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Abstract 

Background:  Enterobacter hormaechei is an important emerging pathogen and a key member of the highly diverse 
Enterobacter cloacae complex. E. hormaechei strains can persist and spread in nosocomial environments, and often 
exhibit resistance to multiple clinically important antibiotics. However, the genomic regions that harbour resist-
ance determinants are typically highly repetitive and impossible to resolve with standard short-read sequencing 
technologies.

Results:  Here we used both short- and long-read methods to sequence the genome of a multidrug-resistant hos-
pital isolate (C15117), which we identified as E. hormaechei. Hybrid assembly generated a complete circular chromo-
some of 4,739,272 bp and a fully resolved plasmid of 339,920 bp containing several antibiotic resistance genes. The 
strain also harboured a 34,857 bp repeat encoding copper resistance, which was present in both the chromosome 
and plasmid. Long reads that unambiguously spanned this repeat were required to resolve the chromosome and 
plasmid into separate replicons.

Conclusion:  This study provides important insights into the evolution and potential spread of antimicrobial resist-
ance in a nosocomial E. hormaechei strain. More broadly, it further exemplifies the power of long-read sequencing 
technologies, particularly the Oxford Nanopore platform, for the characterisation of bacteria with complex resistance 
loci and large repeat elements.
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Background
The Enterobacter cloacae complex (ECC) is a diverse 
group of bacterial species of both clinical and environ-
mental importance  [1]. ECC bacteria are associated 
with a variety of different infections in humans and have 
emerged as one of the leading causes of nosocomial 
infections worldwide [2, 3]. Importantly, ECC strains are 
intrinsically resistant to a number of antibiotics and have 
demonstrated a remarkable ability to acquire additional 
resistance determinants. These can include extended 
spectrum beta-lactamases (ESBLs) and carbapenemases, 

in some cases severely limiting available treatment 
options [2].

Accurate identification of ECC isolates at the spe-
cies level is important, particularly in the clinical setting 
where specific ECC subgroups are more likely to cause 
nosocomial infections or outbreaks [4]. However, this has 
proven difficult due to imprecise taxonomy and the fail-
ure of standard phenotypic tests to discriminate between 
ECC members. Successful identification of ECC species 
typically relies on DNA sequencing, and has been dem-
onstrated using approaches such as hsp60 typing [5] and 
phylogenomics [6].

Sequence-based analysis also plays a critical role 
in characterising antibiotic resistance in ECC iso-
lates. However, this can be complicated by the fact that 
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antibiotic regions are often flanked by repetitive inser-
tion sequences and cannot be resolved by standard 
short read methods, leading to a loss of critical informa-
tion on the structure and genomic context of resistance 
determinants [7].

In this study, we use a combination of short-read 
(Illumina) and long-read (Oxford Nanopore) technolo-
gies to sequence a multidrug-resistant, ESBL-positive 
strain of ECC isolated from the general environment of 
an Australian hospital (C15117). We identify this strain 
as Enterobacter hormaechei, which is one of the most 
prevalent causes of human infection among ECC mem-
bers and a species that is increasingly recognised for its 
ability to persist and spread in hospital environments. 
Using a hybrid assembly approach, we demonstrate that 
C15117 harbours a large plasmid (340 kb) with multi-
ple drug resistance determinants and we generate fully 
resolved assemblies of both the plasmid and genome. 
This was not possible with short read data alone, high-
lighting the utility of long read technologies for precise 
characterisation of extrachromosomal replicons in clini-
cal isolate sequencing, which often play significant roles 
in the spread of antimicrobial resistance.

Methods
Strain isolation and antibiotic resistance profiling
Strain C15117 was isolated from the burns ward at Con-
cord Repatriation Hospital in Sydney, Australia. MALDI-
TOF analysis was used for initial bacterial identification, 
while antibiotic resistance profiling was performed using 
the automated VITKEK-2 system (bioMérieux) and fur-
ther confirmed via synergy testing with plate assays. 
This revealed the isolate to be an ESBL-producing strain 
of ECC with resistance to ampicillin (MIC = 32 μg/ml), 
augmentin (32 μg/ml), ticarcillin/clavulanic acid (64 μg/
ml), piperacillin/tazobactam (64 μg/ml), cefazolin (64 μg/
ml), cefoxitin (64 μg/ml), ceftazidime (64 μg/ml), ceftri-
axone (16 μg/ml), gentamycin (16 μg/ml), tobramycin (8 
μg/ml), trimethoprim (16 μg/ml) and trimethoprim/sul-
famethoxazole (320 μg/ml). Susceptibility breakpoints 
were as defined in the EUCAST breakpoint tables for 
interpretation of MICs and zone diameters (version 8.0; 
http://www.eucas​t.org).

DNA preparation and quality control
DNA was isolated from C15117 using the xanthogenate-
SDS (XS) extraction method of Tillet and Neilan [8] with 
several modifications. First, 6 ml of stationary phase cul-
ture was harvested by centrifugation and resuspended in 
50 μl of TER buffer containing 200 μg/ml RNAse A. Cells 
were then resuspended in 1 ml of XS buffer and incu-
bated at 50 °C for 2 h. After completing the remainder of 
the Tillet and Neilan [8] protocol, additional purification 

steps were performed. This involved first resuspend-
ing the sample in 500 μl of buffer B1 from the Blood and 
Cell Culture DNA Midi Kit (Qiagen) and incubating at 
50 °C overnight. An additional 2 ml of buffer B1 was then 
added and the sample was further purified by following 
the kit protocol for Gram-negative bacterial DNA extrac-
tion from step 5 onwards (Qiagen), including treatment 
with proteinase K but omitting the addition of lysozyme 
and RNAse A.

DNA yield was measured using a Qubit 2.0 fluorom-
eter (Thermo Scientific), while quality was assessed by 
agarose gel electrophoresis and Nanodrop (Thermo Sci-
entific) spectrophotometry. This confirmed that the sam-
ple was of sufficient purity (A260 nm/A280 nm of 1.85; 
A260  nm/A230  nm of 2.06) and molecular weight (>40 
kb with no small DNA contamination) for long-read 
sequencing without further purification or size selection.

DNA sequencing
Illumina library preparation and sequencing were per-
formed as described previously  [9], except that 2 × 150 
nt paired-end reads were generated using MiSeq V2 
chemistry.

For long-read MinION sequencing, libraries were 
prepared using the 1D ligation sequencing kit (SQK-
LSK108) from Oxford Nanopore Technologies (ONT) 
with several modifications to the standard ONT proto-
col. The optional shearing step was avoided to maximise 
read length, while to improve throughput the amount of 
starting DNA was increased to 10 μg (compared to 1 μg 
in the standard protocol; also see [7]). DNA purifications 
steps were performed using SPRIselect beads (Beckman 
Coulter), with bead resuspension carried out at higher 
than usual temperatures (50 °C after end repair and 37 °C 
after adapter ligation) to promote efficient elution of high 
molecular weight DNA into solution. The final library 
containing 3.75 μg of DNA was loaded onto an ONT 
MinION instrument with a FLO-MIN107 (R9.5) flow cell 
and run for 48 h as per the manufacturer’s instructions. 
Live base-calling was not performed during the run.

Single Molecule, Real-Time (SMRT) sequencing was 
conducted at the Ramaciotti Centre for Genomics at the 
University of New South Wales (Sydney, Australia) using 
a PacBio RSII instrument (Pacific Biosystems).

Basecalling
After completion of the ONT MinION run, the resulting 
fast5 reads were base-called using the read_fast5_
basecaller from the ONT Albacore Sequencing Pipe-
line Software (version 2.1.3) with command-line options 
“-r -k SQK-LSK108 -f FLO-MIN107”.

http://www.eucast.org
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Assembly and annotation
Two hybrid genome assemblies were generated, in each 
case combining the reads from the Illumina short-read 
library with one of the two long-read libraries (ONT, 
PacBio). The Unicycler assembly pipeline (version 
0.4.3)  [10] was employed with default command-line 
options for both assemblies.

Automated genome annotation was performed on the 
RAST annotation server, using the RAST-tk scheme [11]. 
The annotation can be accessed with guest login, under 
RAST ID 158836.149. Preliminary identification of anti-
biotic resistance genes and insertion sequences was 
performed using ResFinder 3.1  [12] and ISfinder  [13], 
respectively. All predicted genes were thereafter con-
firmed by manual BLASTn and BLASTp searches.

Phylogenetic analysis
To perform a phylogenetic analysis of C15117, represent-
ative genome sequences from each of the 18 ECC phy-
logenomic groups  [6] were obtained from the PATRIC 
database [14]. From this set of 19 genome sequences, with 

C15117 as the alignment reference, a reference-based 
genome alignment was inferred using Snippy (version 
4.3.6, https​://githu​b.com/tseem​ann/snipp​y) (4,739,272 
columns). From the initial alignment, Mothur (version 
1.41.0)  [15] was used to remove any columns contain-
ing gaps or ambiguous bases, while retaining both vari-
ant and shared columns (1,043,814 columns). Next, areas 
of recombination were predicted using Gubbins (ver-
sion 2.3.4) [16] under a GTRGAMMA model in RAxML 
(version 8.2.12) [17] (205,516 columns). After filtering, a 
phylogenetic tree with support values was inferred using 
RAxML under a GTRGAMMA model, with extended 
majority rule consensus and rapid bootstrapping (Fig. 1).

Results and discussion
Sequencing and assembly
We initially sequenced strain C15117 using short-read 
Illumina technology only (2 × 150 nt paired-end reads), 
generating 507,053 reads representing 76 Mbp (approxi-
mately 15-fold coverage). However, we found that the 
resulting genome assembly using SPAdes (version 3.11.1) 
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Fig. 1  Phylogenetic analysis identifies C15117 as most closely related to Enterobacter hormaechei susbp. oharae. Representative strains from 18 ECC 
phylogenomic groups (labelled A to R in square brackets) were included in the analysis. Bootstrap support values are shown at the nodes of the 
tree. Branch length has been normalised to substitutions per site
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remained highly fragmented (>  200 contigs) due to the 
presence of multiple repetitive insertion sequences, 
including 10 copies of IS26. Importantly, this meant that 
the genetic context of the major antibiotic resistance 
determinants could not be resolved.

To circumvent this problem, we settled on a hybrid 
approach in which Illumina short reads were combined 
with long reads generated on the ONT MinION platform 
and co-assembled using the software tool Unicycler [10]. 
Unlike Illumina data, which is highly accurate, Nanopore 
reads are known to contain systematic errors that cannot 
be fully eliminated by computing a consensus sequence, 
even when high depth of coverage is available  [18]. By 
combining the two data types, Unicycler is capable of 
producing assemblies that are accurate in terms of both 
sequence and structure.

A 48 h MinION run generated 73,879 long reads (min: 
193 bp, max: 202,611 bp, median: 8462 bp, mean: 15,888 
bp) representing 1.73 Gbp. From an initial short-read 
SPAdes assembly, Unicycler fully aligned 61,410 and 
partially aligned 12,080 long-reads, with a mean align-
ment identity of 87.2% and totaling 1.167 × 109 aligned 
bases. After polishing with Pilon (version 1.22)  [19], 
the bridged assembly graph was composed of 4 compo-
nents: a complete circular chromosome of 4,739,272 bp; 
a large fully resolved plasmid of 339,920 bp that we have 
designated pSPRC-Echo1 (NCBI BioProject Accession 
PRJNA494598); and two smaller plasmids of 6237 bp and 
2496 bp. Basic assembly statistics are shown in Table 1. 
Genome annotation using RAST [11] identified a total of 
4946 predicted coding sequences and 110 RNA genes.

Species identification and phylogenetic analysis
Initial testing of C15117 using MALDI-TOF identified 
the strain only at the level of the Enterobacter cloacae 
complex. For species-level identification, phylogenetic 
analysis was performed using representative strains 

from each of the 18 phylogenomic groups that make up 
the ECC (A to R), as defined in a recent comprehensive 
study by Chavda and colleagues  [6]. C15117 was found 
to be most closely related to phylogenomic group C type 
strain DSM 16687, identifying it as Enterobacter hormae-
chei susbp. oharae (Fig. 1). This also places the isolate in 
Hoffman cluster VI, one of 12 genetic clusters previously 
described for the ECC based on hsp60 sequencing  [5]. 
Multilocus sequence typing using PubMLST [20] showed 
the strain belongs to sequence type (ST) 61.

Enterobacter hormaechei is an important emerging 
pathogen, and the most frequently isolated ECC from 
human clinical specimens  [1]. It has been reported in 
several outbreaks of sepsis, most notably in the USA and 
Brazil, while subsp. oharae specifically has been linked 
with infections of orthopaedic implants [21]. Critically, E. 
hormaechei has also been noted for its ability to persist in 
hospital environments, where it may act as a reservoir for 
infection and the transmission of antibiotic resistance [2, 
4].

To identify publicly available genomes closely related 
to C15117, we utilised the “Similar Genome Finder” tool 
within the PATRIC database  [14], which computes the 
distance between two given sequences via Mash  [22]. 
Interestingly, the most closely related public genome was 
assembled from a metagenomic sample isolated from a 
metal surface in New York City (BioSample Accession 
SAMN06456256; Mash distance 0.00251, correspond-
ing to an Average Nucleotide Identity of about 99.7%). 
Other closely related genomes include a collection of 16 
strains isolated as part of an antibiotic resistance sur-
veillance project from the Sanger Institute (BioProject 
PRJEB5065).

Resistance genes
Multiple genes were identified in C15117 that are known 
to confer antibiotic resistance and likely contribute to the 
observed resistance profile of the organism (see "Meth-
ods"). These include two copies of blaSHV-12 encoding 
ESBL resistance, as well as several other β-lactamases 
and genes conferring resistance to aminoglycosides and 
sulfonamides. Interestingly, all of the clinically relevant 
resistance determinants in C15117 were located on plas-
mid pSPRC-Echo1, along with all 10 copies of IS26. This 
has important implications for understanding the evolu-
tion of resistance and its potential transmission from this 
strain, and could only be resolved with the use of ONT 
long-read data.

Duplication of a copper resistance module
Our initial attempts to resolve the pSPRC-Echo1 plasmid 
and C15117 chromosome into separate replicons used 
long-read data generated with an alternative technology 

Table 1  Assembly statistics from  the  ONT  +  Illumina 
hybrid assembly of  C15117, calculated using Quast 
(version 2.3) [25]

Statistic Value

No. contigs 7

No. contigs > 1 kb 6

Total length (bp) 5,096,894

Total length > 1 kb 5,096,275

Longest contig 4,739,272

GC (%) 54.99

N50 4,739,272

L50 1

Ns per 100 kb 0.00
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(PacBio), but the approach failed. This was despite using 
the same hybrid assembly technique (with the same Illu-
mina read set) as described above for ONT. By aligning 
both of the long-read data sets to the fully resolved ONT/
Illumina hybrid genome, we found that the discrepancy 
between the two assemblies was likely due to the pres-
ence of a large repeat that is shared between the chromo-
some and plasmid. This 34,857 bp repeat, present both 
in the chromosome and the plasmid, encodes a copper 
resistance module flanked by Tn7-like transposons. Mul-
tiple ONT reads were found to unambiguously span the 
repeat on the chromosome (45 reads) and plasmid (30 
reads). Conversely, no PacBio reads completely spanned 
the repeat on either chromosome or plasmid. This dis-
parity between the two data sets is unlikely to be the 
result of differences in sequence depth or uniformity of 
coverage, but rather a striking difference in the distribu-
tion of read lengths generated by the two technologies 
(see Fig.  2). Very few PacBio reads exceeded the repeat 
length of 35 kb, while ONT produced a high proportion 
of such reads up to a maximum of 203 kb.

Although it is certainly possible to generate PacBio 
reads of sufficient length to resolve a 35 kb repeat, the 
ONT platform appears to be inherently better suited to 
this kind of analysis. ONT read lengths are limited only 
by the physical length of the fragment to be sequenced, 
meaning that with careful DNA extraction and library 

processing it is possible to generate single reads in excess 
of 1 Mb  [23]. In contrast, maximum read lengths with 
PacBio technology are inherently limited by the sequenc-
ing chemistry itself [24]. As exemplified here, the study of 
antibiotic resistant bacteria with complex, unpredictable 
genome structures is one area in which the importance of 
read length is clear.
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