistic

regression model for F with E and Z as explanatory vari-

ables. The vector of covariates Z in the regression model

for E need not be identical to the vector of covariates Z in

the regression model for F. It is important to note that

when estimating the exposure prediction model for the

second exposure F, the first exposure E must be included

to properly recover the joint distribution of these two

exposures, and the model for F may include product terms

between E and covariates in vector Z. Moreover, if F is

affected by E, then the ordering of models should follow

this temporal relationship. A final weight for the individual

is the product of the two weights (Appendix 2, available as

Supplementary data at IJE online). Alternatively, one

could create a categorical variable for all combinations of

F and E. A multinomial model fit with the dummy variable

as an outcome and Z as predictors could be used to esti-

mate weights in a flexible manner.

Using these weighted data the analyst can estimate the

risk or prevalence of disease (denoted by R) among those

jointly unexposed, RðEFÞ, exposed only to E, RðEFÞ,
exposed only to F, RðEFÞ, or jointly exposed to E and F,

RðEFÞ. Departures from additive effects of E and F may be

described in terms of the absolute excess risk due to

interaction¼RðEFÞ � RðEFÞ � RðEFÞ þ RðEFÞ.

Simulation example

Data were simulated for 1000 cohort studies, with 10 000

people in each cohort. Each simulated cohort had three

explanatory variables: Z1, Z2 and Z3. We assigned Z1 as a

random polytomous variable sampled from a multinomial

distribution that took the values 1, 2, 3 with probabilities

0.5, 0.25 and 0.25. We assigned Z2 as a random binary

variable that took a value of 1 with probability

exp(�1 �1*Z1)/(1þexp(�1 �1*Z1)), else 0; in each simu-

lated cohort, the probability that Z2 took a value of 1 was

approximately 0.08. We assigned Z3 as a random binary

variable that took a value of 1 with probability

exp(�0.1 �1*Z1 � 1*Z2)/(1þ exp(�0.1 �1*Z1 � 1*Z2)),

else 0. We assigned the outcome D as a random binary

variable that followed a log binomial distribution and

took a value of 1 with probability exp(�0.1 � 1*Z1 �
1*Z2� 1*Z3). Z3 is the exposure of interest in this scen-

ario; in each simulated cohort the probability that Z3 took

a value of 1 was approximately 0.15. A correctly specified

logistic model was fit to each simulated cohort to predict

Z3 as a function of Z1 and Z2; the inverse of the predicted

probabilities served as the basis for weights in a marginal

structural model. We stabilized these weights by multiply-

ing them by the marginal probability of each person’s

observed exposure level. We estimated the effect of Z3 on

the outcome using a marginal structural log binomial

model, with robust variance. From 1000 replications of the

study, we computed the mean log risk ratio (‘estimated log

RR’), empirical standard error of the estimated log risk

ratio and average of the estimated standard errors of the

log risk ratio. In addition, we estimated the effect of Z3 on

the outcome using a marginal structural linear binomial

model. Again, we computed the mean risk difference (‘esti-

mated RD’), empirical standard error of the estimated risk

difference and average of the estimated standard errors of

the risk difference. Finally, we attempted to fit multivari-

able log binomial regression models to each simulated

cohort. From 1000 replications of the study, we tabulated

the number of multivariable binomial models that

converged.

Next, simulations were conducted in which Z2 and Z3

were two binary exposure variables of interest. A correctly

specified logistic model was fit to each simulated cohort to

predict Z2 as a function of Z1; the inverse of the predicted

probabilities served as the basis for one set of weights, sta-

bilized by marginal probabilities of each level of Z2. A se-

cond correctly specified logistic model was fit to each

simulated cohort to predict Z3 as a function of Z1 and Z2,

stabilized by marginal probabilities of each level of Z3; the

inverse of the predicted probabilities served as the basis for

the second set of weights. The product of the two stabilized
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weights served as the final weight in a marginal structural

model. We computed the mean departure from additivity

by fitting marginal structural linear binomial regression

models with Z2, Z3 and Z2 x Z3 as explanatory variables,

the last term quantifying deviation from additivity of ef-

fects; we also report the empirical standard error of the

product term and the average of the estimated standard

errors for this term.

Empirical example

Data were obtained from the Evans County study for a

cohort of 609 White males who were followed for 7 years,

with coronary heart disease (CHD) status as the outcome

of interest. These data are publicly available [http://web1.

sph.emory.edu/dkleinb/logreg3.htm#data] and used in a

popular textbook on logistic regression.18 The primary

exposure variable of interest is CAT, a dichotomous vari-

able indicating high or normal catecholamine level.

Hypothesized confounders of the effect of CAT on CHD

include AGE (a continuous variable for age in years), CHL

(a continuous variable for cholesterol in mg/dl) and SMK

(a dichotomous variable indicating whether the person

ever smoked or never smoked). To calculate the denomin-

ators used to construct the weights for standardization,

we estimated conditional probabilities using logistic regres-

sion with the exposure variable, CAT, as the dependent

variable; explanatory variables were AGE, AGE2, AGE3,

CHL, CHL2, CHL3, SMK and product terms of the form

AGE x SMK, AGE2 x SMK and AGE3 x SMK. Quadratic

and cubic functions of AGE and CHL and product terms

between variables were included because these improved

balance in covariate distributions across levels of the

exposure variable. To stabilize these weights, we set the

numerator equal to the marginal probability of each per-

son’s observed CAT level (i.e. 0.2 for those with CAT¼ 1

and 0.8 for those with CAT¼ 0). The mean weight was

0.98, the minimum weight was 0.26 and the 5th, 25th,

50th, 75th and 95th percentiles of weights were 0.39,

0.81, 0.86, 1.04 and 1.61, respectively. The maximum esti-

mated weight was 6.85. To estimate the effect of CAT on

CHD, we used a marginal structural log binomial model

for the risk ratio, and a marginal structural linear binomial

model for the risk difference, with robust variance estima-

tors to obtain 95% confidence intervals.

Next, we fit a standardized binomial regression model

with two binary exposure variables of interest: SMK and

CAT. To calculate inverse probability weights, we fit a first

logistic regression model for SMK in which AGE, AGE2

and AGE3 were explanatory variables. We fit a second

logistic regression model for CAT with SMK, AGE, AGE2,

AGE3, CHL, CHL2, CHL3 and product terms of the form
Table 1. Illustrative simulated data. Characteristics of covari-

ates Z1 and Z2 by level of Z3 in observed data and weighted

data

Exposed

(Z3¼1)

Unexposed

(Z3¼0)

Marginal

over Z3

Observed data

Z1¼2 17.4% 26.4% 25.0%

Z1¼3 6.9% 28.3% 25.0%

Z2¼1 4.7% 8.1% 7.6%

D 9.7% 18.1% 16.8%

Weighted data

Z1¼2 25.2% 25.0% 25.0%

Z1¼3 24.8% 25.0% 25.0%

Z2¼1 7.6% 7.6% 7.6%

D 7.1% 19.4% 17.5%

Table 2. Illustrative simulated data. Characteristics of covari-

ate Z1 by level of Z2 and Z3 in observed data and weighted

data

Z3¼1 Z3¼1 Z3¼0 Z3¼0 Marginal

Z2¼1 Z2¼0 Z2¼1 Z2¼0 Over Z3, Z2

Observed data

Z1¼2 7.1% 17.7% 16.5% 27.3% 25.0%

Z1¼3 1.1% 7.2% 6.4% 30.2% 25.0%

D 4.2% 10.1% 10.3% 18.8% 16.8%

Weighted data

Z1¼2 24.7% 25.0% 25.1% 25.0% 25.0%

Z1¼3 25.6% 25.0% 24.9% 25.0% 25.0%

D 2.7% 7.6% 7.7% 20.8% 17.6%

Table 3. Risk differences and risk ratios by level of Z2 and Z3. Results obtained over 1000 iterations of the simulation

Z3¼1 Z3¼1 Z3¼0 Z3¼0

Z2¼1 Z2¼0 Z2¼1 Z2¼0

Risk difference (95% CIa) �0.18 (�0.22, �0.14) �0.13 (�0.15, �0.12) �0.13 (�0.15, �0.11) 0.0

Risk ratio (95% CIa) 0.15 (0.05, 0.53) 0.37 (0.31, 0.44) 0.37 (0.28, 0.48) 1.0

aRobust confidence intervals were estimated to account for within�subject correlation induced by weighting.
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AGE� SMK, AGE2� SMK and AGE3� SMK as explana-

tory variables. We considered the model for SMK first

since previous smoking status may be associated with

CAT, the other exposure of interest, but is not affected by

CAT. By ordering our two models based on appropriate

temporal relationships between variables, we mitigated im-

proper model specification in this example. We estimated

the marginal probability of the dependent variable—SMK

in the first model and CAT in the second—using a logistic

regression model. We calculated stabilized weights for

CAT and SMK separately, using the marginal probabilities

of each person’s observed level of each exposure as numer-

ators for those weights. The mean, minimum and max-

imum values for the first set of stabilized weights were

1.00, 0.65 and 1.45, respectively. The mean, minimum and

maximum values for the second set of weights were 0.98,

0.26 and 6.85, respectively. The product of the resultant

weights ranged from 0.23 to 6.01 with a mean value of

0.99. We fit marginal structural log binomial and linear

binomial regression models with SMK, CAT and their

product term as explanatory variables.

Results

Simulation results

We first focused on estimation of the effect of Z3, a binary

exposure variable. For each of the 1000 simulations, we

fitted a standardized log binomial regression model and

estimated the risk ratio and robust standard error; the

average of the estimated risk ratios was 0.37, the value

specified under the simulation set-up (i.e. exp(�1)¼ 0.37).

Table 4. Characteristics of covariates by level of catecholamine (CAT) in observed data and weighted data. Evans County study

of 609 men

Exposed (CAT¼1) Unexposed (CAT¼0) Total

Observed data (n¼122) (n¼487) (n¼609)

Age in years (mean) 61 52 54

Cholesterol in mg/dl (mean) 199 215 212

History of ever smoking 63% 64% 64%

Coronary heart disease 22.1% 9.0% 11.7%

Weighted data (
P

weights
a¼111) (

P
weights¼487) (

P
weights¼598)

Age in years (mean) 55 54 54

Cholesterol in mg/dl (mean) 206 212 211

History of ever smoking 58% 64% 63%

Coronary heart disease 27.3% 10.8% 13.8%

aSum of weights. Weights were calculated from a logistic regression model for the dependent variable, CAT; weights were stabilized by a numerator equal to

the marginal probability of (CAT¼ 1) in the study population. The mean weight was slightly less than 1 (0.98), therefore the total sample size for the weighted

analysis is slightly smaller than for the unweighted analysis.

Table 5. Characteristics of covariates, risk of coronary heart disease (CHD) and CHD risk differences and risk ratios by high and

low catecholamine level (CAT) and history of ever smoking (SMK) in observed data and weighted data. Evans County study of

609 men

CAT¼1 CAT¼1 CAT¼0 CAT¼0 Total

SMK¼1 SMK¼0 SMK¼1 SMK¼0

Observed data (n¼77) (n¼45) (n¼310) (n¼177) (n¼609)

Age in years (mean) 61 61 51 54 54

Cholesterol in mg/dl (mean) 200 198 214 216 212

Coronary heart disease (CHD) 24.7% 17.8% 11.3% 5.1% 11.7%

Weighted data (
P

weights
a¼65) (

P
weights¼47) (

P
weights¼312) (

P
weights¼176) (

P
weights¼600)

Age in years (mean) 56 53 54 54 54

Cholesterol in mg/dl (mean) 204 213 211 213 211

Coronary heart disease (CHD) 31.6% 22.1% 14.7% 5.0% 14.3%

aSum of final weights. Final weights were the product of weights calculated from two sequential logistic regression models fit for dependent variables SMK and

CAT, respectively; resultant weights from each model were stabilized by the numerator equal to the marginal probability of the occurrence of the dependent vari-

able (SMK¼ 1 in the first model and CAT¼ 1 in the second).The mean weight was slightly less than 1 (0.99); therefore the total sample size for the weighted ana-

lysis is slightly smaller than for the unweighted analysis.
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The empirical standard error of the log risk ratio was

0.095, and the average of the estimated standard errors of

the log risk ratio was 0.095. We also fitted a standardized

linear binomial regression model and estimated the stand-

ardized risk difference and robust standard error; the aver-

age of the estimated risk differences was �0.123, the

empirical standard error of the risk difference estimate was

0.008 and the average of the estimated standard errors of

the risk difference was 0.008.

Table 1 reports the distributions of Z1 and Z2 between

subgroups defined by Z3 in the original (unweighted) data

and in the weighted data. The distributions of Z1 and Z2 dif-

fered between subgroups defined by Z3; in the weighted

data, the distributions of Z1 and Z2 were similar between the

subgroups defined by Z3 and these distributions were equal

to the marginal distribution of Z1 and Z2 in the total study

group. In the weighted data, the (standardized) risk of the

outcome was 0.071 among the exposed and 0.194 among

the unexposed. The ratio of these standardized risks (0.071/

0.194) equals 0.37, the value specified under the simulation

set-up (i.e. exp(�1)¼ 0.37) and the difference in these stand-

ardized risks (0.071 � 0.194) equals �0.123. For this simu-

lation scenario, a multivariable log binomial model with

main effects for Z1, Z2 and Z3 converged for each of the

1000 simulations, whereas a multivariable linear binomial

model failed to converge in 968 of the 1000 simulations.

Next, we assessed whether the joint effects of two bin-

ary exposure variables, Z2 and Z3, are additive. Table 2

reports the standardized risk of the outcome for the four

possible exposure levels: exposed to both Z2 and Z3,

exposed only to Z3, exposed only to Z2 and unexposed to

Z2 and Z3; and Table 3 reports standardized risk differ-

ences and risk ratios with robust 95% confidence intervals.

Potential departure from additivity under the excess risk

model can be quantified as the absolute excess risk due to

interaction. For the illustrative data in Table 2, this value

is 0.027 � 0.076 � 0.077þ 0.208¼ 0.082. Over the 1000

simulations, the average of the estimated absolute excess

risk due to interaction was 0.084; this evidence of depart-

ure from additivity is consistent with the simulation setting

in which the joint effects conform to a multiplicative

(log binomial) model. The empirical standard error of the

absolute excess risk due to interaction was 0.029, and the

average of the estimated standard errors was 0.024.

Empirical results

In the Evans County data, the cumulative incidence of

CHD over 7 years was 11.7%. The prevalence of the pri-

mary exposure, high or normal catecholamine level (CAT),

was 20.0%. A crude comparison of the risk of CHD be-

tween categories of CAT yielded a risk ratio of 2.45 (95%

CI: 1.58, 3.79). Table 4 reports the characteristics of AGE,

CHL and SMK at each level of CAT in the observed data

and in the weighted data. In the observed data, the average

AGE among those with high CAT was 9 years greater than

among those with low CAT, whereas the average CHL

was lower among those with high CAT than among those

with low CAT (Table 4). In the weighted data, mean values

for AGE and CHL were similar between CAT groups. The

variable SMK was slightly imbalanced between exposed

(CAT¼ 1) and unexposed (CAT¼ 0) in the weighted data,

although the difference was not large. In the weighted

data, the (standardized) risk of the outcome was 0.273

among the exposed and 0.108 among the unexposed. The

ratio of these standardized risks was 2.54 (robust 95% CI:

1.44, 4.46; bootstrapped 95% CI: 1.35, 4.36) and the dif-

ference in these standardized risks was 0.165 (robust 95%

CI: 0.030, 0.300; bootstrapped 95% CI: 0.041, 0.309).

Because the outcome was a common event, the risk ratio

diverged from the odds ratio; expressing the exposure con-

trast in terms of the odds ratio yielded an effect measure

that was further from the null than the risk ratio (standar-

dized odds ratio¼ 3.11; robust 95% CI: 1.48, 6.52). We

attempted to fit a log binomial regression model for the

association between CHD and CAT, adjusting for AGE,

AGE2, AGE3, CHL, CHL2, CHL3, SMK and product

terms of the form AGE x SMK, AGE2 x SMK, and AGE3 x

SMK; however, reliable estimates for the model parameters

could not be obtained due to problems of poor model

convergence.

In Table 5 we examine the joint effects of CAT and

SMK. The upper half of Table 5 reports the characteristics

of AGE and CHL as well as the risk of CHD at each level

Table 6. Coronary heart disease (CHD) risk differences and risk ratios by high and low catecholamine level (CAT) and history of

ever smoking (SMK) in weighted data. Evans County study of 609 men

CAT¼1 CAT¼1 CAT¼0 CAT¼0

SMK¼1 SMK¼0 SMK¼1 SMK¼0

CHD risk difference (95% CIa) 0.27 (0.10, 0.44) 0.17 (�0.04, 0.38) 0.10 (0.04, 0.16) 0.0

CHD risk ratio (95% CIa) 6.33 (2.76, 14.53) 4.44 (1.43, 13.75) 2.95 (1.42, 6.15) 1.0

aRobust confidence intervals were estimated to account for within-subject correlation induced by weighting.
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of CAT and SMK in the observed data from Evans County.

The lower half of Table 5 reports results from the weighted

data at each level of CAT and SMK, including the charac-

teristics of AGE and CHL, as well as standardized risk of

CHD at each level of CAT and SMK. In the weighted data,

the covariates AGE and CHL have similar distributions at

each level of CAT and SMK; therefore, potential confound-

ing by these variables was largely nullified. Table 6 reports

standardized risk differences and risk ratios with robust

95% confidence intervals. Potential departure from addi-

tivity under the excess risk model can be quantified

as the absolute excess risk due to interaction,

0.316�0.221�0.147þ 0.050¼�0.003. To obtain empir-

ical standard error estimates and robust confidence interval

for the standardized absolute excess risk due to interaction

(95% CI: �0.27, 0.27), we fit a linear binomial model

with CAT, SMK and their product term (the estimated

coefficient for the product term corresponding to the abso-

lute excess risk due to interaction). There was little

observed departure from risk difference additivity.

Discussion

Epidemiologists often wish to compare the risk of disease,

or prevalence of disease, between two or more groups of

people. In observational studies, a routine concern is that

the groups under comparison may differ with respect to

other risk factors for disease. A common approach to deal

with such concerns is to fit a multivariable regression

model for the outcome. However, another approach that

has a long tradition in epidemiology is to use standardiza-

tion, so that in the weighted data the exposure groups

under comparison are similar with respect to other disease

risk factors.19 The problem of confounding is dealt with by

weighting the observed data so that the exposure groups

under comparison are similar with respect to covariates of

concern.

The standardization approach described in the current

paper is essentially a simple marginal structural binomial

regression model for a point exposure study.10 Whereas

marginal structural models are often discussed for handling

of time-varying confounding in longitudinal data analyses,

as we illustrate here, in some settings standardization by

inverse probability of exposure weighting can offer a useful

approach for handling potential confounders in analyses of

cross-sectional data and cohort data in which prevalences

or incidence proportions are compared between groups

defined by baseline characteristics. The use of a standar-

dized log binomial model for estimation of adjusted risk

ratios is similar to the approach proposed by Greenland

for the calculation of standardized risks when covariates

are categorical.24 However, marginal structural models

with inverse probability of exposure weighting readily

allow incorporation of continuous covariates into the ex-

posure prediction model (i.e. without forming categories);

and methods for robust variance estimation can be readily

used to obtain (conservative) confidence intervals.10

By using weighting to deal with covariate adjustment,

one can obtain adjusted estimates of risk for groups

defined by exposure categories. When there is heterogen-

eity in risk ratios over strata of covariates, as happens for

example if the underlying population risk model does not

conform to the exponential risk form (or determinants of

the outcome are unobserved), a standardized risk ratio

derived under this approach retains a very useful interpret-

ation: an average ratio of the expected risks if everyone in

the cohort had been exposed vs unexposed. Although in

this paper we focus on an approach in which the total

study population (exposed and unexposed) serves as the

standard, one could choose as the standard the exposed or

unexposed group rather than the total study population,9

or one could make comparisons other than that of every-

one exposed vs no one exposed.15,16

Of course, investigators sometimes wish to describe het-

erogeneity in associations rather than obtain a summary

risk ratio or difference. We illustrate how to estimate the

marginal risks within levels defined by the joint distribu-

tion of two exposure variables. The approach allows evalu-

ation of departure from additivity, or departure from

multiplicativity, of standardized risks or prevalences. As

we illustrate, departure from additivity can be defined by

the quantity RðEFÞ � RðEFÞ � RðEFÞ þ RðEFÞ. The pro-

posed approach offers a simple approach to estimate the

departure from additive effects of the marginal (and stand-

ardized) risk differences or ratios. The approach that we

propose for estimation of departure from additive joint

effects of exposures shares similarities with the approach

for estimation of additive odds described by Vanderweele

and Vansteelandt;25 however, whereas they focused on es-

timation of odds ratios using unmatched cumulative design

case-control data under the condition of a rare outcome,

we focus on analysis of risk ratios and risk differences (or

prevalence ratios and differences) in cohort and cross-sec-

tional data involving common outcomes.

Importantly, positivity and correct specification of the

exposure prediction models used to obtain the weights

applied to the observed data are required to obtain consist-

ent estimates of risk ratios or prevalence ratios from a

weighted (standardized) log binomial model. An important

limitation of the current paper is the small set of simula-

tions conducted. We did not, for example, investigate per-

formance of this approach in settings in which there was

incorrect specification of the exposure models. This is one

important area for future work. When the number of
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groups under comparison is small, a simple assessment of

balance in covariates between exposure groups in the

weighted data suffices to address concerns regarding resid-

ual confounding by measured variables. The importance of

correct specification of the exposure prediction model is

underscored by considerations of the requirements neces-

sary for consistent effect estimates when the exposure vari-

able of primary interest is continuous. We focused on

scenarios in which a continuous variable was binned into

groups defined by quantiles of the exposure distribution.

This approach allows exploration of modelling the expos-

ure-disease association of primary interest using the

explanatory variable on its original continuous scale; for

the standardized binomial regression model using the con-

tinuous form of exposure, residual confounding may occur

within the quantiles (e.g. deciles) used to develop the

weights, but in many settings of practical importance such

bias is likely to be small. However, we note that given a

continuous explanatory variable, the investigator may

again find that convergence of the log binomial model for

the outcome given exposure is problematic; use of catego-

ries in a log binomial model will facilitate model conver-

gence. Therefore, we have focused on describing the

association by modelling a categorized version of the

underlying variable.

Similar methods for obtaining effect estimates have

been proposed for estimating standardized ratio or differ-

ence measures in Stata.26,27 Those methods use built-in

Stata commands to estimate risk ratios or differences. The

current paper extends those earlier papers by making the

method easily accessible in SAS, Stata and R, as well as

elaborating on the connection to marginal structural mod-

els and the interpretation of model fit. The method used in

the current paper will typically estimate effects under

assumptions different from the methods used in the earlier

papers. The modelling assumptions in the current paper

are largely contained in the regression model of the expos-

ure conditional on the other covariates whereas, in the ear-

lier papers, the modelling assumptions were largely

contained in the regression model of the outcome condi-

tional on the covariate and exposure. Given differences in

modelling assumptions, the two approaches could usefully

serve as sensitivity analyses, whereas extensions of these

approaches lead to doubly robust regression methods.28,29

The proposed approach reduces problems of model con-

vergence typical of binomial regression by shifting all

explanatory variables except the exposures of primary

interest from the linear predictor of the outcome regression

model to a model for the standardization weights. There

are several approaches that may permit model convergence

if a conditional effect measure is desired, for example in a

legal or medical setting where an estimate of risk is desired

for a claimant or patient with a specified covariate pat-

tern.30 Analysis using a log-linear Poisson regression model

is an alternative to log binomial regression to obtain model

convergence;6 however, such models do not constrain the

upper bound on predicted risks and the prospect of pre-

dicted probabilities outside their logical range is often un-

appealing. Constrained optimization avoids this problem,

but will often lead to some data points having very high in-

fluence and may be sensitive to the parameterization of

constraints imposed on the set of covariate predictor vari-

ables. Data augmentation can be used with log binomial

models to obtain convergence,31,32 but the resultant max-

imum likelihood estimates in the modified data may not be

close to the maximum likelihood estimate in the original

data (if, in fact, the maximum likelihood estimate exists in

the original data). However, if the desired target of infer-

ence is the exposure effect in the total population, the in-

vestigator may find that a standardized comparison of

disease risk between exposure groups is readily estimable,

whereas problems of convergence occur if one attempts to

derive the conditional estimate by fitting a multivariable

log binomial regression model.

The proposed approach offers a simple solution to an

important set of problems routinely encountered in ana-

lyses of epidemiological cohort and cross-sectional data

when attempting to estimate adjusted risk or prevalence

ratios and differences. For an important class of research

questions, the approach presented in this paper may facili-

tate calculations to obtain adjusted risk or prevalence that

are often difficult to obtain by fitting conditional models

for the binary outcome given the exposures and covariates.
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APPENDIX 1 – Implementation of percentile
bootstrap confidence intervals

The SAS, Stata, and R code shown below can be used
to obtain percentile bootstrap confidence intervals for
the standardized estimates calculated in Figure 1. The
code below uses 2 000 samples, but this can be
changed by the user.

SAS CODE 
* Set up bootstrap resampling; 

data boot; 
   do sample=1 to 2000; 
      do i=1 to nobs; 
     pt=round(ranuni(12)*nobs); 
      set one nobs=nobs point=pt ; 
     output; 
      end; 
   end; 

stop; run; 

proc logistic data = boot descending; by sample; 
  model E = Z1 Z2; 

output out = boot predicted=ps;   

proc logistic data = boot descending; by sample; 
  model E = ; 
  output out=boot predicted=marg_pr;   

data boot; 
  set boot; 
  sw = E*marg_pr/ps + (1-E)*(1-marg_pr)/(1-ps); run; 

* Obtain bootstrap confidence intervals for risk ratio ; 

ods output Estimates=rr_est ; 
proc genmod data = boot descending; by sample; 

  model D = E / link=log dist=bin ; 
  weight sw; estimate 'rr' E 1 / exp; run; 

 ods rtf close; 

data rr;  
             set rr_est;  

if Label ne 'rr'; epred=LBetaEstimate; run; 

proc univariate data=rr; 
  var epred; output out=rr_cis pctlpts=2.5 97.5 pctlpre=rr_cis; run; 

proc print data=rr_cis noobs label; run; 

* Obtain bootstrap confidence intervals for risk difference ; 

ods output Estimates=rd_est ; 
proc genmod data = boot descending; by sample; 

  model D = E / link=identity dist=bin ; 
  weight sw; estimate 'rd' E 1;  run; 

 ods rtf close; 

data rd;  
             set rd_est;  

epred=LBetaEstimate; run; 

proc univariate data=rd; 
  var epred; output out=rd_cis pctlpts=2.5 97.5 pctlpre=rd_cis; run; 

proc print data=rd_cis noobs label; run; 

STATA CODE  
*For the RR 
 program margrr, rclass 

*Calculate denominators used in inverse probability weights 
 logit E Z1 Z2 
 predict den 

*Create stabilized weights, using a null model with E as the dependent variable 
 logit E 
 predict num 
 g sw=E*num/den+(1-E)*(1-num)/(1-den) 

*Fit a log binomial model to the weighted data for the E-D association, with robust 
variance 
 glm D E [pw=sw],family(binomial) link(log) robust 
 matrix b=e(b) 
 local b=el(b,1,1) 
 return scalar beta =`b' 
 drop num den sw 
 end 

 bootstrap b=r(beta): margrr 
 estat bootstrap, eform 

*For the RD 
program margrd, rclass 

*Calculate denominators used in inverse probability weights 
logit E Z1 Z2 
predict den 

*Create stabilized weights, using a null model with E as the dependent variable 
logit E 
predict num 
g sw=E*num/den+(1-E)*(1-num)/(1-den) 

*Fit a linear binomial model to the weighted data for the E-D association, with robust 
variance 

glm D E [pw=sw],family(binomial) link(id) robust 
matrix b=e(b) 
local b=el(b,1,1) 
return scalar beta =`b' 
drop num den sw 
end 

bootstrap b=r(beta): margrd 
estat bootstrap, 

R CODE 

# If ‘boot’ package not installed, enter in console: install.packages(‘boot’) 
 library(boot) 

# Specify starting value for random number generation for re-sampling 
 set.seed(12) 

# For the risk ratio, create wrapper function for bootstrap procedure... 
# in which the propensity score is re-estimated in each re-sampling 
 sptw.wrap=function(dat,indices) 
 { 
      dat=dat[indices,] 
 E.out=glm(E~Z1+Z2,family=binomial(link="logit"),data=dat,na.action=na.exc
lude) 
      ps=predict(E.out,type="response") 
      new.sptw=dat$E*mean(dat$E)/ps+(1-dat$E)*(1-mean(dat$E))/(1-ps) 
      coef(glm(D~E,family=binomial(link="log"),weight=new.sptw,data=dat))[2] 
 } 

# Invoke wrapper function to perform bootstrap using the dataset of interest for 
2000 samples 
 boot.out=boot(one,sptw.wrap,2000) 
 boot.out 

# Display percentile bootstrap point and 95% confidence interval estimates 
 median(boot.out$t) 
 boot.ci(boot.out,type="perc",conf=0.95) 

# plot density of bootstrap resamples 
 plot(density(boot.out$t)) 

# For the risk difference, create wrapper function for bootstrap procedure... 
# in which the propensity score is re-estimated in each re-sampling 
 sptw.wrap=function(dat,indices) 
 { 
      dat=dat[indices,] 

 E.out=glm(E~Z1+Z2,family=binomial(link="logit"),data=dat,na.action=na.exc
lude) 
      ps=predict(E.out,type="response") 
      new.sptw=dat$E*mean(dat$E)/ps+(1-dat$E)*(1-mean(dat$E))/(1-ps) 

 coef(glm(D~E,family=binomial(link="identity"),weight=new.sptw,data=dat))[2
] 
 } 

# Invoke wrapper function to perform bootstrap using the dataset of interest for 
2000 samples 
 boot.out=boot(one,sptw.wrap,2000) 
 boot.out 

# Display percentile bootstrap point and 95% confidence interval estimates 
 median(boot.out$t) 
 boot.ci(boot.out,type="perc",conf=0.95) 

# plot density of bootstrap resamples 
 plot(density(boot.out$t)) 
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APPENDIX 2 – Implementation of
standardized (weighted) estimates for two
dichotomous exposure variables of interest

SAS CODE 
/*Calculate denominators for weights. Logistic regression model for SMK. */ 
 proc logistic data = EVANS descending; 
 model smk = age age*age age*age*age; 
 output out = outpssmk predicted=ps; run; 

/*Fit a second logistic regression model with CAT as the dependent variable. */ 
 proc logistic data = EVANS descending; 
 model cat = smk age age*age age*age*age chl chl*chl chl*chl*chl age*smk 
age*age*smk age*age*age*smk; 
 output out = outpscat predicted=pc; run; 

/*Create one dataset with conditional probabilities for SMK (ps) and CAT (pc) for 
each obs. */ 
 proc sort data = outpssmk; by id;  proc sort data = outpscat; by id; run; 

 data margstruc;  
 merge outpssmk outpscat; by id; run; 

/*Create stabilized weights for SMK, firs t using a null model with SMK as dependent 
variable.*/ 
 proc logistic data = margstruc descending; 
 model smk = ; output out=iptw2 predicted =marg_pr_smk; run; 

 data iptw2; set iptw2; 
 swsmk = smk*marg_pr_smk/ps + (1-smk)*(1-marg_pr_smk)/(1-ps);run; 

/*Create stabilized weights for CAT fi rst using a null model with CAT as the 
dependent variable*/ 
 proc logistic data = iptw2 descending; 
 model cat =; output out=iptw2 predicted =marg_pr_cat; run; 

 data iptw2; set iptw2; 
 swcat = cat*marg_pr_cat/pc + (1-cat)*(1-marg_pr_cat)/(1-pc); run; 

/*Compute final regression weights. */ 
 data iptw2; set iptw2; 
 swfinal = swsmk*swcat; run; 

/*Fit log binomial model for standardized risk ratios with robust variance. */ 
 proc genmod data = iptw2 descending; 
 class id; 
 model chd = cat smk cat*smk / link=log dist=bin covb; 
 weight swfinal; 
 repeated subject=id / type=ind; run; 

/*Fit linear binomial model for standardized risk differences with robust variance. */ 
 proc genmod data = iptw2 descending; 
 class id; 
 model chd = cat smk cat*smk / link=identity dist=bin covb; 
 weight swfinal; 
 repeated subject=id / type=ind; 
 run; 

STATA CODE 

*Calculate denominators for weights. Model for SMK 
 logit smk  age age*age age*age*age 
 predict ps 

*Second model for CAT 
 logit cat  smk age age*age age*age*age chl chl*chl chl*chl*chl age*smk 
age*age*smk age*age*age*smk 
 predict pc 

*Create stabilized weights, using a null model with SMK as the dependent variable 
 logit smk 
 predict marg_prsmk 
 g swsmk=smk*marg_prsmk/ps+(1-smk)*(1-marg_prsmk)/(1-ps) 

*Create stabilized weights, using a null model with CAT as the dependent variable 
 logit cat 
 predict marg_prcat 
 g swcat=cat*marg_prcat/pc+(1-cat)*(1-marg_prcat)/(1-pc) 

 *Compute final regression weights  
         g swfinal = swsmk*swcat  

*Fit a log binomial model for standardized risk ratios with robust variance 
 glm chd cat smk cat*smk [pw=swfinal],family(binomial) link(log) robust 

*Fit a linear binomial model for standardized risk differences with robust variance 
 glm chd cat smk cat*smk [pw=swfinal],family(binomial) link(id) robust 

R CODE 

# variable definitions: 
# age2 = age*age 
# age3 = age*age*age 
# chl2 = chl*chl 
# chl3 = chl*chl*chl 
# a1s = age*smk 
# a2s = age*age*smk 
# a3s = age*age*age*smk 
# c1s = cat*smk 

# Calculate denominators for weights. Logistic regression model for SMK  
smk.out=glm(smk~age+age2+age3,family=binomial(link="logit"),data=evans,n
a.action=na.exclude) 
ps=predict(smk.out,type="response") 
summary(smk.out) 

# Fit a second logistic regression model with CAT as the dependent variable  
cat.out=glm(cat~smk+age+age2+age3+chl+chl2+chl3+a1s+a2s+a3s,family=bin
omial(link="logit"),data=evans,na.action=na.exclude) 
pc=predict(cat.out,type="response") 
summary(cat.out) 

# Create stabilized weights for SMK, using the "mean" operator to create 
numerators  

swsmk=evans$smk*mean(evans$smk)/ps+(1-(evans$smk))*(1-
mean(evans$smk))/(1-ps) 
summary(swsmk) 

# Create stabilized weights for CAT, using the "mean" operator to create 
numerators  

swcat=evans$cat*mean(evans$cat)/pc+(1-(evans$cat))*(1-
mean(evans$cat))/(1-pc) 
summary(swcat) 

# Compute final regression weights  
swfinal = swsmk*swcat 
summary(swfinal) 

# Fit log binomial model for standardized risk ratios with robust variance  
library(geepack) 
summary(geeglm(chd~cat+smk+c1s,family=binomial(link="log"), 
weight=swfinal, id=id, data=evans)) 

# Fit linear binomial model for standardized risk differences with robust variance  
library(geepack) 
summary(geeglm(chd~cat+smk+c1s,family=binomial(link="identity"), 
weight=swfinal, id=id, data=evans)) 
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