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Abstract

The multistate Bennett acceptance ratio method (MBAR) and unbinned weighted histogram 

analysis method (UWHAM) are widely employed approaches to calculate relative free energies of 

multiple thermodynamic states that gain statistical precision by employing free energy 

contributions from configurations sampled at each of the simulated λ states. With the increasing 

availability of high throughput computing resources, a large number of configurations can be 

sampled from hundreds or even thousands of states. Combining sampled configurations from all 

states to calculate relative free energies requires the iterative solution of large scale MBAR/

UWHAM equations. In the current work, we describe the development of a fast solver to 

iteratively solve these large scale MBAR/UWHAM equations utilizing our previous findings that 

the MBAR/UWHAM equations can be derived as a Rao-Blackwell estimator. The solver is 

implemented and distributed as a Python module called FastMBAR. Our benchmark results show 

that FastMBAR is more than 2 times faster than the currently, and widely used solver, pymbar, 

when it runs on a central processing unit (CPU) and more than 100 times faster than pymbar when 

it runs on a graphical processing unit (GPU). The significant speedup achieved by FastMBAR 

running on a GPU is useful not only for solving large scale MBAR/UWHAM equations but also 

for estimating uncertainty of calculated free energies using bootstrapping where the MBAR/

UWHAM equations need to be solved multiple times.

Graphical Abstract

The multistate Bennett acceptance ratio method (MBAR)1 and unbinned weighted histogram 

analysis method (UWHAM)2 are widely used to calculate relative free energies of multiple 

states utilizing configurations sampled from each of these states. For instance, they are 

routinely employed in alchemical free energy calculations,3 umbrella sampling,4 and 

temperature replica exchange simulations5 to calculate relative alchemical free energies and 
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potentials of mean force. Although MBAR and UWHAM are derived from different 

perspectives and viewed as generalizations of the Bennett acceptance ratio method6 (BAR) 

and weighted histogram analysis method4 (WHAM), respectively, they are mathematically 

equivalent and solve the same equations (Eq. 4 below), which we call the MBAR/UWHAM 

equations.

Due to the advances of hardware and software in parallel computing for molecular dynamics 

simulation, a large number of configurations can be sampled from hundreds or even 

thousands of states to study complex biological systems.7 Calculating the free energies of 

these states poses the challenge of solving large scale MBAR/UWHAM equations. To 

address the challenge, Tan et al.8 and Zhang et al.7 proposed to use locally weighted 

histogram analysis and stochastic solution approaches to approximate the solution of global 

MBAR/UWHAM equations instead of directly solving the global MBAR/UWHAM 

equations. In this letter, we took a different approach and developed a fast solver for the 

direct solution of the large scale global MBAR/UWHAM equations. This solver was 

inspired by our previous discovery that the MBAR/UWHAM equations can be derived as a 

Rao-Blackwell estimator.9 This derivation gives rise to equations (Eq. 5 below) that are 

equivalent to but more symmetrical than the original MBAR/UWHAM equations (Eq. 4 

below) and, most importantly, can be more efficiently solved by optimizing a convex 

function.

Derivation of the MBAR/UWHAM equations as a Rao-Blackwell estimator.

Given a thermodynamic system whose coordinates are represented using x , let us assume 

that we are interested in calculating the relative free energies of the system in M different 

thermodynamic states. The potential energy function of the system in the ith state is given as 

Ui x  and the relative free energies of the system in these states are represented as 

Gi*, i = 1, 2, …, M . To calculate the relative free energies, conformations of the system 

need to be sampled from each state based on the corresponding Boltzmann distribution. For 

the ith state, let us assume that Ni conformations are sampled and their coordinates are 

represented as x i
k, k = 1, 2, …, Ni . To estimate the relative free energies, we can pool 

conformations sampled from all M states and view all the conformations, 

x i
k, k = 1, 2, …, Ni, i = 1, 2, …M , as samples drawn from a generalized ensemble

p λ = i, x ∝  exp − Ui x + bi , (1)

where λ is a discrete variable representing the index of states and bi is a biasing energy 

added to the ith state so that the relative populations of conformations sampled from M 
states, Ni, i = 1, 2, …, M , match the free energies of states in the generalized ensemble. 

With the biasing energy bi added to the ith state, the relative free energy of the ith state in the 

generalized ensemble becomes Gi = Gi* + bi. To match the population of conformations 

sampled in the ith state, bi needs to satisfy the condition
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Gi = Gi* + bi = − ln
Ni
N , (2)

where N = ∑i = 1
M Ni . With the sampled conformations, x i

k, k = 1, 2, …, Ni, i = 1, 2, …M , 

from the generalized ensemble (1), the free energy of the ith state can also be estimated 

using a Rao-Blackwell estimator and normalized conditional probabilites from Eq. (1), i.e.,

Gi = − lnP λ   =   i

= − ln 1
N j = 1

M

k = 1

Ni
p λ =  i x i

k

= − ln 1
N j = 1

M

k = 1

N j exp − Ui x j
k + bi

∑l = 1
M exp − Ul x j

k + bl

.

(3)

Combining Eq. (2) and Eq. (3) and eliminating the biasing energies bi yield the MBAR/

UWHAM equations1,2

Gi* = − ln
j = 1

M

k = 1

N j exp −Ui x j
k

∑l = 1
M Nl ⋅ exp − Ul x j

k − Gl*
. (4)

The relative free energies of the system in the M states, Gi*, i = 1, 2 …, M , can be 

calculated by solving the self-consistent equations (4). Alternatively, keeping the biasing 

energies bi as unknown variables and eliminating the free energies Gi* when combining Eq. 

(2) and Eq. (3) yield more symmetrical equations:

j = 1

M

k = 1

N j exp − Ui x j
k + bi

∑l = 1
M exp − Ul x j

k + bl

= Ni . (5)

In this way, the relative free energies, Gi*, can be calculated using Eq. (2) after solving Eq. 

(5) for bi. Compared with Eq. (4), Eq. (5) is more symmetrical in the sense that the 

denominator and numerator of the summed term have similar exponential terms and the 

extra multiplication of Nl in Eq. (4) is eliminated. This makes the calculation of the summed 

ratio term in Eq. (5) numerically more stable and reduces the number of floating point 

operations. More importantly, Eq. (5) can be solved by minimizing a convex function as 

shown below.
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Solving MBAR/UWHAM equations by optimizing a convex function.

If we define

gi b1, b2, …, bM = − 1
N j = 1

M

k = 1

N j exp − Ui x j
k + bi

∑l = 1
M exp − Ul x j

k + b j

+
Ni
N , (6)

then solving Eq. (5) is equivalent to identifying the zero point of the functions: 

gi b1, b2, …, bM , i = 1, 2, …, M. It is easy to verify that the function gi(b1, b2, …, bM ) is 

the derivative function of the following function f(b1, b2, …, bM ) with respect to bi:

f b1, b2, …, bM = 1
N j = 1

M

k = 1

N j
ln

l = 1

M
exp − Ul x j

k + bl +
i = 1

M Ni
N bi, (7)

i.e., gi b1, b2, …, bM = ∂ f / ∂bi . Because the function f(b1, b2, …, bM ) is a convex function,

10 identifying the zero point of its derivative is equivalent to minimizing the function f(b1, 

b2, …, bM ). Compared with solving the nonlinear Eq. (5) directly, minimizing the convex 

function (7) has the advantage of a broader choice of robust algorithms. In order to make the 

solver applicable to solving large scale MBAR/UWHAM equations, in which the value of M 
can be in the hundreds or even thousands, the quasi-Newton optimization method called L-

BFGS11 was utilized to minimize the convex function (7) to avoid the calculation of its 

Hessian matrix. We note that solving the MBAR/UWHAM equations by minimizing a 

convex function was first explicitly described in reference [2], but the convex objective 

function proposed here is different from that in reference [2] and is also derived from a 

different perspective. We also note that in the current implementation of pymbar (version 

3.0.4 from https://github.com/choderalab/pymbar), in addition to the self-consistent iteration 

and the Newton-Raphson methods originally proposed in reference [1], the MBAR/

UWHAM equations can also be solved by minimizing a different objective function using 

Hessian free optimization methods including the L-BFGS method used in this study.

Results.

Utilizing the method described above, we developed a Python module called FastMBAR for 

solving larger scale MBAR/UWHAM equations. Compared with the existing Python module 

pymbar,1 FastMBAR is more efficient at solving the MBAR/UWHAM equations, especially 

for large values of M × N, because FastMBAR is accelerated by the use of graphical 

processing units (GPUs)12.

To benchmark the relative performance of FastMBAR to pymbar, we applied both pymbar 

and FastMBAR to solve MBAR/UWHAM equations of varying size. Because the main input 

of the MBAR/UWHAM equations is a matrix of energies, the size of the MBAR/UWHAM 

equation system is measured by the number of elements in the input matrix of energies, 
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which is M × N when there are M states and N conformations sampled from those states in 

total. An energy matrix with a size of M × N was generated by sampling from M one-

dimensional harmonic oscillators. For each harmonic oscillator, its equilibrium position was 

randomly sampled from the normal distribution 𝒩 0, 102  and its force constant was 

randomly sampled from a uniform distribution in the interval of [0.04, 1]. N/M 
conformations are sampled from each harmonic oscillator. Energy matrices of various sizes 

were obtained by varying the values of both M and N.

Because the focus of this paper is solving large scale MBAR/UWHAM equations, 

optimization methods that require calculating the Hessian matrix are not considered. To 

make a fair comparison between pymbar and FastMBAR, both methods use the same L-

BFGS11 optimization method with the same convergence criterion which is that the relative 

reduction of objective functions is less than 1 × 10−12. Double floating point operations are 

used in both methods. The computational wall clock times to solve the MBAR/UWHAM 

equations of various sizes were measured for both pymbar and FastMBAR (Fig. 1A). 

Compared with pymbar running on a CPU, FastMBAR is more than 2 times faster running 

on the same CPU and more than 100 times faster running on a current generation gaming 

GPU. To investigate why FastMBAR is faster than pymbar, we also calculated the number of 

iterations required by pymbar and FastMBAR to converge and the wall times required to 

evaluate the objective and gradient functions once. On average, pymbar requires 1.7 times 

more iterations than FastMBAR running on CPUs or GPUs to converge to the same 

estimator precision (Fig. 1B, 1D, and Fig. S1-S7). In terms of the wall time required to 

evaluate the objective and gradient functions, FastMBAR is about 1.5 time faster than 

pymbar on CPUs and 90 times faster on GPUs (Fig. 1C). Overall, this enables FastMBAR to 

be about 2.5 times faster than pymbar when it runs on CPUs and about 150 times faster on 

GPUs.

The significant speedup provided by FastMBAR running on GPUs is useful not only for 

solving large scale MBAR/UWHAM equations but also for to perform bootstrapping to 

estimate the uncertainty of calculated free energies, because the MBAR/UWHAM equations 

need to be solved multiple times.13 Specifically in FastMBAR, the uncertainty of relative 

free energies is determined by block bootstrapping,14 which is more reliable than the closed-

form asymptotic uncertainty estimate when the observations are correlated and the number 

of effective samples is small.

In summary, in this letter we have exploited the symmetrical form that the MBAR/UWHAM 

equations take when expressed as a form of a Rao-Blackwell estimator to develop a fast 

solution to these coupled iterative equations. When cast as a computational algorithm, our 

Python-based code performs more than 2 times and two orders of magnitude faster than the 

widely used pymbar package1 to solve the same large scale problem on CPUs and GPUs, 

respectively. This gain in speed facilitates the integration of much larger data sets into free 

energy analyses as well as the capabilities to utilize statistical methods of uncertainty 

estimation through bootstrapping. In addition, our implementation for uncertainty estimation 

through bootstrapping could be further accelerated by utilizing the warm-start technique, 

where solutions of the previous subproblem are used as the starting point for solving the 
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next subproblem. Our developed code base in Python, FastMBAR, is freely available for 

download and use at https://github.com/xqding/FastMBAR.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
(A) Comparison of wall times required to solve MBAR/UWHAM equations of different 

sizes by pymbar and FastMBAR. Both pymbar and FastMBAR (CPU) were run on one 

Intel® Xeon® Processor E5520. The GPU used was a NVIDIA® GEFORCE® GTX 1080. 

(B) Number of iterations required by pymbar and FastMBAR (running on CPUs and GPUs) 

to solve MBAR/UWHAM equations to the same estimator precision (the relative reduction 

of objective functions is smaller than 1e-12). (C) Wall times required by pymbar, FastMBAR 

(CPU), and FastMBAR (GPU) to evaluate objective and gradient functions once. (D) 

Estimator precision changes with the number of iterations for pymbar, FastMBAR (CPU), 

and FastMBAR (GPU) when solving the MBAR/UWHAM equation with the energy matrix 

size of 100×12421. Similar plots for solving MBAR/UWHAM equations of other energy 

matrix sizes can be found in Fig. S1-S7.

Ding et al. Page 7

J Chem Theory Comput. Author manuscript; available in PMC 2020 February 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Graphical Abstract
	Derivation of the MBAR/UWHAM equations as a Rao-Blackwell estimator.
	Solving MBAR/UWHAM equations by optimizing a convex function.
	Results.
	References
	Figure 1:

