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Abstract Induced pluripotent stem cell (iPSC)-derived neurons are increasingly used to model

Autism Spectrum Disorder (ASD), which is clinically and genetically heterogeneous. To study the

complex relationship of penetrant and weaker polygenic risk variants to ASD, ‘isogenic’ iPSC-

derived neurons are critical. We developed a set of procedures to control for heterogeneity in

reprogramming and differentiation, and generated 53 different iPSC-derived glutamatergic

neuronal lines from 25 participants from 12 unrelated families with ASD. Heterozygous de novo and

rare-inherited presumed-damaging variants were characterized in ASD risk genes/loci.

Combinations of putative etiologic variants (GLI3/KIF21A or EHMT2/UBE2I) in separate families

were modeled. We used a multi-electrode array, with patch-clamp recordings, to determine a

reproducible synaptic phenotype in 25% of the individuals with ASD (other relevant data on the

remaining lines was collected). Our most compelling new results revealed a consistent spontaneous

network hyperactivity in neurons deficient for CNTN5 or EHMT2. The biobank of iPSC-derived

neurons and accompanying genomic data are available to accelerate ASD research.

Editorial note: This article has been through an editorial process in which authors decide how to

respond to the issues raised during peer review. The Reviewing Editor’s assessment is that all the

issues have been addressed (see decision letter).

DOI: https://doi.org/10.7554/eLife.40092.001

Introduction
The past two decades of research has determined autism spectrum disorders (ASD) to be clinically

(Fernandez and Scherer, 2017; Jones and Lord, 2013; Mahdi et al., 2018) and genetically

(De Rubeis et al., 2014; Gilman et al., 2011; Pinto et al., 2014; Tammimies et al., 2015; C Yuen
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et al., 2017) heterogeneous. Phenotypically, the fifth edition of the Diagnostic and Statistical Manual

of Mental Disorders (DSM-5) combines autistic disorder, Asperger disorder, childhood disintegrative

disorder and pervasive developmental disorder not otherwise specified into the single grouping of

ASD (DSM-5, 2013). There are also syndromic forms of ASD (Carter and Scherer, 2013), and now

more than 100 other disorders carrying different names (Betancur, 2011), that in a proportion of

subjects can also present the necessary symptoms for an ASD diagnosis.

From the perspective of genetics, heritability estimates and family studies definitely demonstrate

genes to be involved (Ronald and Hoekstra, 2011). Single high-penetrance genes and copy number

variation (CNV)-affected loci, have now been implicated as bona fide autism-susceptibility (or risk)

genes, although none of them show specificity for ASD alone (Malhotra and Sebat, 2012). These

genetic alterations are rare in the population (<1% population frequency), and in some individuals,

combinations of rare genetic variants affecting different genes can be involved (Devlin and Scherer,

2012), including more complex structural alterations of chromosomes (Brandler et al., 2018;

Marshall et al., 2008). Recent research studying common genetic variants indicates that polygenic

contributors may be involved, and these can also influence the clinical severity of rare penetrant var-

iants in ASD risk genes (Weiner et al., 2017).

Nearly 1000 putative ASD risk loci are catalogued, with ~100 already being used in the clinical

diagnostic setting (Hoang et al., 2018a; Winden et al., 2018). There are some genotype-phenotype

associations emerging, including general trends considering medical complications and IQ

(Bishop et al., 2017; Sanders et al., 2015; Tammimies et al., 2015), sibling variability depending

on the ASD gene variant they carry (Yuen et al., 2015), and lower adaptive ability in those carrying

variants compared to affected siblings without the same genetic change (C Yuen et al., 2017). Many

of the ASD risk genes identified are connected into gene networks including those involved in synap-

tic transmission, transcriptional regulation, and RNA processing functions (Bourgeron, 2015;

De Rubeis et al., 2014; Geschwind and State, 2015; Pinto et al., 2014; Sahin and Sur, 2015;

C Yuen et al., 2017; Yuen et al., 2016), with the impacted genes being involved in all of prenatal,

region-specific, or broader brain development (Uddin et al., 2014). Perhaps, a general unifying

theme that is emerging from neurophysiologic studies is an increased ratio of excitation and inhibi-

tion in key neural systems that can be perturbed by variants in the ASD risk genes, or by environ-

mental variables affecting the same targets (Canitano and Pallagrosi, 2017).

The advent of the induced pluripotent stem cell (iPSC) technology (Takahashi et al., 2007;

Yu et al., 2007), followed by cellular re-programming to forebrain glutamatergic neurons

(Habela et al., 2016), allows accessible cellular models to be developed for the highly heteroge-

neous ASD (Beltrão-Braga and Muotri, 2017; Dolmetsch and Geschwind, 2011; Durak and Tsai,

2014; Karmacharya and Haggarty, 2016; Marchetto et al., 2017; Yoon et al., 2014; Zhang et al.,

2013). Carrying the same precise repertoire of rare and common genetic variants as the donor pro-

band, iPSC-derived neurons represent the best genetic mimic of proband neurons for functional and

mechanistic studies. Induced differentiation can be achieved with high efficiency and consistency

using transient ectopic expression of the transcription factor NGN2 (Ho et al., 2016; Zhang et al.,

2013), and this has been shown to be useful in diverse phenotyping projects (Deneault et al., 2018;

Pak et al., 2015; Yi et al., 2016). Proband-specific iPSC-derived neuronal cells indeed provide a

useful model to study disease pathology, and response to drugs, but throughput (both iPSC-derived

neurons and phenotyping) is low, with costs still high. As a result, so far, only a few iPSC-derived

neuronal lines are typically tested in a single study.

Here, we develop a resource of 53 different iPSC lines derived from 25 individuals with ASD carry-

ing a wide-range of rare genetic variants, and from unaffected family members. We also used clus-

tered regularly interspaced short palindromic repeats (CRISPR) editing (Jinek et al., 2012;

Ran et al., 2013) to create four ‘isogenic’ pairs of lines with or without mutation, to better assess

mutational impacts. Upon differentiation into excitatory neurons, we investigated synaptic and

electrophysiological properties using the large-scale multi-electrode array (MEA), as well as more

traditional patch-clamp recordings. Numerous interesting associations were observed between the

genetic variants and the neuronal phenotypes analyzed. We share our general experiences and the

bioresource with the community. We also highlight one of our more robust findings—an increased

neuronal activity in glutamatergic neurons deficient in one copy of CNTN5 or EHMT2—which could

be responsible for ASD-related phenotypes.
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Results

Selection and collection of tissue samples for reprogramming
Participants were enrolled in the Autism Speaks MSSNG whole-genome sequencing (WGS) project

(C Yuen et al., 2017). All ASD and related control-participants were initially consented for WGS and

upon return of genetic results, then consented for the iPSC study, using approved protocols through

the Research Ethics Board at the Hospital for Sick Children (see Materials and methods section for

details) (Hoang et al., 2018b). Some families were also examined by whole exome sequencing. The

study took place over a 5 year period and used incrementally developing ASD gene lists from the

following papers (Jiang et al., 2013; Marshall et al., 2008; Tammimies et al., 2015; Yuen et al.,

2015) (Table 1). These primarily considered data from the Autism Speaks MSSNG project, the

Autism Sequencing Consortium (De Rubeis et al., 2014), and the Simons Foundation Autism

Research Initiative (SFARI) gene list (discussion below). A diversity of different ASD-risk variants was

targeted ranging in size from single nucleotide variants (SNV) to an 823 kb CNV (Figure 1 and

Table 1; corresponding genomic coordinates in Supplementary file 1). Typically, one ASD-affected

and one sex-matched unaffected member (control) per family were included (Figure 1). In total, 14

ASD-affected and 11 controls participated, of which 21 were males and four were females (Figure 1

and Table 1). Cells from either skin fibroblasts or CD34 +blood cells were collected for reprogram-

ming into iPSCs (Figure 2A and Table 1).

Derivation of iPSC lines
Two different viral approaches were used for cell reprogramming. For historical reasons, the first

three cell lines in Table 1, namely iPSC IDs 19–2, 19-4 and NR3, were reprogrammed using retrovi-

ruses expressing OCT4/POU5F1, SOX2, KLF4 and MYC, and a lentiviral vector that encoded the plu-

ripotency reporter EOS-GFP/PuroR (Hotta et al., 2009). Then, we moved to non-integrative Sendai

virus for all the other tested lines (Table 1). Emerging iPSC colonies were selected for activated

endogenous human pluripotency markers, differentiation potential into three germ layer cells after

embryoid body formation in vitro, and normal karyotype (Figure 2B–D and Supplementary file 2).

Two separate pluripotent and karyotypically normal iPSC lines were typically selected per participant

for neuronal differentiation and phenotyping experiments (Table 1).

Transient induction of neuronal differentiation
We induced differentiation of newly generated iPSCs into glutamatergic neurons to test their

electrophysiological properties (Figure 2A). We used the NGN2 ectopic expression approach since

highly-enriched populations of glutamatergic neurons can be obtained within a week, and they

exhibit robust synaptic activity when co-cultured with glial cells (Zhang et al., 2013). Importantly, we

determined that this strategy offers highly uniform differentiation levels between cell lines derived

from different participants (Deneault et al., 2018). This consistency was necessary to perform suit-

able phenotyping assays such as network electrophysiology recordings of several different lines in

the same experimental batch. The resulting glutamatergic neurons were all subjected to electrophys-

iological phenotyping.

Multi-Electrode array analysis of iPSC-derived neurons
MEA phenotyping was predominantly used in order to monitor the excitability of several indepen-

dent cultured neuron populations in parallel, and in an unbiased manner, as we previously adapted

with different NGN2-neuron lines (Deneault et al., 2018). We sought to determine if any selected

ASD-risk variants would interfere with spontaneous spiking and synchronized bursting activity in a

whole network of interconnected glutamatergic neurons. We ensured that the duration and ampli-

tude of detected spikes were similar to typical mammalian neurons, that is, action potential widths

of around 1–2 milliseconds (ms) and peak amplitudes of approximately 20–150 mV (Figure 2—figure

supplement 1A). We measured the glutamatergic/GABAergic nature of our cultured neurons pro-

duced using NGN2 ectopic expression, which is known to repress GABAergic differentiation at the

advantage of glutamatergic (Roybon et al., 2010). Mean firing rate (MFR) and network bursting

activity were measured upon treatment with different receptor inhibitors. No substantial change was

observed after addition of the GABA receptor inhibitor PTX (Figure 2—figure supplement 1B),
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Table 1. List of participants with ASD or unaffected controls, with the genetic variant(s) involved, and the different iPSC lines derived.

*The 1 bp deletion in EHMT2 would result in a frameshift 47 codons before the end of the protein and disruption of the stop-codon,

potentially leading to the inclusion of a total of 221 incorrect amino acids; more information corresponding to the different genetic var-

iants are presented in Supplementary file 1; MZ, monozygotic; Retro, retrovirus; N/A, not available

Family
ID

MSSNG
Id Status

Primary genetic
variant(s) Sex

Age at
reprogramming
(year)

Cell of
origin

Reprogramming
method iPSC ID Reference

ASD Candidate Gene - CNVs

A 1-0019-
002

Unaffected
father

Family and study control M 44 Skin Retro 19–2 Deneault et al.,
2018

1-0019-
004

ASD-affected 16p11.2 deletion/+ M 15 Skin Retro 19-4 Marshall et al.,
2008

B 3-0368-
000

ASD-affected NRXN1 430 kb deletion/
+

M 8 Skin Retro NR3 Tammimies et al.,
2015

C 1-0262-
002

Unaffected
father

Family control M 49 Skin Sendai 16K, 16N —

1-0262-
003

ASD-affected DLGAP2 791 kb
duplication/+

M 10 Skin Sendai 15E, 15G Marshall et al.,
2008

1-0262-
004

Affected brother Family control M 14 Skin Sendai 17E, 17G —

D 1-0582-
002

Unaffected
father

Family control M 37 Skin Sendai 26E, 26J —

1-0582-
003

ASD-affected CNTN5 676 kb deletion M 9 Skin Sendai 27H, 27N N/A

E 7-0058-
003

ASD-affected AGBL4 323 kb deletion/
+

M 4 Skin Sendai 36O, 36P N/A

ASD Candidate Gene – SNVs

F 2-1305-
005

Unaffected
brother

Family control M 7 Skin Sendai 21H, 21P —

2-1305-
003

ASD-affected CAPRIN1 p.Q399X/+ M 12 Skin Sendai 20C, 20E,
75G, 75H

Jiang et al., 2013

G 2-1186-
002

Unaffected
father

Family control M 43 Blood Sendai 54E, 54G —

2-1186-
003

ASD-affected VIP p.Y73X/+ M 12 Blood Sendai 53G, 53H Jiang et al., 2013

H 2-1303-
004

Unaffected
brother

Family control M 13 Skin Sendai 19A —

2-1303-
003

ASD-affected ANOS1 p.R423X M 19 Skin Sendai 18C, 18E Jiang et al., 2013

2-1303-
003

Corrected ASD-
affected

CRISPR-corrected
ANOS1 p.X423R

M 19 Skin Sendai 18CW —

I 1-0273-
002

Unaffected
father

Family control M 45 Blood Sendai 51C, 51E —

1-0273-
003

ASD-affected THRA p.R384C/+ M 14 Blood Sendai 52A, 52C Yuen et al., 2015

Functional ASD Candidate Genes - SNVs

J 1-0494-
005

Unaffected
brother

Family control M 12 Blood Sendai 50A, 50B, 50H —

1-0494-
003

ASD-affected MZ
twin

SET c.112 + 1G>C/+ M 9 Blood Sendai 48K, 48N N/A

1-0494-
004

ASD-affected MZ
twin

SET c.112 + 1G>C/+ M 9 Blood Sendai 49H, 49G N/A

Table 1 continued on next page
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indicating that GABAergic neurons are not appreciably present in our cultures. However, the MFR

was significantly reduced in the presence of the AMPA receptor inhibitor CNQX while unchanged in

untreated cells, with a comparable profile across each selected line (Figure 2—figure supplement

1B). This further suggests that most of the cultures were composed of glutamatergic neurons, and

that our induction protocol was consistent across different cultures. All activity was abolished after

addition of the sodium channel blocker TTX (Figure 2—figure supplement 1B), indicating that our

human neurons were expressing functional sodium channels.

The weighted MFR (wMFR), which represents the MFR per active electrode, was used as a pri-

mary read-out for all tested iPSC-derived neurons, at one-week intervals from week 4 to 8 post-

NGN2-induction (PNI) (Figure 3). To identify a preferred timepoint for this screen, we first pooled

the data of all the independent control lines. Since the highest wMFR value for this pool of ‘all con-

trols’ (~1.8 Hz) was detected at week 6 (Figure 3A), we initially used that timepoint to compare the

activity of ASD variant and control lines for each family. In two different families, that is, CNTN5 and

EHMT2, a significant higher wMFR was recorded in ASD variant neurons at week 6 compared with

their corresponding familial control neurons (Figure 3B). EHMT2 had a strikingly increased wMFR at

all timepoints, whereas CNTN5 at other timepoints was equivalent to its controls. We therefore

ranked these two genes as high priorities for further study. In contrast, no significant differences

were observed for DLGAP2, CAPRIN1, SET or GLI3 (Figure 3C), suggesting that these variants do

not differ from control neuronal activity in our MEA assays, and therefore were not studied further.

Different dynamics of altered wMFR were observed for ANOS1 and VIP at week 4 (Figure 3D), and

the ANOS1 nonsense variant was ranked as an example of a candidate for further study. Conversely,

a significant lower wMFR was recorded at weeks 7 and 8 for THRA (Figure 3D). No unaffected family

members were available as controls for the single NR3 line (NRXN1) nor for 36O-36P (AGBL4), thus

they were not chosen for further study. When we compared their values to the pooled values

recorded from all the different familial controls available, no difference was found for NRXN1 and a

significantly lower wMFR was observed at weeks 5 and 7 for AGBL4 (Figure 3E).

To explore intra-individual (different lines from the same individual) and inter-individual (different

individuals with the same mutation) variability, we plotted all the values obtained from each single

well, independent experiment, cell line and individual, at each of the five reading timepoints

(Figure 3F). Most lines from an individual were not significantly different from each other, and reas-

suringly low inter-individual variability was observed with different siblings bearing the same muta-

tion(s), for example 48K and 48N versus 49G and 49H (SET), or 61I and 61K versus 62M and 62X

(GLI3), at different timepoints (Figure 3F). A few lines showed a significant intra-individual variability,

for example lines 52A and 52C (THRA) at week 4, or lines 75G and 75H (CAPRIN1) at week 8

(Figure 3F). We also noted some inter-independent experiment variability for a given line,

Table 1 continued

Family
ID

MSSNG
Id Status

Primary genetic
variant(s) Sex

Age at
reprogramming
(year)

Cell of
origin

Reprogramming
method iPSC ID Reference

K 7-0254-
001

Unaffected
mother

GLI3 p.G727R/+ F 37 Blood Sendai 64N, 64Q —

7-0254-
002

Unaffected
father

GLI3 p.G465R/+ M 41 Blood Sendai 63Q, 63T —

7-0254-
003

ASD-affected GLI3 p.G727R/+, mat
GLI3 pG465R/+, pat
KIF21A p.R1156G/+
(mosaic 23%)

F 7 Blood Sendai 62M, 62X N/A

7-0254-
004

Affected brother GLI3 p.G727R/+
GLI3 pG465R/+

M 9 Blood Sendai 61I, 61K N/A

L 6-0393-
001

Unaffected
mother

Family control F 54 Skin Sendai 37E —

6-0393-
003

ASD-affected *EHMT2 p.K1164Nfs/+
UBE2I p.E78K/+

F 18 Skin Sendai 38B, 38E N/A

DOI: https://doi.org/10.7554/eLife.40092.005
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Figure 1. Genetic pedigrees of the participant families with identified genetic variants. One ASD-affected (black arrow) and one sex-matched

unaffected (black star) members were typically selected for iPSC reprogramming. ASD-affected children are represented with a black box; note that line

1-0019-002 (19-2) in A) was used as a control and was described previously (Deneault et al., 2018).
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for example line 38E (EHMT2) at weeks 4 and 5 (dots with different colours do not overlap in

Figure 3F). Note that similar profiles were monitored in terms of MFR (Figure 3—figure supple-

ment 1), indicating that these differences were not due to having more or less active electrodes in

different lines. While consistent activity across lines was generally observed, the presence of

C

DB

A
Differentiation

(NEUROG2 O/E)

OCT4

iPSCs Multi-electrode

array (MEA)

Glutamatergic

neurons

E-phys

Families

with ASD

Skin fibroblasts or

CD34+ blood cells

Reprogramming

Cell expansion

and banking

Cell

collection

TRA-1-60
DAP1

MAP2
DAP1

Figure 2. Generation of iPSCs and neurons. (A) Schematic representation of the experimental procedure to find specific electrophysiological signatures

associated with genetic variants of clinical significance to autism spectrum disorder (ASD). Fibroblasts or blood cells were reprogrammed into iPSCs

from a cohort of 25 probands and unaffected family members. Differentiation of iPSCs into glutamatergic neurons was achieved with NGN2 7 day

transient overexpression, and electrophysiological properties were monitored using a multi-electrode array (MEA) device. (B) Flow cytometry and (C)

Immunohistochemistry revealing expression of the pluripotency markers NANOG, SSEA4, OCT4 and TRA-1–60 in a representative iPSC line. (D)

Representative normal male karyotype in iPSC; 20 cells were examined.

DOI: https://doi.org/10.7554/eLife.40092.003

The following figure supplement is available for figure 2:

Figure supplement 1. Multi-electrode array (MEA) monitoring of iPSC-derived neurons.

DOI: https://doi.org/10.7554/eLife.40092.004
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Figure 3. Multi-electrode array monitoring of iPSC-derived glutamatergic neurons. (A–E) Weighted mean firing rate (wMFR) of pooled cell lines from

control and KO neurons for each family from week 4 to 8 PNI. (F) Dot plots showing wMFR of each cell line from week 4 to 8 PNI; each dot represents

the wMFR of one well, and the color reflects independent experiments. Values are presented as mean ± SEM of several technical and biological

replicates, as presented in Supplementary file 3; ‘all controls’ represents the pool of 311 different control wells from 17 independent experiments;

Figure 3 continued on next page
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variability prompted us to interrogate independent variants created by genome editing of CNTN5,

ANOS1 and EHMT2.

CNTN5 isogenic pair to control for genetic background contribution
To further characterize the heterozygous CNTN5-mutant neuron lines 27H and 27N, we first showed

a significantly higher network burst frequency at weeks 5, 6 and 8 (Figure 4A), indicating a more

synchronized neuronal activity across each well. Importantly, CNTN5 protein levels overall were

reduced by at least 33% in CNTN5-/+ neurons (Figure 4A, right panel), suggesting that the 676 kb

heterozygous loss in CNTN5 interferes with the production of CNTN5 protein, but also that the non-

deleted allele may be more active transcriptionally than in controls.

Unaffected sex-matched family members are genetically similar to their related probands, but still

present substantial genetic differences that can contribute to a given phenotype. Isogenic cell pairs

represent better control of the genetic background contribution (Hoffman et al., 2019). CRISPR

editing provides the possibility to engineer such isogenic controls (Miyaoka et al., 2014;

Powell et al., 2017). Since editing large CNVs, such as the 676 kb deletion in CNTN5, is currently

difficult using existing technology, we elected to introduce a set of nonsense mutations, previously

described as ‘StopTag’ (Deneault et al., 2018), to knock out (KO) the expression of this gene in an

unrelated iPSC line that was previously generated from a non-ASD and non-carrier individual. This

parental line ‘19–2’ was also exploited in similar isogenic KO approaches (Woodbury-Smith et al.,

2017) (Ross et al., in revision; Zaslavsky et al., in press), allowing assessment in a different and unre-

lated genetic background. For technical reasons, we targeted exon 5 of the transcript

ENST00000524871.5 of CNTN5 in order to disrupt its expression. A heterozygous iPSC line was iso-

lated to better mimic the heterozygous status of the CNTN5 deletion in the proband lines 27H and

27N. Intriguingly, the new isogenic iPSC-derived neuron line 19–2-CNTN5StopTag/+ did not show sig-

nificant differences in terms of wMFR or network burst frequency at week 6 (Figure 4B). However,

the wMFR of line 19–2 increased up to nearly 3 Hz at week 8 (Figure 4B) while the CNTN5 family

controls stayed around 0.5 Hz (Figure 3B). In this context of a more active cell line, we extended the

recordings until week 11, and the hyperactive wMFR of 19–2-CNTN5StopTag/+ was only evident from

week 10 (Figure 4B). Moreover, CNTN5 protein levels were clearly decreased in this isogenic mutant

line (Figure 4B, right panel), implying that StopTag insertion efficiently disrupted gene expression.

These results indicate that loss of CNTN5 function is responsible for increased neuronal activity in

vitro.

Repair of ANOS1 rescues defective membrane currents
In a complementary approach to minimize the confounding effect of genetic background from famil-

ial and unrelated controls, and its impact on phenotype, we sought to edit our proband-specific var-

iants using CRISPR in order to create matching isogenic controls. We prioritized the nonsense

variant R423X found in ANOS1 in participant 2-1303-003 and successfully corrected the correspond-

ing iPSC line 18C (Figure 5A–C). Indeed, after detecting 7% edited cells using droplet digital PCR

(ddPCR) in well G08 in the primary 96-well culture plate post-nucleofection, two subsequent limit-

ing-dilution enrichment steps were necessary to isolate a 100% corrected iPSC line (Figure 5B).

Figure 3 continued

*p<0.05 from multiple t test comparison with Holm-Sidak correction (B), and without correction (C–E), and one-way ANOVA Tukey test pointing to

intra- or inter-individual variability per family (F).

DOI: https://doi.org/10.7554/eLife.40092.006

The following source data and figure supplements are available for figure 3:

Source data 1. Weighted mean firing rate values for each cell line at each timepoint.

DOI: https://doi.org/10.7554/eLife.40092.009

Figure supplement 1. Mean firing rates recorded by MEA from iPSC-derived glutamatergic neurons.

DOI: https://doi.org/10.7554/eLife.40092.007

Figure supplement 1—source data 1. Mean firing rate values for each cell line at each timepoint.

DOI: https://doi.org/10.7554/eLife.40092.008
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Sanger sequencing confirmed the properly corrected genomic DNA sequence (Figure 5C). This

newly corrected line was named ‘18CW’ (see iPSC line ID ‘18CW’ in Table 1 and Figure 5C).

The CRISPR-corrected line 18CW exhibited a significant difference in wMFR compared with its

isogenic counterpart 18C at 4 week, and no difference from the familial control line 19A

(Figure 3D). Moreover, the availability of such isogenic set prompted us to explore more detailed

electrophysiological properties using patch-clamp recordings of single neurons in order to reveal

any phenotype not detected using MEA. While the advantage of MEA experiments is that continu-

ous live monitoring of neural activity can be measured over multiple weeks, we used patch-clamp

electrophysiology on NGN2 neurons between days 21–25 PNI, which provides robust recordings to
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Figure 4. Validation of CNTN5-mutant neuron hyperactivity. (A) The network burst frequency was recorded from the CNTN5 family from weeks 4–8 PNI,

with corresponding protein levels by western blot on the right panel; *p<0.05 from multiple t test comparison with Holm-Sidak correction at weeks 6

and 8. (B) Both wMFR and network burst frequency were recorded from the 19–2-CNTN5 isogenic pair from weeks 4–11 PNI, with protein levels. The

iPSC IDs and genotypes are indicated above each graph; values are presented as mean ± SEM of different lines per participant, and of several technical

and biological replicates, as presented in Supplementary file 3; actin beta (ACTB) was used as a loading control for the western blots and the relative

intensity of each band is indicated below the blots; *p<0.05 from multiple t test comparison with Holm-Sidak correction.

DOI: https://doi.org/10.7554/eLife.40092.010

The following source data is available for figure 4:

Source data 1. Multielectrode array values for familial CNTN5 lines.

DOI: https://doi.org/10.7554/eLife.40092.011

Source data 2. Multielectrode array values for isogenic CNTN5 lines.

DOI: https://doi.org/10.7554/eLife.40092.012
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Figure 5. Correction of point mutation in ANOS1 in iPSCs using CRISPR editing. (A) Design of gRNAs, ssODNs and ddPCR probes for correction of

R423X in ANOS1; one sgRNA for each genomic DNA strand, that is, gRNA- in blue and gRNA +in yellow, was devised in close proximity for the

double-nicking system using Cas9D10A; the non-sense mutations in ANOS1 is depicted in bold red; a silent mutation was introduced in ssODN (in

blue) for ddPCR probe (underlined) specificity and to prevent nicking. (B) ddPCR absolute quantification coupled with two consecutive limiting-dilution

Figure 5 continued on next page
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detect phenotypes, as shown in previous studies (Yi et al., 2016). Furthermore, the increased den-

sity of neuronal processes appearing beyond 4 weeks PNI can preclude consistent clean patch-clamp

recordings, but this is not an issue with MEA. Using this protocol, we detected significantly lower

outward membrane current at 40 mV in the mutant line 18C compared to its isogenic control 18CW

(Figure 5D). A significantly higher inward current was also observed in mutant neurons between

�40 and 0 mV (Figure 5D). No overt off-target mutations were detectable using our previously-

described WGS strategy (Deneault et al., 2018). These results indicate that ANOS1-null iPSC-

derived glutamatergic neurons present abnormal sodium and potassium membrane currents that

might contribute to ASD development. Notably, these observations underline that some specific

electrophysiological phenotypes at the single cell level, for example membrane currents, may not be

captured when using MEA monitoring at the cell population level.

Neuronal hyperactivity in EHMT2/UBE2I Complex-Variant neurons
Lines 38B and 38E from participant 6-0393-003 carry two ASD-relevant variants; a de novo missense

E78K in UBE2I and a de novo frameshift variant K1164Nfs in EHMT2 (Figure 1L and Table 1). MEA

recordings showed a significantly higher wMFR (Figure 3B) and network burst frequency

(Figure 6A) from week 4 to 8 PNI compared to their related control line 37E. Interestingly, the pro-

file of the wMFR curve (Figure 3B) was similar to that of the MFR curve (Figure 3—figure supple-

ment 1A), indicating that cell survival or expansion is not a major contributor to the difference

observed in neuronal activity. To ensure that this hyperactivity was synaptic and not only intrinsic to

the neurons, we performed patch-clamp recordings, at day 21–25 PNI to avoid the increased density

of neuronal processes that impacts the ability to obtain clean recordings, as stated previously. Intrin-

sic properties, for example capacitance and resistance, did not vary significantly (Figure 6B), indicat-

ing comparable maturity levels between lines 37E and 38E. While spontaneous excitatory post-

synaptic current (sEPSC) amplitude was unchanged, sEPSC frequency was significantly higher in

mutant neurons compared to controls (Figure 6B). These observations suggest that a potential loss-

of-function of UBE2I and/or EHMT2 is involved in ASD-related neuronal dysfunction.

Evidence of functional impact of EHMT2, but not UBE2l variants
Since our attempts to edit the variants E78K in UBE2I and K1164Nfs in EHMT2 had not been suc-

cessful, we sought to determine the potential contribution of E78K in UBE2I to the observed synap-

tic hyperactivity. To estimate the damaging potential of this missense variant on the function of

UBE2I protein, we utilized a Saccharomyces cerevisiae complementation assay that was previously

developed as a validated surrogate genetic system to predict the pathogenicity of diverse human

variants (Sun et al., 2016). In this assay, lethality of a temperature-sensitive allele of the yeast UBC9

gene (ortholog of human UBE2I) is rescued by expressing a functional version of human UBE2I. Sev-

eral missense variants in UBE2I have been accurately predicted as deleterious at conserved posi-

tions, or benign at other positions (Zhang et al., 2017). Therefore, we used this complementation

assay to test the consequence of our variant E78K, and found no effect of this variant on the function

of human UBE2I (Figure 6—figure supplement 1). Because these results disfavor involvement of the

UBE2I variant E78K in the neuronal hyperactivity observed in Figures 3B,F and and 6A–B, we

excluded UBE2I from subsequent experiments and further explored a potential causal link between

EHMT2 and synaptic activity.

Figure 5 continued

enrichment steps were necessary to isolate a 100% corrected line, that is, 100% VIC signal. (C) Sanger sequencing confirmed proper correction of non-

sense mutation R423X in line 18C back to wt; this newly corrected line was named 18CW. (D) Outward and inward membrane current detected by

patch-clamp recordings; total number of recorded neurons was 15 for both 18C and 18CW; values are presented as mean ± SEM of three independent

differentiation experiments, recorded at day 21–25 PNI. *p<0.05 from multiple t test comparison with Holm-Sidak correction.

DOI: https://doi.org/10.7554/eLife.40092.013

The following source data is available for figure 5:

Source data 1. Inward/outward current values for familial ANOS1 lines.

DOI: https://doi.org/10.7554/eLife.40092.014
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Figure 6. Electrophysiological and protein level variations in EHMT2-deficient neurons. (A) Network burst frequency was recorded using MEA from the

EHMT2/UBE2I family from weeks 4–8 PNI; values are presented as mean ± SEM of several technical and biological replicates, as presented in

Supplementary file 3; *p<0.05 from multiple t test comparison with Holm-Sidak correction. (B) Patch-clamp recordings of two selected lines, that is,

37E (control) and 38E (mutant); values are presented as mean ± SEM of 14 different neurons from two independent differentiation experiments; *p<0.05

from from unpaired t test two-tailed. (C) Western blot showing a decrease in EHMT2 protein levels in mutant neurons (38B and 38E) compared to their

respective control neurons (37E). (D) MEA recordings of the isogenic pair 19–2 and 19–2-EHMT2StopTag/+ iPSC-derived neurons from weeks 4–11 PNI;

values are presented as mean ± SEM of eight different wells for each three independent differentiation experiments; †note that the same data for

control 19–2 was used in Figure 4B since it was generated within the same experiments, that is, plates 26, 33 and 37 (see Supplementary file 3);

*p<0.05 from multiple t test comparison with Holm-Sidak correction at week 11 (weighted mean firing rate) and weeks 9–11 (network burst frequency).

(E) Western blot showing a decrease in EHMT2 protein levels in mutant neurons 19–2-EHMT2StopTag/+ compared to their respective control (ctrl)

neurons 19–2; actin-beta (ACTB) was used as a loading control and the relative intensity of each band is indicated below the blots; pF, picofarad; MW,

megaohm; Hz, hertz; pA, picoampere.

Figure 6 continued on next page
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Interestingly, evaluation of EHMT2 protein abundance revealed a clear decrease in the mutant

lines 38B and 38E, as compared to the control 37E (Figure 6C). This suggests that a reduced expres-

sion of EHMT2 increases spontaneous spiking activity and sEPSC frequency of glutamatergic

neurons.

EHMT2-/+ CRISPR-isogenic pair confirms neuronal hyperactivity
Since the prediction of damage extent of the frameshift variant K1164Nfs on the function of EHMT2

may not be accurate, we used our StopTag insertion strategy in iPSC line 19–2, and targeted exon

20 of the transcript ENST00000375537.8 of EHMT2 in order to disrupt its expression. In this new iso-

genic line, wMFR and network burst frequency were also increased in iPSC-derived 19–2-EHMT2Stop-

Tag/+ neurons compared to control 19–2, around week 10 PNI and beyond (Figure 6D and

Figure 6—figure supplement 2A). This increased activity in mutant neurons occurred later than that

observed in the familial lines 38B/E, possibly due to the more active 19–2 line. Accordingly, EHMT2

protein levels were reduced by half in mutant cells (Figure 6E). We also performed patch-clamp

recordings on these neurons at day 21–25 PNI, as above. We did not detect any significant change

in sEPSC frequency and amplitude at this earlier timepoint, similar to the MEA experiment. However,

intrinsic properties showed a significant increase in capacitance and decrease in input resistance in

mutant cells (Figure 6—figure supplement 2B). These observations suggest that the mutant neu-

rons at 3–4 weeks PNI potentially have a faster maturation rate, however, this phenotype is most

pronounced in the hyperactivity recorded by MEAs later at 9–11 weeks PNI. These results support

the conclusion that the inactivation of one allele of EHMT2 significantly increases spontaneous net-

work activity of excitatory neurons, with possible effects on the neuronal maturation process.

Discussion
In order to establish a scalable iPSC-derived neuron paradigm to study ASD, we selected 12 well-

characterized families bearing assumed etiologic variants in ASD-relevant genes, and CNV loci. Per

family, we established one to four different fully-characterized and normal iPSC lines from typically

one individual with ASD, and one unaffected (non-ASD) sex-matched member. Simultaneous multi-

line electrophysiological evaluation revealed hyperactivity of the simple-variant CNTN5-/+ iPSC-

derived glutamatergic neurons in two independent genetic backgrounds. Moreover, isogenic-MEA

and patch-clamp recordings confirmed synaptic hyperactivity of iPSC-derived neurons with disrup-

tive mutations in EHMT2, also in two different genetic backgrounds.

To increase the modeling scalability of complex genetic disorders such as ASD while optimizing

statistical power, several parameters require careful consideration. Given substantial variation in

reprogramming and neuronal differentiation efficiencies, sample size is important to control. It was

recently proposed that inter-individual variation, that is the number of probands with similar genetic

variants, is more important to consider than intra-individual variation, that is the number of iPSC

clones derived from the same individual (Hoffman et al., 2019). Aiming at multi-variant phenotyp-

ing, we tested one or two probands per deficient gene, however, we were able to create an isogenic

pair in a different genetic background for the two highly relevant genes, that is, CNTN5

Figure 6 continued

DOI: https://doi.org/10.7554/eLife.40092.015

The following source data and figure supplements are available for figure 6:

Source data 1. Multielectrode array values for familial EHMT2 lines.

DOI: https://doi.org/10.7554/eLife.40092.019

Source data 2. Patch-clamp recording values for familial EHMT2 lines.

DOI: https://doi.org/10.7554/eLife.40092.020

Figure supplement 1. Yeast complementation assay to estimate the pathogenicity of the missense mutation E78K in the human gene UBE2I.

DOI: https://doi.org/10.7554/eLife.40092.016

Figure supplement 2. Electrophysiology of the isogenic pair 19–2 and 19–2-EHMT2StopTag/+.

DOI: https://doi.org/10.7554/eLife.40092.017

Figure supplement 2—source data 1. Patch-clamp recording values for isogenic EHMT2 lines.

DOI: https://doi.org/10.7554/eLife.40092.018
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(Lionel et al., 2011; Mercati et al., 2017; van Daalen et al., 2011) and EHMT2 (Deimling et al.,

2017; Kleefstra et al., 2005; Zylicz et al., 2015), thereby controlling inter-individual variation. We

derived two independent iPSC clones per participants to regulate intra-individual variation.

Another important parameter to consider is the cellular homogeneity of neuronal cultures. We

preferred to use the NGN2 system over classic dual-SMAD inhibition protocols because in our expe-

rience it represents an advantage in terms of cellular homogeneity. It is also faster than other proto-

cols and produces much higher proportion of glutamatergic neurons that can be studied for ASD

(Canitano and Pallagrosi, 2017; Habela et al., 2016) or other neurological disorders (Lin et al.,

2018). We assume that most NGN2-neurons are glutamatergic based on the data presented in the

original publication establishing this technique (Zhang et al., 2013), and on our previous publication

using high-cell density RNAseq assessment (Deneault et al., 2018). Moreover, we have treated sev-

eral of our cultures at the end of the MEA experimentation with different neurotoxins (CNQX, PTX,

TTX) to show that most neurons are glutamatergic and not GABAergic, for different lines. In addi-

tion, our patch-clamp recordings have demonstrated that these neurons exhibit the properties of

excitatory neurons.

Characterization of neuronal composition and survival when MEA is performed is difficult to

achieve with high accuracy. Our strategy involved using several technical (3 to 12 per independent

experiment) and biological (up to 4) replicates to best compensate for inter-well and inter-iPSC neu-

ronal induction variations (Supplementary File 3). It is possible that some phenotypes were missed,

for example in our families without MEA phenotypes, since we cannot exclude the possibility that

differences in cell number or composition across individuals in a family actually masked potential

MEA phenotypes. MEA phenotypes may not always predict electrophysiological deficits and vice

versa, as evidenced for ASTN2 in our recent publication (Deneault et al., 2018). Since the familial

controls are often less active, this screen might be biased towards the identification of hyperactive

phenotypes rather than hypoactive. However, we have previously detected hypoactive phenotypes

in isogenic KO line 19–2 at week 8 and before (Deneault et al., 2018). Line 19–2 is generally more

active than most other familial lines, and this may have delayed emergence of the hyperactive phe-

notype in isogenic cells until week 10. We suggest a developmental time course covering several

timepoints for each family moving forward using MEA. For specific lines, different timepoints may be

sufficient.

An increased neuronal activity, for example MFR in mutant lines 38B/E, might indicate alterations

in synaptic function and/or maturation. We have presented the MFR for all tested cell lines in Fig-

ure 3—figure supplement 1, in support of the wMFR in Figure 3. The wMFR is defined as the MFR

divided by the number of active electrodes per well. If there is significant failure of electrode activa-

tion in a well, for example due to differences in cell survival, dispersion or adhesion, those data are

excluded. For example, the increased MFR observed in EHMT2-/+ lines could be due to a better

capacity to survive, disperse or adhere than EHMT2+/+ cells, without affecting synaptic activity. How-

ever, excluding all inactive electrodes would then result in a comparable wMFR between mutant and

control cells, which was not the case. Indeed, both MFR and wMFR were significantly higher in

EHMT2-/+ cells. That does not exclude the possibility of a better survival, dispersion or adhesion, but

it is likely not the only reason for the observed increase in spiking activity, suggesting greater synap-

tic activity, as supported by patch-clamp recordings. Indeed, we used patch-clamp recordings to

show that sEPSC frequency was significantly increased in mutant line 38E compared to control line

37E. We believe these results directly support synaptic alteration as one of the possible causes for

the increased neuronal activity measured by MEA. However, a detailed analysis of cell maturation

will be required for each different cell line involved in this study to clarify this issue. It will be interest-

ing in the future to investigate the possible mechanisms involved in the decreased activity observed

in THRA-mutant neurons (Figure 3D), after validation by patch-clamp recordings.

ANOS1 (Anosmin 1) is a glycoprotein of the extracellular matrix including four consecutive fibro-

nectin type III domains. Loss-of-function variants in ANOS1 were shown to cause the Kallmann syn-

drome, which is characterized by congenital hypogonadotropic hypogonadism associated with

anosmia, delayed puberty and infertility (Dodé and Hardelin, 2009). Defects in the migration of

gonadotropin-releasing hormone (GnRH) neurons were observed during embryonic development, as

well as morphological changes in the basal forebrain cortex (Manara et al., 2014). In human, a pro-

band carrying the nonsense variant R423X in ANOS1, and presenting clinical hypogonadotropic

hypogonadism, was also diagnosed with ASD (Jiang et al., 2013), suggesting a link between
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ANOS1 and ASD. Despite the absence of significant MEA results at late recordings, neuronal mem-

brane current defects were validated using patch-clamp recordings in an isogenic pair (Figure 5D).

These results indicate that glutamatergic neuron activity is also influenced by ANOS1, which repre-

sents a risk gene for ASD.

CNTN5 (Contactin 5) is an immunoglobulin cell adhesion molecule, with four fibronectin type III

domains, involved in neurite outgrowth and axon connection in cortical neurons, and was associated

with ASD (van Daalen et al., 2011). Different CNVs affecting CNTN5 have been associated with

ASD and ADHD, with increased occurrence of hyperacusis (Lionel et al., 2011; Mercati et al.,

2017). The molecular mechanisms through which heterozygous loss of CNTN5 increases neuronal

activity in vitro (Figure 4A–B) remains to be elucidated. Gene editing of the 676 kb deletion, as

found in lines 27H and 27N (Figure 1D and Table 1), to obtain isogenic controls may be challenging

due to the size, but this approach might eventually be applied.

Using a yeast complementation assay (Figure 6—figure supplement 1), we estimated that the

de novo missense variant E78K in UBE3I was not responsible for the electrophysiological phenotypes

observed in participant 6-0393-003 (Figure 6A–B). We were then prompted to investigate further

the potential role of the frameshift variant K1164Nfs in EHMT2. EHMT2 (G9a) is a histone methyl-

transferase (HMTase) that forms a complex with EHMT1 (GLP) to catalyze mono- and dimethylation

of lysine nine on histone H3 (H3K9me1/2) (Rice et al., 2003). Of note, EHMT1 protein sequence is

highly similar to EHMT2 (Deimling et al., 2017). Actually, EHMT1 haploinsufficiency is involved in

intellectual disability (ID) and ASD as part of the Kleefstra syndrome (Kleefstra et al., 2005). EHMT2

represses pluripotency genes in embryonic stem cells (Zylicz et al., 2015) and potentially acts as

both repressor of neural progenitor genes and activator of neuronal differentiation (Deimling et al.,

2017). The impact of the single base deletion in EHMT2 (K1164Nfs) on the protein function remains

to be determined (see Table 1 for details). The frameshift is computationally predicted to extend

the protein rather than truncating it, by utilizing sequence in the 3’UTR. However, it is located

exactly at the beginning of the post-SET domain, that is at position 1164 of EHMT2. The resulting

change in the downstream protein sequence completely disrupts three conserved cysteine residues

in the post-SET domain that normally form a zinc-binding site with a fourth conserved cysteine close

to the SET domain (Zhang et al., 2003). Since these three conserved cysteine residues are essential

for HMTase activity, as replacement with serine abolished HMTase activity (Zhang et al., 2002), we

suspect that this HMTase activity of EHMT2 is defective in our mutant glutamatergic neurons and

potentially related to the observed hyperactivity (Figure 6). Upon our further validation experiment

using a CRISPR-derived isogenic system and an unrelated genetic background (Figure 6D), we pro-

pose that EHMT2 impacts the synaptic function of glutamatergic neurons through H3K9me1/2 cata-

lyzing ability. Further experiments might clarify this possibility, such as CRISPR-correction of the

K1164Nfs point mutation in lines 38B and 38E to obtain isogenic controls.

Overall, this study highlights a way to improve the scalability of testing multiple iPSC-derived neu-

ronal lines with various ASD-risk variants. Furthermore, our work demonstrates that for future studies

to capture and characterize the electrophysiological impact of ASD variants on human iPSC-NGN2

neurons, it is most beneficial to include both MEA and patch-clamp experiments, across multiple

timepoints. Analyzing multiple mutations and genes at once can lead to the identification of poten-

tial endophenotypes, in this case neuronal hyperactivity. This work revealed that inactivation of at

least one allele of CNTN5 or EHMT2 significantly intensifies excitatory neuron synaptic activity in

vitro. Such phenotype offers the possibility to implement NGN2-based high-throughput drug

screening strategies (Cheng et al., 2017) combining MEA (Tukker et al., 2018) and lines 38B/38E

for instance, to discover molecules that may compensate for neuronal hyperactivity.

Materials and methods

Ethics for human experiments
Under the approval of the Canadian Institutes of Health Research Stem Cell Oversight Committee

and the Research Ethics Board (REB) at the Hospital for Sick Children, Toronto, Canada, iPSCs were

generated from dermal fibroblasts or CD34 +blood cells. Three different informed consent forms for

iPSC derivation and publication were obtained: i) Research Consent Form for Parent/Legal Guardi-

ans (of an individual with a neurologic condition); ii) Research Consent Form for Unaffected
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Individuals; iii) Assent form (for individuals with a neurologic condition). These consent forms

describe in details the purpose of the research, the description of the research, the potential harms,

the potential benefits, confidentiality, storage of the research samples, participation, reimbursement,

sponsorship, and declaration of conflict of interest; REB approval file 1000012015.

Skin fibroblasts culture
Skin-punch biopsies were obtained from the upper back area by a clinician at The Hospital for Sick

Children. Samples were immersed in 14 ml of ice-cold Alpha-MEM (Wisent Bioproducts) supple-

mented with penicillin 100 Units/ml and streptomycin 100 mg/ml (ThermoFisher), and transferred

immediately to the laboratory at The Centre for Applied Genomics (TCAG). Each biopsy was cut

into ~1 mm3 pieces with disposable scalpel in a 60 mm dish. 5 ml of collagenase 1 mg/ml (Sigma,

Canada) was added and the dish was placed in 37˚C incubator for 1:45 hr. Skin pieces and collage-

nase were then transferred to a 15 ml tube, and centrifuged at 300 g for 10 min. Supernatant was

removed, 5 ml of trypsin 0.05%/EDTA 0.53 mM (Wisent Bioproducts) was added, and the mix was

pipetted up and down several times to break up tissue and placed in 37˚C incubator for 30 min.

After incubation, the mix was centrifuged at 300 g for 10 min, and supernatant was removed leaving

1 ml. The pellet was pipetted up and down vigorously to break to the pieces without creating bub-

bles. The mix was transferred in a T-12.5 flask along with 5 ml of Alpha-MEM, 15% Fetal Bovine

Serum (FBS; Wisent Bioproducts), penicillin 100 Units/ml and streptomycin 100 mg/ml (Thermo-

Fisher), and placed in 37˚C incubator for about a week until 100% confluence. Cultured cells were

fed every 5–7 days if not confluent. Once confluent, cells were passed into three 100 mm dishes to

expand, and frozen in liquid nitrogen.

Reprogramming fibroblasts using integrative virus
Reprogramming of skin fibroblasts was performed using retroviral and lentiviral vectors. Retroviral

vectors encoding POU5F1, SOX2, KLF4, MYC, and lentiviral vectors encoding the pluripotency

reporter EOS-GFP/PuroR were used and obtained as described (Hotta et al., 2009).

Reprogramming fibroblasts using non-integrative Sendai virus
Reprogramming of fibroblasts via Sendai virus was performed at the Centre for Commercialization

of Regenerative Medicine (CCRM) using CytoTune-iPS 2.0 Sendai Reprogramming Kit (Thermo-

Fisher). Fibroblasts were cultured in fibroblast expansion media (Advanced DMEM; 10% FBS; 1X

L-Glutamine; 1X pen/strep – Thermo Fisher). The desired number of wells for reprogramming from a

24-well plate was coated with 0.1% gelatin. Fibroblasts were dissociated using Trypsin (Thermo-

Fisher) and allowed to settle overnight. Virus multiplicity of infection (MOI) was calculated and

viruses combined according to number of cells available for reprogramming and manufacturer’s pro-

tocol. 24 hr after transduction, media was changed to wash away viruses. Media was additionally

changed on day 3 and 5 after transduction. 6 days after transduction, 6-well plates were coated with

Matrigel(Corning). Cells were removed from the 24-well plate using Accutase (ThermoFisher) and

plated on Matrigel in expansion media. 24 hr later, media was replaced with E7 media (StemCell-

Technologies). Cells were monitored and fed daily with E7. Once colonies were of an adequate size

and morphology to pick, individual colonies were picked and plated into E8 media (StemCellTech-

nologies). Clones growing well were further expanded and characterized using standard assays for

pluripotency, karyotyping, genotyping and mycoplasma testing. Directed differentiation was per-

formed using kits for definitive endoderm, neural and cardiac lineages (all ThermoFisher).

Peripheral blood mononuclear sells (PBMCs) isolation from peripheral
blood and enrichment of CD34 +cells
Whole peripheral blood was processed at CCRM using Lymphoprep (StemCellTechnologies) in a

SepMate tube (StemCellTechnologies) according to manufacturer’s instructions. The sample was

centrifuged (10 min at 1200 g). The top layer containing PBMCs was collected and mixed with 10 mL

of the PBS/FBS mixture and centrifuged (8 min at 300 g). The PBMC’s collected at the bottom of the

tube were washed, counted and resuspended in PBS/FBS mixture. CD34 +cells were then isolated

using the Human Whole Blood/Buffy Coat CD34 +Selection kit according to manufacturer’s instruc-

tions (StemCellTechnologies). Isolated cells were expanded in StemSpan SFEM II media
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(StemCellTechnologies) and StemSpan CD34 +Expansion Supplements (StemCellTechnologies) prior

to reprogramming.

Reprogramming PBMC using non-Integrative Sendai virus
Reprogramming of CD34 +PBMCs was performed at CCRM using CytoTune-iPS 2.0 Sendai Reprog-

ramming Kit. Expanded cells were spun down and resuspended in StemSpan SFEM II media and

StemSpan CD34 +Expansion Supplements, and placed in a single well of a 24-well dish. Virus MOI

was calculated and viruses combined according to number of cells available for reprogramming and

manufacturer’s protocol. The virus mixture was added to cells, and washed off 24 hr after infection.

48 hr after viral delivery, cells were plated in 6-well plates in SFII and transitioned to ReproTESR for

the duration of reprogramming. Once colonies were of an adequate size and morphology to pick,

individual colonies were picked and plated into E8. Clones growing well were further expanded and

characterized as explained above.

iPSC maintenance
All iPSC lines were maintained on matrigel (Corning) coating, with complete media change every

day in mTeSR (StemCellTechnologies). ReLeSR (StemCellTechnologies) was used for passaging.

Accutase (InnovativeCellTechnologies) and 10 mM Rho-associated kinase (ROCK) inhibitor (Y-27632;

StemCellTechnologies) were used for single-cell dissociation purposes.

Gene editing
For point mutation correction in 18C line, we used the type II CRISPR/Cas9 double-nicking

(Cas9D10A) system with two guide RNA (gRNAs) to reduce off-target activity. We devised the

gRNA sequences using tools available at http://crispr.mit.edu/. We designed a HDR-based method

using a synthesized single-stranded oligonucleotide (ssODN) template to replace the point mutation

with the reference nucleotide. To prevent damage to the correct sequence, a silent mutation was

introduced in the ssODN close to the proto-adjacent motif (PAM) of the reverse gRNA (gRNA-),

which commands Cas9D10A to nick the plus strand, given that ssODN was synthesized as plus

strand. All the CRISPR machinery was introduced into iPSC by nucleofection. Screening for correc-

tion of the appropriate base pair was based on absolute quantification of allele frequency using

droplet digital PCR (ddPCR). Enrichment of corrected cells was obtained through sib-selection step

cultures in 96-well plate format, as adapted from (Miyaoka et al., 2014), until a well containing

100% of corrected alleles was identified. For insertion of premature stop codon in 19–2 cells, ribonu-

cleoprotein (RNP) complex was used as a vector to deliver the CRISPR machinery, along with one

sgRNA and Cas9 nuclease, for each target gene. Design of sgRNA and ssODN for HDR, nucleofec-

tion and isolation of edited lines were described (Deneault et al., 2018).

Lentivirus production
7.5 � 106 HEK293T cells were seeded in a T-75 flask, grown in 10% fetal bovine serum in DMEM

(Gibco). The next day, cells were transfected using Lipofectamine 2000 with plasmids for gag-pol (10

mg), rev (10 mg), VSV-G (5 mg), and the target constructs FUW-TetO-Ng2-P2A-EGFP-T2A-puromycin

or FUW-rtTA (15 mg; gift from T.C. Südhof laboratory) (Zhang et al., 2013). Next day, the media

was changed. The day after that, the media was spun down in a high-speed centrifuge at 30,000 g

at 4˚C for 2 hr. The supernatant was discarded and 50 ml PBS was added to the pellet and left over-

night at 4˚C. The next day, the solution was triturated, aliquoted and frozen at �80˚C.

Differentiation into glutamatergic neurons
5 � 105 iPSCs/well were seeded in a matrigel-coated 6-well plate in 2 ml of mTeSR supplemented

with 10 mM Y-27632. Next day, media in each well was replaced with 2 ml fresh media plus 10 mM

Y-27632, 0.8 mg/ml polybrene (Sigma), and the minimal amount of NGN2 and rtTA lentiviruses nec-

essary to generate 100% GFP +cells upon doxycycline induction, depending on prior titration of a

given virus batch. The day after, virus-containing media were replaced with fresh mTeSR, and cells

were expanded until near-confluency. Newly generated ‘NGN2-iPSCs’ were detached using accu-

tase, and seeded in a new matrigel-coated 6-well plate at a density of 5 � 105 cells per well in 2 ml

of mTeSR supplemented with 10 mM Y-27632 (day 0 of differentiation). Next day (day 1), media in
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each well was changed for 2 ml of CM1 [DMEM-F12 (Gibco), 1x N2 (Gibco), 1x NEAA (Gibco), 1x

pen/strep (Gibco), laminin (1 mg/ml; Sigma), BDNF (10 ng/ml; Peprotech) and GDNF (10 ng/ml;

Peprotech) supplemented with fresh doxycycline hyclate (2 mg/ml; Sigma) and 10 mM Y-27632. The

day after (day 2), media was replaced with 2 ml of CM2 [Neurobasal media (Gibco), 1x B27 (Gibco),

1x glutamax (Gibco), 1x pen/strep, laminin (1 mg/ml), BDNF (10 ng/ml) and GDNF (10 ng/ml)] supple-

mented with fresh doxycycline hyclate (2 mg/ml) and puromycin (5 mg/ml for 19–2-derived cells, and

2 mg/ml for 50B-derived cells; Sigma). Media was replaced with CM2 supplemented with fresh doxy-

cycline hyclate (2 mg/ml). The same media change was repeated at day 4. At day 6, media was

replaced with CM2 supplemented with fresh doxycycline hyclate (2 mg/ml) and araC (10 mM; Sigma).

Two days later, these day eight post-NGN2-induction (PNI) neurons were detached using accutase

and ready to seed for subsequent experiments, as described below.

Multi-electrode array (MEA)
48-well opaque-bottom MEA plates (Axion Biosystems, M768-KAP-48), 16 electrodes per well, were

coated with filter-sterilized 0.1% polyethyleneimine solution in borate buffer pH 8.4 for 1 hr at room

temperature, washed four times with water, and dried overnight. 120,000 ‘day8-dox’ neurons/well

were seeded in a 5 ul drop of CM2 media at the centre of each well, then covered with 250 ml CM2

media after one hour in the incubator. The day after, 5,000 mouse astrocytes/well were seeded on

top of neurons in 50 ml/well CM2 media. Astrocytes were prepared from postnatal day 1 CD-1 mice

as described (Kim and Magrané, 2011). Media was half-changed once a week with CM2 media.

Every week post-seeding, the electrical activity of the MEA plates was recorded using the Axion

Maestro MEA reader (Axion Biosystems). The heater control was set to warm up the reader at 37˚C.
Each plate was first incubated for 5 min on the pre-warmed reader, then real-time spontaneous neu-

ral activity was recorded for 5 min using AxIS 2.0 software (Axion Biosystems). A bandpass filter

from 200 Hz to 3 kHz was applied. Spikes were detected using a threshold of 6 times the standard

deviation of noise signal on electrodes.

Offline advanced metrics were re-recorded and analysed using Axion Biosystems Neural Metric

Tool. An electrode was considered active if at least five spikes were detected per minute. Single

electrode bursts were identified as a minimum of five spikes with a maximum interspike interval (ISI)

of 100 milliseconds. Network bursts were identified as a minimum of 10 spikes with a maximum ISI

of 100 milliseconds covered by at least 25% of electrodes in each well. No non-active well was

excluded in the analysis. After the last reading, each well was treated with three synaptic antago-

nists: GABAA receptor antagonist picrotoxin (PTX; Sigma) at 100 mM, AMPA receptor antagonist 6-

cyano-7-nitroquinoxaline-2,3-dion (CNQX; Sigma) at 60 mM, and sodium ion channel antagonist

tetrodotoxin (TTX; Alomone labs) at 1 mM. The plates were recorded consecutively, 5–10 min after

addition of the antagonists. A 60 min recovery period was allowed in the incubator at 37˚C between

each antagonist treatment and plate recording.

Patch-clamp recordings
Day 3 PNI neurons were replated at a density of 100,000/well of a poly-ornithin/laminin coated cov-

erslips in a 24-well plate with CM2 media. On day 4, 50,000 mouse astrocytes were added to the

plates and cultured until day 21–28 PNI for recording. At day 10, CM2 was supplemented with 2.5%

FBS in accordance with (Zhang et al., 2013). Whole-cell recordings (BX51WI; Olympus) were per-

formed at room temperature using an Axoclamp 700B amplifier (Molecular Devices) from borosili-

cate patch electrodes (P-97 puller; Sutter Instruments) containing a potassium-based intracellular

solution (in mM): 123 K-gluconate, 10 KCL, 10 HEPES; 1 EGTA, 2 MgCl2, 0.1 CaCl2, 1 Mg-ATP, and

0.2 Na4GTP (pH 7.2). 0.06% sulpharhodamine dye was added to select neurons for visual confirma-

tion of multipolar neurons. Composition of extracellular solution was (in mM): 140 NaCl, 2.5 KCl, 1

1.25 NaH2PO4, 1 MgCl2, 10 glucose, and 2 CaCl2 (pH 7.4). Whole cell recordings were clamped at

�70 mV using Clampex 10.6 (Molecular Devices), corrected for a calculated �10 mV junction poten-

tial and analyzed using the Template Search function from Clampfit 10.6 (Molecular Devices). Follow-

ing initial breakthrough and current stabilization in voltage clamp, the cell was switched to current

clamp to monitor initial spiking activity and record the membrane potential (cc = 0,~1 min post-

breakthrough). Bias current was applied to bring the cell to ~70 mV whereby increasing 5 pA current

steps were applied (starting at �20 pA) to generate the whole cell resistance and to elicit action

Deneault et al. eLife 2019;8:e40092. DOI: https://doi.org/10.7554/eLife.40092 19 of 26

Research Communication Genetics and Genomics Neuroscience

https://doi.org/10.7554/eLife.40092


potentials. Data were digitized at 10 kHz and low-pass filtered at 2 kHz. Inward and outward cur-

rents were recorded in whole-cell voltage clamp in response to consecutive 10 mV steps from �90

mV to +40 mV.

Yeast complementation assay
The method for the yeast complementation assay was described previously (Sun et al., 2016).

Antibodies and western blotting
Cells were washed in ice-cold PBS and total protein was extracted in RIPA supplemented with pro-

teinase inhibitor cocktail, and homogenized. Equivalent protein mass was loaded on gradient SDS-

PAGE (4–12%) and transferred to Nitrocellulose membrane Hybond ECL (GE HealthCare). Primary

antibodies used were rabbit anti-CNTN5 (Novus, NBP1-83243) and rabbit anti-EHMT2/G9A (Abcam,

ab185050). HRP-conjugated secondary antibodies (Invitrogen) were used and the membranes were

developed with SuperSignal West Pico Chemiluminescent Substrate (Pierce). Images acquired using

ChemiDoc MP (BioRad) and quantified using software Imagelab v4.1 (BioRad). Western Blots were

repeated at least twice for each biological replicate.

Mycoplasma testing
All cell lines were regularly tested for presence of mycoplasma using a standard method

(Otto et al., 1996).
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