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REVIEW

Novel stem cell and gene therapy in diabetic 
retinopathy, age related macular degeneration, 
and retinitis pigmentosa
Parker E. Ludwig1*, S. Caleb Freeman1 and Adam C. Janot2,3

Abstract 

Degenerative retinal disease leads to significant visual morbidity worldwide. Diabetic retinopathy and macular 
degeneration are leading causes of blindness in the developed world. While current therapies for these diseases slow 
disease progression, stem cell and gene therapy may also reverse the effects of these, and other, degenerative retinal 
conditions. Novel therapies being investigated include the use of various types of stem cells in the regeneration of 
atrophic or damaged retinal tissue, the prolonged administration of neurotrophic factors and/or drug delivery, immu-
nomodulation, as well as the replacement of mutant genes, and immunomodulation through viral vector delivery. 
This review will update the reader on aspects of stem cell and gene therapy in diabetic retinopathy, age-related 
macular degeneration, retinitis pigmentosa and other less common inherited retinal dystrophies. These therapies 
include the use of adeno-associated viral vector-based therapies for treatment of various types of retinitis pigmentosa 
and dry age-related macular degeneration. Other potential therapies reviewed include the use of mesenchymal stem 
cells in local immunomodulation, and the use of stem cells in generating structures like three-dimensional retinal 
sheets for transplantation into degenerative retinas. Finally, aspects of stem cell and gene therapy in diabetic retin-
opathy, age-related macular degeneration, retinitis pigmentosa, and other less common inherited retinal dystrophies 
will be reviewed.
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Background
Degenerative retinal disease afflicts many around the 
world and can lead to blindness. Age related macular 
degeneration is the leading cause of blindness in Cauca-
sians greater than 40 years of age in the USA [1]. Diabetic 
retinopathy is the leading cause of vision loss in those 
between the ages of 20 and 74 [2]. Retinitis pigmentosa 
affects 1 in 3000–7000 people, making it one of the most 
common causes of inherited retinal disease leading to 
blindness [3, 4].

Current FDA (Food and Drug Administration)-
approved treatment for neovascular age-related macu-
lar degeneration (AMD) and complications associated 
with diabetic retinopathy involve frequent anti-vascular 

endothelial growth factor (VEGF) intravitreal injections. 
Similarly, diabetic retinopathy is treated with anti-VEGFs 
and laser photocoagulation. Though effective in treating 
the complications associated with these diseases, they 
do little to reverse the course. Until recently, treatment 
for retinitis pigmentosa (RP) has consisted of measures 
to reduce further damage or slow the disease. However, 
FDA approval has been received of the gene therapy Lux-
turna (voretigene neparvovec-rzyl), which targets RPE65 
[5–7].

Stem cell and gene therapy may also reverse the effects 
of these degenerative retinal conditions. Efforts have been 
made to develop novel therapies involving the regen-
eration of atrophic or damaged retinal tissue, prolonged 
administration of neurotrophic factors and/or drug 
delivery, immunomodulation, replacement of mutant 
genes, and immunomodulation through viral vector 
delivery. The purpose of this review is to introduce the 
retinal conditions and diseases most prevalent in patient 
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populations, and to explore some of the novel treatment 
approaches currently under investigation; these include 
the use of stem cells and gene therapy techniques.

Stem cells
While there is ambiguity in the definitions suggested, 
stem cells are generally identified as populations of cells 
that are both self-renewing, and capable of differentiat-
ing into multiple cell types, thus receiving the description 
of multipotent or pluripotent, depending on the situation 
[8]. It had been thought that the mature retina of mam-
mals is incapable of regeneration; however, reports have 
shown that there are a population of retinal stem cells 
localized to the pigmented ciliary margin that are capable 
of differentiating into several types of retinal cells such as 
rod photoreceptors, bipolar cells, and Müller cells [9–11]. 
This population of cells has since been described as late-
stage neuronal progenitors or pigmented ciliary epithelial 
cells [12, 13]. Neural progenitor/stem cells are impor-
tant to retinal development, as the retina is a specialized 
appendage of the nervous system.

Among the types of stem or progenitor cells, identi-
fied by source, are human embryonic stem cells (hESCs), 
bone marrow stromal cells (BMSCs), human mesenchy-
mal stem cells (hMSCs), human pluripotent stem cells 
(hPSCs), and human retinal progenitor cells (hRPCs). 
hESCs are derived from the transfer of preimplantation 
embryo cells into culture, and are classified as a type of 
hPSC along with human induced pluripotent stem cells; 
these cell lines maintain pluripotency until being differ-
entiated, and were among the first progenitor cells used 
in regenerative research [14, 15]. hMSCs can differentiate 
into the various mesenchymal tissues such as osteoblasts, 
chondrocytes, and adipocytes. There is disagreement 
over the appropriateness of terms such as mesenchymal 
stem cell, and the related terms bone marrow stromal 
cell, mesenchymal progenitor cell, and bone marrow pro-
genitor cell; hMSCs are generally understood to refer to 
the fibroblast-like cells shown, more recently, to also be 
capable of differentiating into non-mesenchymal lineages 
such as cardiac, renal, hepatic, and neural cells [16]. They 
are important to the normal function of hematopoietic 
stem cells, and have been investigated for use in cancer 
therapy due to their tendency to localize to solid tumors 
[17]. Sources for deriving hRPCs include fetal retinas, 
ESCs, and induced pluripotent stem cells (iPSCs); there 
is suggestion in the literature that the fetal-derived RPCs 
may be more suitable for therapy due to lower immuno-
genicity and increased stability [18].

The multipotent characteristic of the progenitor cells is 
important to the proper development of the structures in 
the eye and retina, and for this reason many have thought 
that there could be regenerative potential in the damaged 

or degenerate retina through the transplantation or 
activation of stem cells. Initial attempts at transplant-
ing neural and retinal stem cells into the degenerating 
retina proved unsuccessful, and it was seen that these 
cells neither integrated into the retina, nor restored 
vision [19–22]. However, MacLaren et al. [23] noted that 
the mammalian retina can incorporate rod photorecep-
tor precursors derived from the post-natal day 1 (P1) 
retina of mice into the outer nuclear layer (ONL). They 
observed that these cells differentiated, formed func-
tional synapses, and improved vision in mouse models of 
degenerative retinal disease. The conclusion drawn was 
that the ontogenetic stage of the precursor cells, defined 
in this case by the expression of neural retina leucine zip-
per (Nrl), is vital to the integration of the stem cells into 
the retina [23].

Others have observed that the transplantation of 
embryonic stem cell-derived neural progenitors leads to 
the enhanced survival of host retinal cells, such as photo-
receptors, and improved preservation of visual function 
in the mnd mouse model of neuronal ceroid lipofuscino-
ses [24]. It has been suggested that this enhanced survival 
of host cells could be mediated by the secretion of growth 
factors, as IGF-1 administration has been seen to pro-
duce similar results [24–27].

Aharony et  al. [28] investigated stem cells and their 
effects on ocular conditions. They organized the roles of 
stem cells in treatment of the eyes into three categories: 
vehicles for drug delivery, immunomodulatory agents, 
and mediators of tissue regeneration. Progress is being 
made in the understanding of each of these roles and the 
ways to effectively utilize them. In terms of tissue regen-
eration, researchers are often capable of inducing growth 
and development of transplanted cells, and in some cases, 
notable integration into the framework of the host cells 
is observed. In a study with primates treated with the 
hypoxia-inducing agent cobalt chloride and irradiation 
to mimic retinal disease, the transplantation of human 
embryonic stem cells (hESCs) was noted to result in sur-
vival and maturation of the transplanted cells, as well as 
some integration of the cells with host bipolar cells [29]. 
Singhal et  al. [30] demonstrated that Müller glia which 
exhibit multipotentiality can be induced to differentiate 
into retinal ganglionic cells (RGCs) upon treatment with 
fibroblast growth factor 2 (FGF2) and γ-secretase inhibi-
tor N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenyl-
glycine t-butyl ester (DAPT) to inhibit Notch signaling. 
This differentiation into RGCs correlated to a signifi-
cant improvement in retinal function as measured by 
electroretinogram.

Some studies have attempted to prime stem cells with 
environmental factors such as epidermal growth fac-
tor (EGF) prior to their transplantation in an effort to 
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improve their incorporation into the host [31]. However, 
stem cells have been noted to migrate to the retina and 
differentiate into glia and ganglion cells in the absence of 
priming before transplantation when injected intravitre-
ally or subretinally [28, 31]. Canola et  al. [31] observed 
that this cell incorporation occurred to a greater extent in 
more advanced stages of disease. Importantly, few trans-
planted cells expressed photoreceptor markers, which 
may indicate that priming prior to or along with trans-
plantation is necessary for the differentiation of photore-
ceptor lineages [28].

Bone marrow-derived stem cells (BMSCs) can differen-
tiate into ganglion cells when administered intravitreally 
and intravenously following optic nerve injury in mice 
[28, 32, 33]. This differentiation effect was increased by 
administration of neuronal growth factors along with the 
cells [33].

Zhou and Xia [34] observed that transplantation of 
retinal stem cells in a state of glaucoma reduced levels of 
IFN-γ in both the serum and the aqueous humor which 
led to a decrease in inflammation. On the other hand, it 
has also been noted that in vitro study of mesenchymal 
stem cells (MSCs) in a rat retina-explant model show dif-
ferentiation into microglia, which would induce inflam-
mation rather than reducing it [28, 35].

Ischemia-associated retinal degeneration is a major 
cause of vision loss; Mathew et al. [36] found that intra-
vitreal administration of BMSCs aided the survival of 
the retina in rats suffering ischemic damage. BMSCs 
had an anti-apoptotic effect through decreased TUNEL 
and caspase-3 expression, attenuated inflammation by 
reducing levels of TNF-α, IL-1β, and IL-6, and preserved 
autophagy. The transmembrane glycoprotein Prominin-1 
(Prom1) has been shown to be an important regulator of 
autophagy in the RPE [37]. Understanding this role will 
aid in anticipating and controlling tumorigenesis in stem 
cell therapy.

One of the barriers to stem cell transplantation therapy 
is the difficulty of inducing incorporation of transplanted 
cells into the host cell structure; this could be compli-
cated by immune reaction. Chao et  al. [38] observed 
that human ESC-derived retinal neurons injected into 
the submacular space of a squirrel monkey continued to 
survive 3 months following the injection, and that some 
donor cells integrated into the host retina while some 
axons from donor cells extended into the optic nerve 
within the same time period.

Wahlin et al. [39] recently discussed a method for dif-
ferentiating human pluripotent stem cells (hPSCs) into 
three dimensional (3D) retina models that bear many 
similarities to mature retinas. These similarities include 
structural outgrowth of resembling the outer segment 
of photoreceptors, neurotransmitter expression, and 

synaptic vesicle fusion. It is suggested that this model 
could aid researchers in studying the retina and the 
effects of various therapies on it in vitro. 3D retinal sheets 
generated using stem cells are being investigated for their 
ability to be transplanted into retinal degenerative mice 
[40, 41].

While inflammation can cause significant tissue dam-
age, indications show that there is a link between inflam-
mation and retina regeneration. The Xenopus genus of 
frog and other amphibians have the interesting ability 
to regenerate the whole retina upon its removal through 
activation of RPE cells to adopt multipotent characteris-
tics [42]. Naitoh et  al. [43] observed that the upregula-
tion of matrix metalloproteinases through inflammatory 
cytokine upregulation was vital to retinal regeneration as 
dexamethasone or Withaferin A administration signifi-
cantly suppressed RPE cell migration and transdifferen-
tiation in the African clawed frog (Xenopus laevis).

Qu et  al. [44] investigated the effects of combined 
human mesenchymal stem cell (hMSC) and human reti-
nal progenitor cell (hRPC) subretinal transplant in rats. 
It was observed that the combined therapy resulted in 
improved electroretinogram performance, improved 
outer nuclear layer thickness, increased migration of 
grafted cells, and reduced activation of microglia and 
Müller cell gliosis as compared to single transplantation 
of hRPCs or hMSCs. Both MSCs and RPCs have been 
transplanted clinically for treatment of retinal disease, 
but this study suggests that a more optimal result may be 
achieved through combination therapy with both types 
of cells.

While stem cell transplantation has not yet developed 
into the unhindered, regenerative solution to all degen-
erative conditions as was initially hoped, much research 
is currently ongoing. Our understanding of stem cell 
capabilities and the varying modes that may be used 
therapeutically continues to progress (Table  1). Other 
applications will likely materialize into beneficial thera-
pies following continued investigation.

Gene therapy
Interest has grown in the potential of gene therapy, the 
delivery of nucleic acid polymers into host cells to treat 
underlying conditions, for retinal diseases in recent dec-
ades (Fig.  1). The first demonstration of retroviruses 
acquiring cellular genes occurred in the mid-1970s, and 
this was followed by experimentation with retroviruses, 
simian virus 40 (SV40), bovine papilloma virus (BPV), 
vaccinia, and herpes simplex virus (HSV) [45]. In the time 
since the first use of viral vectors, much experience has 
been gained with vectors such as measles, vaccinia, polio, 
reovirus, adenovirus, vesicular stomatitis virus (VSV), 
lentivirus, γ-retrovirus, HSV, and adeno-associated virus 
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(AAV). AAV has emerged as a favored vector for direct 
gene delivery in vivo due to its lack of pathogenicity and 
ability to incorporate into a variety of tissues in a directed 

manner (Table 2); one of its primary drawbacks is a limi-
tation of packaged genetic material to 4.7 kb [45].

Table 1  Stem cell therapy

Condition Technique Result

Diabetic retinopathy Mesenchymal stem cells Absorption of ROS through expression of sulfoxide reductase A

Endothelial progenitor cells Incorporation into host retinal tissue and prevention of neovascularization

Macular degeneration Induction of pluripotent stem cells Differentiation into photoreceptors and RPE cells and integration into the 
host cell structure

Subretinal ESC transplantation Regenerative therapy

Retinitis pigmentosa Treatment with brain-derived neurotrophic factor Improved survival of neurons and retinal ganglionic cells and preserves 
structure of the optic nerve

Induction of neural stem cell secretion of ciliary 
neurotrophic factor

Protection of photoreceptor cells

Fig. 1  The general process of gene transduction with a viral vector: the AAV or other viral vector inserts its single-stranded DNA into the targeted 
cell, and the DNA is taken up into the nucleus where it is converted into double-stranded DNA by host cell machinery. This gene, along with 
its accompanying promoter is inserted between inverted terminal repeats to form an episomal concatemer in the host cell nucleus. Normal 
transcription and translation processes take place to produce the protein product of interest. DNA is depicted by the blue coils, and RNA by red 
coils
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Boye et  al. [46] reviewed the literature, and noted 
that gene therapy was particularly promising for the 
treatment of ocular disease due to the accessibility, 
immune-privileged nature, and compartmentalization 
of the eye. Some of the primary obstacles to long-term 
gene delivery include DNA degradation and promoter 
inactivation; as a result, many treatment strategies 
focus on the implementation of controlled release sys-
tems, optimization of promoters to aid DNA stability, 
and the reduction of regions heavy in cytosine and gua-
nine (CpG sequences) [47].

Ezati et  al. [48] investigated the efficacy of repro-
gramming RPE cells through AAV vector transduction 
of retinal progenitor cell genes. Larger increases were 
observed in neonatal RPE cell cultures than in adult cell 
cultures in general. Analysis indicated that there was an 
80-fold increase in expression of the stem cell marker 
SOX2 (sex determining region Y-box  2) in neonatal 
culture as compared to control, and a 12-fold increase 
in adult culture. The increases in gene expression of 
other genes was less dramatic with there being 3.8-
fold and 2.5-fold overexpression of nestin, and 3-fold 
and 2.5-fold increases in PAX6 expression, in neonatal 
and adult cells respectively. The ability to induce de-
differentiation or reprogramming of RPE cells could 
have important implications for the regeneration of the 
retina in a diseased state.

2017 was a year of advances in gene therapy. It saw 
the first Food and Drug Administration (FDA) approval 
of gene therapies for certain forms of acute lympho-
blastic leukemia, large B cell lymphoma, and biallelic 
RPE65-associated retinal dystrophy [49]. The excite-
ment surrounding gene therapy and its potential is 
evident from the abundance of start-up companies 
devoted solely to the research and development of spe-
cific therapies, and the many millions of dollars being 
invested into such ventures [45].

Retinal diseases and novel therapies
Diabetic retinopathy
Approximately 422 million people around the world have 
been diagnosed with diabetes [50]. It is estimated that 
approximately 35% of those with diabetes have DR. Pro-
liferative diabetic retinopathy (PDR) is the most common 
vision-threatening condition in individuals with type 1 
diabetes, and DME is the leading cause of vision loss in 
people with type 2 diabetes [2, 51, 52].

Diabetes leads to damage retinal vasculature. This dam-
age results largely from the effects of hyperglycemia on 
the basement membrane, endothelium, and pericytes of 
the retinal blood vessels [53]. Some of these changes have 
been noted to be induced by activation of protein kinase 
C, increased formation of glycation products, activation 
of polyol pathway, oxidation, and inflammation [54–57]. 
These processes lead to microaneurysm formation, vas-
cular leakage, capillary non-perfusion, and neovasculari-
zation [53]. The presence of neovascularization defines 
PDR. Ultimately, diabetic retinopathy and secondary reti-
nal ischemia lead to neuroretinal damage through neuro-
degeneration, gliosis, and neuroinflammation [53].

Current treatments for diabetic retinopathy, beyond 
management of the diabetes and hyperglycemia, most 
often focus on the vascular aspects of the condition. 
Anti-VEGF treatments (bevacizumab, ranibizumab, and 
aflibercept) have proven effective in reducing the vision 
loss in patients with DR. Anti-VEGFs decrease retinal 
edema by mediating VEGF’s action on endothelial cells 
and their adjoining junctions [53]. Anti-VEGFs also cause 
regression of neovascularization in PDR [58]. Panretinal 
photocoagulation and focal retinal photocoagulation are 
also used to effectively treat PDR and DME respectively 
[59–62].

Mesenchymal stem cells (MSCs) demonstrate poten-
tial as immunomodulatory agents in DR [63]. Through 
expression of sulfoxide reductase A, MSCs have been 

Table 2  Gene therapy

Condition Goal Method

Diabetic retinopathy Reduction of angiogenesis Downregulation of VEGF via gene targeting of sFlt-1, Flt23k, and PEDF

Reduction of oxidative stress Vector-mediated delivery of superoxide dismutase

Regulation of renin–angiotensin system Targeting genes of ACE 2, Ang, or Mas receptor

Macular degeneration Inhibition of angiogenesis and neovascularization Binding of VEGF by proteins delivered by AAV2 vectors

AAV2 vectors carrying sFLT-1

Viral vectors carrying endostatin and angiostatin

Retinitis pigmentosa Decreased loss of photoreceptors and preserved reti-
nal function due to improved phagocytic function

Vector delivery of MERTK gene

Increased cell survival Increased expression of GDNF

Restore proper expression of the RPGR gene Production of the retinitis pigmentosa GTPase regulator gene (com-
monly mutated in X-linked retinitis pigmentosa)
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shown to absorb reactive oxygen species [64]. MSCs have 
demonstrated neuroprotective effects in animal models 
of retinal degeneration, and light- and ischemia-damaged 
retinas [65–67]. Endothelial progenitor cells (EPCs) have 
displayed some ability to repair damage in ischemic and 
diabetic retinopathy, though increased inflammation 
has also been reported; it appears that the EPC subtype, 
endothelial colony forming cells (ECFCs), are the cells 
capable of incorporating into the host retinal tissue and 
preventing neovascularization [63, 68, 69]. EPC deficien-
cies in diabetic animal models exhibit some improve-
ment with the administration of modulating agents of 
granulocyte colony-stimulating factor (G-CSF), stromal 
cell-derived factor 1 (SDF-1), and some peroxisome pro-
liferator-activated receptors (PPAR), as well as the drugs 
rosiglitazone, and atorvastatin [63, 70–75].

Wang et  al. [76] recently suggested that gene therapy 
investigations into DR either focus on targeting exist-
ing neovascularization and vascular hyperpermeability, 
or protecting nerves and vessels from damage. Several 
studies have demonstrated an ability to downregulate 
VEGF including therapies targeting sFlt-1, Flt23k, and 
PEDF (which also decreased expression of matrix metal-
loproteinase and connective tissue growth factor) [77–
82]. Other transgenes that have been targeted to reduce 
angiogenesis include endostatin, angiostatin, and tissue 
inhibitor metalloproteinase-3 [82–85].

Adhi et al. [86] observed that soluble cluster of differ-
entiation 59 (sCD59) protected retinal neurons and the 
blood-retinal barrier from membrane attack complex-
mediated damage. Other studies have aimed to increase 
neurotrophic factors like brain-derived neurotrophic 
factor (BDNF), decrease oxidative stress through man-
ganese-dependent superoxide dismutase (MnSOD) 
delivery, or regulate the renin–angiotensin system with 
angiotensin-converting enzyme 2, Ang- [1–7], and the 
Mas receptor [87–92]. While therapies targeting each of 
the transgenes mentioned have shown efficacy in reduc-
ing or preventing damage in animal models of DR-related 
disease, there remains further investigation necessary 
into long-term efficacy and safety in humans.

Macular degeneration
Age-related macular degeneration (AMD) is a disease 
of neurosensory retina and retinal pigment epithelium 
(RPE). AMD accounts for nearly 9% of worldwide blind-
ness, and has become the leading cause of legal blind-
ness in individuals over age 65 in the United States, 
Australia, Japan, and western Europe [93, 94]. In 2010, 
approximately 2.07 million people in the United States 
had AMD, which was up from 1.75 million in 2000 [95, 
96]. AMD has a markedly increased prevalence in whites 
when compared to individuals of other ethnicities, with 

1.85 million of the 2.07 million reported cases in 2010 
being white [96]. It is estimated that 196 million people 
will have AMD globally in 2020, and 288 million in 2040 
[93].

Presently, for dry AMD, the only treatment is oral 
administration of high-dose antioxidants (vitamins C and 
E, and beta carotene) and zinc which have been shown 
to slow the progression of AMD in a minority of patients 
[97]. Anti-VEGFs are the current standard of care in 
the treatment of wet AMD [98]. They lead to regres-
sion of choroidal neovascularization, prevention sub-
retinal fibrosis, and decrease rates of severe vision loss in 
patients with wet AMD. Other options that are employed 
include laser therapy and photodynamic therapy target-
ing the choroidal neovascularization [99].

Induced pluripotent stem cells (iPSCs) have demon-
strated similar effects to those previously discussed. The 
ability has been demonstrated to differentiate into pho-
toreceptors and RPE cells and integrate into the host 
cell structure to significantly improve retinal function 
in retinal dystrophic and degenerative rat and mouse 
models [100–103]. It was also observed that these ther-
apies were not accompanied by significant tumorigen-
esis which is important since rapid tumor formation is 
one of the primary concerns associated with iPSCs and 
ESCs [28]. Mandai et al. [104] transplanted an autologous 
iPSC-derived RPE cell sheet subretinally in a patient with 
advanced, wet AMD, and found that 1  year post-trans-
plant, there was neither improvement nor worsening of 
visual acuity, and the graft remained intact. Cystoid mac-
ular edema was noted to be present. Further investigation 
is needed, but this study suggests that it could be feasible 
to transplant cell sheets to preserve remaining vision in 
degenerative diseases, but significantly improved results 
have not yet been demonstrated.

The initial studies of subretinal ESC transplantation in 
human patients with AMD and Stargardt disease indi-
cated improved vision in the majority of patients on the 
order of 9–19 letters on the visual acuity test within a few 
months, and did not raise concern of serious safety issues 
in the small patient population thus treated [105, 106]. 
These studies suggest that stem cell transplantation has 
great promise as a potential regenerative therapy for indi-
viduals with AMD and Stargardt disease.

As mentioned previously, VEGF is a major mediator 
of angiogenesis in exudative AMD, and its inhibition 
can result in improved prognosis. VEGF antibodies and 
inhibitory agents have been used to good effect in the 
management of exudative AMD [46, 107, 108]. One of the 
inconveniences associated with VEGF antibody adminis-
tration is that it requires regular intravitreal injections. 
AAV2 vectors carrying proteins that bind VEGF compo-
nents have been effective in limiting new vessel formation 
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in wet AMD. Extracellular VEGF is bound and prevented 
from interacting with the endothelial receptors FLT-1 
and FLK by soluble FLT-1 (sFLT-1) [46]. Treatments 
with AAV2 vectors carrying sFLT-1 have inhibited neo-
vascularization, and the use of rAAV.sFLT-1 and AAV2-
sFLT01 have been shown to be safe in humans [109–112]. 
In phase 1 and phase 2a clinical trials, rAAV2-mediated 
gene delivery of sFLT-1 resulted in improved best cor-
rected visual acuity (BCVA) in 62% of patients [111, 113, 
114]. AAV2-sFLT01 is a novel chimeric protein that can 
be used to inhibit choroidal neovascularization (CNV). 
Pechan et al. [77] described the generation of two novel 
chimeric VEGF-binding proteins: sFLT01 and sFLT02. 
These proteins are comprised of an IgG-like chain of 
Flt-1 fused to either a human IgG1 Fc region or to its 
methyl domain. Several studies have confirmed the safety 
and efficacy of the AAV2 vector-mediated treatment 
of neovascularization in wet AMD models and patients 
[111, 112, 115–118]. Viral vectors carrying endostatin 
and angiostatin, the collagen and fibrinogen cleavage 
products, have efficacy in the inhibition of angiogenesis 
in exudative AMD [85, 119–121]. The safety of lentiviral 
Equine Infectious Anemia Virus (EIAV) as a method for 
ocular gene therapy in humans has been demonstrated 
in clinical trials [122]. Campochiaro et  al. [122] noted 
that long-term expression of angiostatin and endostatin 
was observed through the latest measurement of eight 
neovascular AMD subjects after more than 2.5  years, 
and two subjects after more than 4 years. It was recently 
demonstrated that insulin-like growth factor binding 
protein-related protein 1 (IGFBP-rP1) inhibits retinal 
angiogenesis in mice with oxygen-induced retinopathy 
by blocking the extracellular signal-related kinase (ERK) 
signaling pathway and inhibiting VEGF expression [123].

The investigational drug HMR59 developed by Hemera 
Biosciences (Boston, Massachusetts, USA), uses an AAV2 
vector to increase sCD59 expression; it aims to provide a 
therapy for dry AMD, and was granted ‘safe to proceed’ 
status by the FDA in January 2017 [124, 125].

Retinitis pigmentosa and other inherited retinal 
dystrophies
Retinits pigmentosa (RP) is a group of inherited degen-
erative conditions that affect the photoreceptor cells 
of the retina. In the classic presentation of RP, the rods 
are preferentially targeted first, which leads to a loss of 
night vision and limits peripheral vision. As the disease 
progresses, central vision also becomes compromised 
resulting in legal blindness. The prevalence of RP glob-
ally is estimated at approximately 1 in 4000 [126, 127]. 
Depending on its form, RP can be inherited in an auto-
somal dominant, autosomal recessive, or x-linked reces-
sive manner [126, 128–130]. Spontaneous mutations 

undoubtedly account for some cases of RP, as approxi-
mately 40% of RP cases are isolated instances that present 
without any other family members being affected [131]. 
Many mutations associated with RP have been identified 
[132–138].

Stem cells have been investigated as agents for pro-
longed administration of neuroprotective or neuro-
trophic factors. Aharony et  al. [28] note that stem cells 
can be induced to secrete neurotrophic factors (NTFs) 
such as brain-derived neurotrophic factor (BDNF), cili-
ary neurotrophic factor (CNTF), glial cell-line-derived 
neurotrophic factor (GDNF), and vascular endothelial 
growth factor (VEGF) to treat degenerative ophthalmic 
conditions; however, it is mentioned that the effect of 
these agents administered through stem cell engraftment 
is currently suboptimal. Promising treatments do exist in 
this area: BDNF has been shown to improve survival of 
neurons and RGCs and to preserve the structure of the 
optic nerve [139–143]. CNTF-secreting NSCs have been 
noted to provide protection to photoreceptors cells in 
models of retinitis pigmentosa [144]. GDNF-secreting 
ESCs and BMSCs secreting a combination of GDNF, 
BDNF, and VEGF have also been shown to significantly 
improve RGC survival [28, 145, 146].

The mer receptor tyrosine kinase (MERTK) has 
received attention due to the involvement of its muta-
tion in a very rare form of autosomal recessive retinitis 
pigmentosa [46, 147–149]. Retinal degeneration results 
from a subretinal accumulation of debris from the outer 
segment of photoreceptors due to inhibited phagocytic 
activity, and this leads to apoptotic photoreceptor loss 
and progressively worsening performance on eletroreti-
nography [150–153]. Gene replacement studies targeting 
the MERTK gene have involved the vectors adeno-asso-
ciated virus (AAV), adenovirus, and lentivirus [154–156]. 
Tschernutter et al. [156] used a lentivirus-mediated pro-
cess, and observed improvement of phagocytic func-
tion, decreased loss of photoreceptors, and preserved 
retinal function for the 7  month examination period 
included in the published report. It has been shown that 
AAV-mediated CTNF expression suppresses electro-
physiological retinal responses; however, AAV-mediated 
GDNF expression was not associated with the same 
adverse effects, but improved cell survival in combina-
tion therapy with lentivirus-mediated gene replacement 
[157]. The tyrosine-mutant AAV8 Y733F vector express-
ing a human MERTK cDNA driven by an RPE-selective 
promoter administered subretinally has been observed 
to improve retinal function in RP models for an 8 month 
study period, with improvement in phagocytic function, 
decreased retinal vascular degeneration, and inhibition 
of Müller cell  activation being noted [158]. Interest-
ingly, AAV8 vectors appear to exhibit a greater spread 



Page 8 of 14Ludwig et al. Int J Retin Vitr             (2019) 5:7 

in a dog model than other AAV vectors such as AAV2; 
in a study conducted in a primate model, both vector 
types transduced RPE efficiently, but the AAV8 vectors 
were significantly better at targeting photoreceptors than 
the AAV2 vectors [159, 160]. Petit et  al. [161] observed 
that the developmental stage of rods has an effect on 
the gene transfer efficiency of AAV vectors, suggesting 
that the ability of AAV vectors to infect dying rod cells 
could be limited, and the gene transfer efficiency mark-
edly reduced. Following subretinal injection, subjects 
with altered development of rod outer segments exhib-
ited significantly reduced AAV transduction of rods, and 
increased preference for cones. A preference for rods was 
observed when cells had matured. This type of increase 
in cone transduction was also observed in adult mice 
with retinal degeneration as compared to wild-type mice. 
An understanding of vector preferences to photorecep-
tors will aid researchers in developing effective delivery 
systems and treatments.

One of the major causes of X-linked retinitis pigmen-
tosa (XLRP) is mutation of the retinitis pigmentosa 
GTPase regulator (RPGR) gene [162–165]. There has 
been difficulty in producing AAV vectors with RPGR 
due to the relative instability of its sequence [166–170]. 
Fischer et  al. [166] optimized the coding sequence of 
RPGRORF15 in an effort to increase sequence stability, 
increase expression levels of the RPGR transgene, and to 
remove cryptic splice sites. They demonstrated produc-
tion of an AAV8 vector that consistently produced the 
full-length, correct RPGR protein, which rescued the dis-
ease phenotype in animal models. The glutamylation pat-
tern of the vector-derived RPGR and that of the wild-type 
protein were indistinguishable which indicates a lack of 
significant alteration to post-translational modification. 
Appropriate safety was demonstrated in mice [166].

There have also been efforts to treat autosomal domi-
nant RP (ADRP) using gene therapy. ADRP can be 
caused by mutations in more than 20 genes. Boye et  al. 
[46] note that mutations may take the form of haploin-
sufficiency, dominant negative gene product, or toxic 
gain-of-function. In haploinsufficiency, the product 
produced by a single wild-type allele is not sufficient to 
maintain normal function. In dominant negative gene 
product mutation, there is usually interference with the 
movement or assembly of the product. Toxic gain-of-
function mutations result in products that exhibit direct 
toxicity to the cell. More than 100 dominant mutations 
in the RHO gene alone have been identified [46]. Gene 
therapy differs depending on the type of mutation. In 
haploinsufficiency, therapy has involved delivery of wild-
type cDNA to increase the level of normal protein to 
adequate levels such as in the treatment of retinal degen-
eration due to mutation in PRPH2 by Cai et  al. [171]. 

Due to the complexity and diversity of dominant muta-
tions, even those of the RHO gene alone, there have been 
efforts to treat the condition by using molecules such as 
ribozymes, synthetic miRNAs, or siRNAs to target and 
degrade both mutant and wild-type mRNA; due to the 
degenerative effect this has on the retina, these therapeu-
tic agents must be accompanied by delivery and expres-
sion of cDNA resistant to degradation because of silent 
mutations [46, 172–179]. Some other approaches that 
exhibit promise in the treatment of ADRP include AAV 
vector delivery of wild-type cDNA to slow retinal degen-
eration, and the gene transfer of molecular chaperones to 
assist in proper protein folding or suppress the unfolding 
response [46, 180, 181].

There are many institutions, both private and aca-
demic, pursuing research into gene therapeutic agents 
to treat RP, XLRP, ADRP, and MERTK-related autosomal 
recessive RP [182]. Nightstar Therapeutics (London, Eng-
land, UK) has an AAV vector encoding RPGR in phase I/
II clinical trial [183]. The AAV2/5-hPDE6B vector from 
Horama (Paris, France) targets rod cGMP phosphodi-
esterase 6 β (PDE6B), and is in phase I/II clinical trial 
in patients with RP due to mutation of this gene [184]. 
MeiraGTx’s (New York, New York, USA) AAV2/5-hRKp.
RPGR has also entered phase I/II clinical trial for the 
treatment of XLRP [185]. The RestroSense (acquired by 
Allergan in 2016) AAV vector RST-001 (Chop2) or ChR2 
is intended primarily to treat retinitis pigmentosa, but 
advanced dry AMD is cited as a follow-on indication. It 
increases expression of the photosensitivity gene, chan-
nelrhodopsin-2 [186]. RST-001 is currently in phase I/
II clinical trial for its application in advanced retinitis 
pigmentosa [187]. As an area of great interest currently, 
there are many investigations ongoing into gene therapies 
targeting various genes causing multiple types of retinal 
dystrophies.

In December 2017, the FDA approved Luxturna 
(voretigene neparvovec-rzyl, Spark Therapeutics. Phila-
delphia, Pennsylvania, USA) for the treatment of Leber’s 
congenital amaurosis type 2 and RP due to a mutation in 
RPE65 [7]. The therapy employs an AAV2 vector carrying 
complementary DNA (cDNA) encoding human RPE65. 
Voretigene neparvovec-rzyl is injected subretinally. The 
FDA indications for the drug require that the patient 
have a confirmed biallelic RPE65 mutation and viable 
retinal cells [188]. This drug is notable for being the first 
in vivo gene therapy approved by the FDA. In phase III 
clinical trial, it was demonstrated that patients receiving 
the drug experienced statistically significant improve-
ments in multi-luminance mobility testing (MLMT), and 
full-field stimulus testing (FST) as compared to control, 
indicating restoration of RPE65 enzymatic activity result-
ing in improved navigation in low-to-moderate light 
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and increased light perception. There were also slight 
improvements in best-corrected visual acuity (BCVA) 
noted. Ocular adverse events observed in the study par-
ticipants were generally mild, with the most common 
being elevated intraocular pressure, cataract, retinal 
tear, and ocular inflammation [5]. Voretigene neparvo-
vec appears to be a relatively safe therapy that could dra-
matically improve the vision of those with biallelic RPE65 
mutation-associated retinal dystrophy.

Future directions
Considering research into stem cells and their use in 
treating ocular conditions in recent years, it appears that 
their greatest utility is likely in environment modifica-
tion through such practices as drug delivery and immu-
nomodulation. The role of curing retinal diseases will be 
more directly addressed in the immediate future through 
gene modulatory therapies. Gene transduction through 
viral vector delivery is an area of aggressive research. 
While some of these novel treatments are already being 
used in clinical medicine, their continued potential for 
attenuating degenerative processes and improving vision 
is significant and deserves continued investigation. 
While there have been many mutations reported, there 
undoubtedly remain others yet undiscovered, and iden-
tification of genes and mutations amenable to targeted 
therapy should continue. AAV and lentiviral vectors are 
the staple of therapeutic gene delivery in retinal research, 
and while these techniques have yielded good results, 
it could be of benefit to further investigate the feasibil-
ity of retroviral transduction in conjunction with retinal 
stem cell proliferation induction or non-viral transfec-
tion techniques in retinal gene therapy. Non-viral gene 
therapy is another promising area of retinal research 
[189, 190]. Recent investigations have made encouraging 
progress and showcased remarkable potential therapies 
to improve the visual acuity and quality of life of millions 
of individuals around the world. The future of treatment 
in retinal disease likely lies in the utilization of some 
form of genetic modification to combat these blinding 
conditions.
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