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Direct dehydrogenative alkyl Heck-couplings
of vinylarenes with umpolung aldehydes
catalyzed by nickel
Leiyang Lv 1,2, Dianhu Zhu 1 & Chao-Jun Li1

Alkenes are fundamental functionalities in nature and highly useful intermediates in organic

synthesis, medicinal chemistry and material sciences. Transition-metal-catalyzed Heck

couplings with organic halides as electrophiles have been established as a powerful protocol

for the synthesis of this valuable building block. However, the requirement of organic halides

and the generation of stoichiometric hazardous halide wastes may cause significant sus-

tainable concerns. The halide-free oxidative Heck alkenylations involving organometallics or

arenes as the coupling partners provide a facile and alternative pathway. Nonetheless,

stoichiometric amounts of extra oxidant are essential in most cases. Herein, we present a

direct dehydrogenative alkyl Heck-coupling reaction under oxidant-free conditions, liberating

hydrogen, nitrogen and water as the side products. Excellent regioselectivity is achieved via

neighboring oxygen atom coordination. Broad substrate scope, great functional group

(ketone, ester, phenol, free amine, amide etc) tolerance and modification of pharmaceutical

candidates and biological molecules exemplified its generality and practicability.
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S ince its first discovery in the 1970s, the palladium-catalyzed
Heck (or Mizoroki-Heck) reaction has emerged as the most
powerful and straightfoward tool for the cross-couplings

of alkenes and aryl (pseudo) halides (Fig. 1a)1,2. Despite its
remarkable importance and widespread applications in organic
synthesis3–5 over the past decades, this protocol suffers from
the inherent disadvantage of the required pre-synthesizing the
organic halides and accompanied formation of a stoichiometric
amount of hazardous halide salt, which can cause significant
environmental concerns. To persuit a more sustainable alkeny-
lation process, the halide-free oxidative Heck coupling reactions
via transmetallation or directed C–H activation have been
developed6–8. Organometallic reagents are generally moisture/air
sensitive and often not commercially available especially when
bearing functional groups (Fig. 1b). Besides, preparation of
these reagents requires stoichiometric quantities of metals, thus
producing extra metal wastes. Alternatively, the alkenylations
through direct cleavage of two C–H bonds represent an more
environmentally benign and economically attractive strategy
(Fig. 1c)9–12. As early as in 1967, Fujiwara and Moritani reported
the cross-couplings of electron-rich arenes with activated
alkenes13. Inspired by this precedent work, great achievements
have been made in this field14,15. However, due to the inherent
challenges of selectivity in C–H bond activation, the nucleophiles
were mostly restricted to the (hetero) arenes with a directing
group. Above all, the oxidative Heck reaction generally requires
stoichiometric amounts of oxidant (such as metal salt, peroxide,
benzoquinone, K2S2O8, O2, acetone16, or internal oxidant17–19

etc.) to regenerate the active metal species, thus often affording
additional side products. Hence, the development of a dehy-
drogenative Heck-coupling reaction under oxidant-free condi-
tions is promising and highly desirable20,21. In 2016, Jeganmohan
and coworkers reported an attractive ruthenium-catalyzed oxi-
dant-free ortho alkenylation of aromatic amides and anilides
with acetic acid as an additive22. Two examples of electrocatalytic
aromatic dehydrogenative Heck coupling of arenes were disclosed
by Jutand and Lei groups23,24. Recently, Lei and coworkers also
realized a direct dehydrogenative C–H alkenylation of electron-
rich arenes with styrene derivatives via a photo-induced electron
transfer process25.

In contrast, alkyl-Heck-type reactions were much more chal-
lenging and rarely explored until the last decade. Pioneered by
Oshima26 and Fu’s seminal works27, effective strategies have been
developed to facilitate this alkenylations with simple alkyl halides
as electrophiles28–44. Notably, two elegant palladium-catalyzed
cases involving alkyl C–H activation were disclosed by the groups
of Yu45 and Sanford46, which employed N-arylamide or pyridine
as a neighboring directing group with stoichiometric amounts of
external oxidant. However, up to now, the oxidant-free, direct
generation of H2 from alkyl Heck-type reaction still remains a
highly formidable task.

To address these challenges and towards the goal of sustainable
transformations, herein, we wish to report the example of direct
dehydrogenative alkyl Heck-couplings of vinylarenes with
umpolung aldehydes (Fig. 1d). Inspiration of this project stems-
from our recent studies on hydrazone chemistry, in which
umpolung aldehydes act as carbanion equivalents in the catalytic
nucleophilic addition47–52 and cross-coupling reactions53–56.
Highlighted features of this strategy are (a) no oxidant needed; (b)
H2, N2 and H2O as innocuous side products; (c) naturally rich
aldehydes as environmentally benign alkyl nucleophiles; (d)
excellent regioselectivity achieved via vicinal oxygen atom che-
lation; (e) first-row abundant nickel as catalyst; (f) broad substrate
scope and great functional group compatibility; and (g) mod-
ification of pharmaceutical candidates and biological molecules.

Results
Screening of reaction conditions. Our study commenced with a
model reaction of styrene (3a) with hydrazone (2a) generated
in situ from benzaldehyde (1a) with hydrazine monohydrate
(Table 1) [Warning: hydrazine monohydrate is potentially
hazardous and should be performed with appropriate personal
protection]. We first examined Ni(cod)2 as a catalyst precursor
and N,N-diisopropyl ethylamine as the base (DIPEA) for the
Heck-type reaction. Among the various phosphine ligands eval-
uated (entries 1–6, see Supplementary Table 1 for details), only
the sterically hindered, strong σ-donor bidentate alkyl phosphine
ligand, 1,2-bis(dicyclohexyl phosphanyl)ethane (dcype), favored
this transformation, and the product prop-1-ene-1,3-diyldi-
benzene 4aa was obtained in 78% yield with 87:13 E:Z ratio (entry
6). The liberation of H2 gas was confirmed by gas chromatograph
with a TCD detector. The operationally simple Ni(II) precatalysts
were then tested (entries 7–10), only Ni(acac)2 afforded the target
molecule in 10% yield. Gratifyingly, 91% yield of 4aa was
observed with more than 95:5 E:Z selectivity when 0.5 equivalent
of NaI was added (entry 11). Notably, the efficiency of this
transformation was almost not affected using twofold excess of
benzaldehyde hydrazone 2a (entry 12). Equimolar reaction of
styrene 3a and 2a still delivered the desired product 4aa in 58%
yield (entry 14). When the dosage of Ni(cod)2 and dcype was
decreased to 5 mol%, 78% yield of corresponding 4aa was
obtained (entry 15). Control experiments were also carried out to
understand the role of each component. It is noteworthy that in
absence of base, the reaction efficiency was only decreased slightly
(entry 16). This result indicated that base was not essential for
this transformation, but might partially assist the initial oxidative
addition of nickel complex to N–H bond of hydrazone57. In
absence of either the nickel catalyst or a ligand, the desired
product 4aa was not detected (entries 17 and 18).

Scope and limitation of the reaction. With the optimized con-
ditions identified, the substrate scope of olefins 3 was investigated
(Fig. 2a). To our delight, an array of mono-substituted vinylar-
enes containing both electron-donating and electron-withdrawing
groups were all proved to be competent substrates, delivering the
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Fig. 1 Strategies in the Heck coupling reaction. a Traditional Mizoroki-Heck
coupling with hazardous organic halide; b Oxidative Heck coupling with
pre-synthesized organometallic reagent; c Stoichiometric oxidant mediated
Heck coupling via C–H bond activation; d Oxidant-free direct
dehydrogenative alkyl Heck-coupling
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desired products 4ab-ao in 64–96% yields. The allylic iso-
merization of the product was attributed to the presence of Ni–H
species in the reaction process. Trace amount of hydrogenation
product of styrene was also detected by GC-MS. Various func-
tional groups, including methyl (4ab-ad), tert-butyl (4ae), phenyl
(4af), methoxyl (4ag-ah), fluoride (4ai), and trifluoromethyl
(4aj), were accommodated under the optimal conditions.
Remarkably, the alkenes with sensitive functional groups such as
hydroxyl (4ak), ester (4al), amine (4am), and amide (4an), which
are typically biased in the presence of organometallic reagents,
could efficiently participated in this reaction. Steric hindrance
on the double bond of vinylarene diminished the yield. For
example, the target product 4ap was obtained in 38% yield when
1,1-diphenylethylene was applied. Treatment of α-methylstyrene
under the standard conditions gave the allylic isomers 4aq and
4aq’ in combined 64% yield with 60:40 regioselectivity. With
respect to β-methylstyrene, Z:E isomers (4ar and 4ar’) were
achieved in combined 35% yield. Unfortunately, vinylsilane,
aliphatic and electron-deficient alkenes failed to give the corre-
sponding products under the current catalytic system.

Next, we proceeded to examine the substrate scope of
aldehydes 1 (Fig. 2b). In general, the electronic effects of the
nucleophiles did not influence the efficiency of this transforma-
tion. Aldehydes bearing both electron-donating and electron-

withdrawing substituents all reacted smoothly with styrene 3a
to afford the products 4ba-bm in 65–94% yields. Hetero-aromatic
aldehydes, such as furan-2-carbaldehyde and thiophene-3-
carbaldehyde, also successfully gave the desired products (4bn
and 4bo) in moderate yields. To our delight, aliphatic aldehydes,
such as propionaldehyde and iso-butyraldehyde, which are
challenging substrates in the previous reports, were also
applicable in this Heck-type reaction (4bp and 4bq). Moreover,
the attempt to apply ketone as a nucleophile in this transforma-
tion also proved feasible (4br).

It is worth noting that an excellent regioselectivity (>95:5) was
observed when furan-2-carbaldehyde 1n was examined (Fig. 2b,
4bn). We therefore hypothesized that if the chelation or directing
effect of the vicinal oxygen atom inhibited the allylic isomeriza-
tion58. Thus, the phenyl aldehyde with an ortho-methoxyl group
1s was selected as the electrophile candidate. As shown in Fig. 2c,
a variety of vinylarenes attached with different functional groups
were re-examined with 2-methoxybenzaldehyde 1s under the
optimal conditions, and excellent regioselectivity (mostly >95:5)
of the desired products 4ca-cm were obtained also with good
yields. Furthermore, the olefins bearing heterocyclic skeletons
including pyridine, dibenzo-furan, functionalized indole and
carbazole, were all viable substrates, affording the corresponding
products (4cn-cs) in 68–92% yields.

Table 1 Optimization of the reaction conditions

Ph Ph

catalyst (10 mol%)
ligand, DIPEA

THF, additive

4aa100 °C, 12 h
Ph

O

1a

Ph

N
NH2

N2H4

rt, 30 min

H2O

2a

Ph
3a

P
P

Me

Me

Me

Me

dmpe

P
P

Ph

Ph

Ph

Ph

dppe

P
P

Cy

Cy

Cy

Cy

dcype

N

DIPEA

•

Entry Catalyst Ligand Additive 4aa (%)a,b

1 Ni(cod)2 PMe3 — N.D.
2 Ni(cod)2 PPh3 — N.D.
3 Ni(cod)2 PCy3 — N.D.
4 Ni(cod)2 dmpe — N.D.
5 Ni(cod)2 dppe — N.D.
6 Ni(cod)2 dcype — 78 (83:17)
7 NiCl2 dcype — Trace
8 NiBr2 dcype — Trace
9 NiBr2•glyme dcype — Trace
10 Ni(acac)2 dcype — 10 (78:22)
11 Ni(cod)2 dcype NaI 91 (87)c (>95:5)
12d Ni(cod)2 dcype NaI 85 (>95:5)
13e Ni(cod)2 dcype NaI 71 (>95:5)
14f Ni(cod)2 dcype NaI 58 (>95:5)
15g Ni(cod)2 dcype NaI 78 (>95:5)
16h Ni(cod)2 dcype NaI 69 (>95:5)
17 Ni(cod)2 — NaI N.D.
18 — dcype NaI N.D.

Reaction conditions: 3a (0.2 mmol), 1a (0.6 mmol), N2H4•H2O (0.72mmol), Ni(cod)2 (10 mol%), ligand (20mol% for monodentate, 10 mol% for bidentate), DIPEA (0.4mmol), NaI (0.1 mmol), THF
(1.0 mL), 100 °C, 12 h under N2 unless otherwise noted
N.D. not detected
aNMR yields were determined by 1H NMR using mesitylene as an internal standard and based on 3a
bThe E:Z ratio in parenthesis was determined by 1H NMR analysis of the crude mixture
cThe isolated yield in parenthesis
d1a (0.4 mmol), N2H4•H2O (0.48mmol) instead
e1a (0.3 mmol), N2H4•H2O (0.36mmol) instead
f1a (0.2 mmol), N2H4•H2O (0.24 mmol) instead
gNi(cod)2 (5 mol%), ligand (5mol%) instead
hWithout adding DIPEA
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dcype (10 mol%)

DIPEA (2.0 equiv)
THF, 100 °C, 12 h
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Fig. 2 Scope of substrates. Reaction conditions: 3 (0.2 mmol), 1 (0.6mmol), N2H4•H2O (0.72mmol), Ni(cod)2 (10mol%), dcype (10mol%), DIPEA
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Synthetic applications. The promising functional group toler-
ance and high-efficiency of this protocol enabled its application
to the modification of pharmaceuticals and natural product
derivatives (Fig. 3). For example, introducing ortho-methoxyl
benzyl group into L-Menthol (5) was successfully achieved in
excellent yield with good regioselectivity (>94:6). Alkaloids
such as Theobromine (7) and Theophylline derivatives (9)
reacted smoothly under current catalytic system. The estrone
derivatives 11 and 13 were also tested as superior candidates,
delivering the target molecules 12 and 14 with the ketone
moiety untouched. In addition, the structural elaboration
of tyrosine derivative (15) was readily accomplished with
this nickel-catalyzed oxidant-free Heck-coupling strategy.

Moreover, the cross-couplings of 1 s with α-Tocopherol and
Cholesterol derivatives were investigated under the optimized
conditions, and the expected benzylation products (18 and 20)
were all obtained in good yields (>80%). These examples
highlighted the wide applicablity and compatiblity of the
method, and its enrichment of the tool box for the modification
of complex bioactive molecules.

Mechanistic investigation. To gain preliminary insights into
the reaction mechanism, several control experiments were
subsequently carried out. Firstly, the reaction of styrene (3a)
with phenyldiazomethane (21) did not afford the desired

O
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Fig. 3 Functionalization of naturally and pharmaceutically important derivatives. a Regioselective Heck coupling of L-Menthol derivative; b Regioselective
Heck coupling of Theobromine derivative; c Regioselective Heck coupling of Theophylline derivative; d Regioselective Heck coupling of vinyl Estrone
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(E)-prop-1-ene-1,3-diyldibenzene (4aa) (Fig. 4a). When 1,2-
diphenylcyclopropane (22) was applied under the standard con-
ditions, the desired product 4aa was also not observed (Fig. 4b).

These two results ruled out the possibility that hydrazone played
the role of carbene precursor or diazo species to undergo cyclo-
propanation and subsequent ring opening during the reaction
course59. Secondly, when 1-methoxy-4-(3-phenylpropyl)benzene
(23) was tested, neither 4ag nor its regioisomer 4bf was detec-
ted (Fig. 4c). This observation suggested the unlikely involvement
of hydrazone addition to the vinylarene followed by dehy-
drogenation pathway. Thirdly, the efficiency of the model reaction
was almost unaffected in the presence of a radical scavenger, 2,6-
di-tert-butyl-4-methylphenol (BHT), indicating the unlikelihood
of a radical mechanism in the current reaction (Fig. 4d). When
N-Ts hydrazone 24 was used in the place of simple hydrazone 1a,
no desired product 4aa was observed, which accounted for the
totally diverse characters between the two different types of
hydrazones (Fig. 4e)60–62. Finally, isotope experiment was carried
out (Fig. 4f). H/D exchanges both in the double bond moiety
(73% D) and benzylic position (15% D) revealed that iterative
Ni-(H)D species addition/elimination steps existed during the
reaction process63,64.

Although, the exact mechanism still remained unclear at
this moment, on the basis of literature reports6,47–56 and our
findings, a plausible reaction pathway was proposed in Fig. 5.
Initially, the active nickel(0) species, which potentially com-
plexed to the olefin, coordinated with hydrazone to form a
six-membered intermediate B. Then the nickel catalyst under-
goes oxidative addition to the N–H bond likely with the
assistance of DIPEA and delivers the key intermediate C. A
similar N–H bond activation of simple hydrazone was also
observed with a manganese pincer complex by Milstein and
coworkers57. At this stage, intramolecular regioselective 1,2-
insertion occurs to afford the complex D, which then undergoes
concerted β-hydride elimination and releases N2 gas (Wolff-
Kishner reductive denitrogenation) to deliver the desired
product 4 and Ni–H species E. This metal-hydride releases
H2 gas and regenerates the active Ni(0) catalyst to close
the catalytic cycle. NaI as the additive enhances both the
reactivity and E:Z selectivity, possibly through halide effects
that assist the decomposition of intermediate D to produce
thermodynamically more favored trans-alkene65. The allylic
isomerization was due to the iterative Ni–H addition/
elimination.
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Fig. 4 Mechanistic studies. a Reaction of styrene with phenyldiazomethane
did not give the desired product; b Reaction of 1,2-diphenylcyclopropane
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Discussion
In summary, we have documented an efficient protocol for alkyl
Heck-type reaction of vinylarenes with umpolung aldehydes
under a simple nickel catalyst system. This strategy proceeds
smoothly in absence of halides, organometallics or oxidant, lib-
erating hydrogen, nitrogen, and water as innocuous side products.
Excellent regioselectivity was achieved with the assistance of
heteroatom chelation effect. Broad substrate scope, great func-
tional group compatibility and modification of complex organic
molecules containing olefin moieties made this methodology
synthetically useful and valuable. Preliminary mechanistic studies
revealed that the transformation did not proceed through carbene
insertion, cyclopropane opening, nucleophilic addition/dehy-
drogenation or radical process. Detailed studies aimed at eluci-
dating the mechanism and further applications of aldehydes
as alkyl nucleophiles in chemical transformations are ongoing
in our lab.

Methods
In situ preparation of hydrazone solution. A mixture of aldehydes 1 (0.6 mmol,
3.0 equiv) and hydrazine monohydrate (36 µL, 0.72 mmol, 64–65 wt%, 3.6 equiv) in
THF (0.6 mL) solution was stirred for 30 min at room temperature in air. Before
use, a small amount of anhydrous Na2SO4 and 4Ǻ MS was added.

General procedure for dehydrogenative alkyl Heck-couplings. In a glovebox, a
flame-dried reaction tube (10 cm3) equipped with a magnetic stir bar was charged
with Ni(cod)2 (5.6 mg, 10 mol%), dcype (8.5 mg, 10 mol%) and THF (0.4 mL)
before being sealed with a rubber septum. The reaction mixture was stirred at
room temperature for 30 min. Then vinylarene 3 (0.2 mmol, 1.0 equiv),
hydrazone solution 2 (0.6 mmol in 0.6 mL THF), DIPEA (0.4 mmol, 67 µL) and
NaI (0.1 mmol, 15 mg) were added sequentially. After that, the reaction mixture
was sealed with aluminum cap, moved out of glovebox and stirred at 100 °C for
12 h. After the mixture was cooled to rt, the resulting solution was directly filtered
through a pad of silica by EtOAc (3.0 mL). The crude mixture was analyzed by GC-
MS. The solvent was evaporated in vacuo to give the crude products. NMR yields
were determined by 1H NMR using mesitylene as an internal standard. The residue
was purified by preparative TLC (ethyl acetate/hexane) to give the pure product 4.

Notes. Use of the glovebox is not necessary unless to store and manipulate air-
sensitive Ni(cod)2 catalyst. The other operations can be successfully performed
outside the glovebox with standard Schlenk line procedure. One pot reaction of
vinylarenes, aldehydes and hydrazine without preparation of hydrazones before-
hand afforded only trace amount of desired products.

Data availability
The authors declare that the data supporting the findings of this study are available
within the article and Supplementary Information file, or from the corresponding author
upon reasonable request.
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