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Abstract
In the field of cancer genomics, the broad availability of genetic information offered by next-generation sequencing technolo-
gies and rapid growth in biomedical publication has led to the advent of the big-data era. Integration of artificial intelligence 
(AI) approaches such as machine learning, deep learning, and natural language processing (NLP) to tackle the challenges 
of scalability and high dimensionality of data and to transform big data into clinically actionable knowledge is expanding 
and becoming the foundation of precision medicine. In this paper, we review the current status and future directions of AI 
application in cancer genomics within the context of workflows to integrate genomic analysis for precision cancer care. The 
existing solutions of AI and their limitations in cancer genetic testing and diagnostics such as variant calling and interpretation 
are critically analyzed. Publicly available tools or algorithms for key NLP technologies in the literature mining for evidence-
based clinical recommendations are reviewed and compared. In addition, the present paper highlights the challenges to AI 
adoption in digital healthcare with regard to data requirements, algorithmic transparency, reproducibility, and real-world 
assessment, and discusses the importance of preparing patients and physicians for modern digitized healthcare. We believe 
that AI will remain the main driver to healthcare transformation toward precision medicine, yet the unprecedented challenges 
posed should be addressed to ensure safety and beneficial impact to healthcare.

Background

Is artificial intelligence (AI) going to take over the world 
as pictured in the sci-fi movies? It has famously beaten 
the best-performing human beings in competitions such as 
Jeopardy, AlphaGo, etc., and is now crawling into our daily 
life without notice. Autonomous vehicles, smart homes, 
chat bots, individualized marketing, fraud detection, and 
high-frequency automated trading are some examples of AI 
empowering humans to live in a more efficient and personal-
ized way. AI augments and is complement to, not a replace-
ment for human intelligence and intuition, where its goal is 
to help humans become faster and smarter in certain tasks.

Healthcare, an industry that is long governed by medical 
professionals, is also benefitting from AI. Progress in artificial 
intelligence and machine learning, along with the accessibility 

of cloud scaling for big data storage, and integration of health 
records have expanded the potential for personalized medicine 
(Syrjala 2018). Information can be automatically extracted 
and summarized from electronic medical records or from 
manually written doctor notes by natural language process-
ing (NLP) (Bedi et al. 2015; Chang et al. 2016; Garvin et al. 
2018; Meystre and Haug 2006; Miotto et al. 2016; Osborne 
et al. 2016). Through application of deep learning on medi-
cal imaging data, AI has outperformed expert pathologists 
and dermatologists in diagnosing metastatic breast cancer, 
melanoma, and several eye diseases (De Fauw et al. 2018; 
Ehteshami Bejnordi et al. 2017; Haenssle et al. 2018). AI 
also contributes to innovations in liquid biopsies and phar-
macogenomics, which will revolutionize cancer screening 
and monitoring, and improve the prediction of adverse events 
and patient outcomes (Cohen et al. 2018; Low et al. 2018). 
Moreover, AI applications are already playing an important 
role in fields like gene-editing CRISPR and drug discovery 
(Abadi et al. 2017; Yu et al. 2017). AI-powered services, such 
as monitoring health status and suggesting actions to improve 
well-being through the use of mobile devices and the internet 
of things (IoT), are entering the market.
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In the field of cancer genomics, the availability of multi-
omics data, genotype–phenotype data through genome-
wide association studies (GWAS), and literature mining has 
fostered the development of advanced AI techniques and 
solutions, which allow medical professionals to deliver per-
sonalized care through precision medicine (Li et al. 2018; 
Szymczak et al. 2009; Telenti et al. 2018). Precision medi-
cine is an emerging approach for disease prevention and 
treatment based on the specific genetics, environment, and 
lifestyle choices of an individual patient. AI systems are 
capable of identifying individual drug-response variability 
(Kalinin et al. 2018; Lin et al. 2018), making recommenda-
tions based on patterns learned from vast amounts of pub-
lic and proprietary data sources, and can help extend the 
frontier of personalized medicine and specifically of cancer 
genomics. In this review, we will focus on the existing solu-
tions and applications of AI in the field of cancer genomics 
and how they are shaping the precision oncology field.

What is artificial intelligence

AI is the combination of theories, algorithms, and comput-
ing frameworks, facilitating various tasks that require human 
intelligence such as reasoning, decision-making, speech rec-
ognition, language understanding, and visual perception. 
It is one term that encompasses numerous methods such 
as logic (rule-based), machine learning (ML), deep learn-
ing, NLP, and computer vision. AI can help to significantly 
speed up the process of analyzing vast amounts of data, 
leverage patterns in the data, and result in faster and better 
advised decision-making. Sophisticated predictive models 
are built using algorithms that mine the patterns from data 
and predict outcomes. As the availability of data in a domain 
increases, so does the adoption and utilization of such dis-
ruptive technologies. With the advent of Big Data and the 
ever-increasing storage and computing power, the challenge 
has shifted from collecting data to turning it into meaningful 
and actionable insights.

How next‑generation sequencing 
is changing the landscape of cancer 
genomics

Next-generation sequencing (NGS) is being applied 
broadly as a valuable method for gaining insights into 
the genomic profile of a tumor. The ability to simultane-
ously sequence millions of DNA fragments in a single 
sample to detect a wide range of aberrations provides a 
comprehensive profile of the tumor. Due to comprehensive 
detection of aberrations, combined with improvements in 
reliability, sequencing chemistry, pipeline analysis, data 

interpretation, and cost, the adoption of NGS for clinical 
purposes has grown tremendously (Pennell et al. 2018). 
Cancer panels are designed specifically to detect clini-
cally relevant somatic mutations with high confidence. 
Germline mutations in cancer-predisposing genes such 
as BRCA1/2 are also detected to assess cancer risk. In 
2017, the FDA approved several NGS-based panels related 
to oncology: Oncomine Dx Target Test, Praxis Extended 
RAS Panel, MSK-IMPACT, and FoundationOne CDx. 
Recent FDA approval of NTRK gene fusions for tumor-
agnostic indications also expands the clinical utilization 
of NGS (Larotrectinib FDA approval).

Liquid biopsy holds great promise due to its non-
invasive nature. Multiple studies have demonstrated the 
application of liquid biopsy for cancer diagnosis, prog-
nosis, and drug-response monitoring (Palmirotta et al. 
2018). Cell-free DNA (cfDNA) released by dying tumor 
cells, cell-derived vesicles termed exosomes, and circulat-
ing tumor cells (CTCs), which shed from the tumor and 
enter the vasculature system, are often used as a source 
for tumor DNA. Importantly, a variety of research groups 
have shown that NGS-sequencing protocols can be modi-
fied to achieve sensitivity levels comparable to the stand-
ard sequencing procedures (Aravanis et al. 2017), but its 
implementation in clinical practice is pending confirma-
tion via clinical trials.

The Cancer Genome Atlas (TCGA) project highlights 
how NGS screens can facilitate the discovery of novel 
oncogenic mechanisms and patient stratification. The data 
have been used to elucidate functionally relevant onco-
genic mechanisms across multiple tumor types (Cancer 
Genome Atlas Research Network et al. 2013; Sanchez-
Vega et al. 2018; Cava et al. 2018). In a recent study, the 
regulatory role of F-box/WD repeat-containing protein 7 
(Fbw7) in cancer cell oxidative metabolism is discovered 
(Davis et al. 2018) using ML algorithms. Molecular sub-
types discovered in the pan-cancer studies also help to 
personalize the treatment and improve patient’s survival 
outcome (Cancer Genome Atlas Network 2012; Curtis 
et al. 2012; Vaske et al. 2010).

Finally, NGS supports the discovery of novel biomarkers 
such as mutation signatures and tumor mutational burden 
(TMB). Statistical analyses are performed, and patterns are 
discovered through millions of mutations detected by NGS. 
TMB has been shown to be an effective biomarker for pre-
dicting the response to immuno-therapy—an innovative area 
of research that can use the body’s own immune system to 
fight cancer (Steuer and Ramalingam 2018). For all of these 
reasons, NGS has proven to be a powerful tool in clinical 
oncology. However, important challenges remain in cancer 
genomics and precision medicine fields such as efficiently 
leveraging the vast amount of genomic data available and 
making relevant treatment recommendations to clinicians.
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Challenges in cancer genomics data 
interpretation

Next-generation sequencing has revolutionized medical 
research and enabled multi-layer studies that integrate 
genomic data of high dimensionality such as DNA-seq, 
RNA-seq, and other multi-omics data such as proteome, 
epigenome, and microbiome. The integrative analysis of 
multi-omics data provides a more comprehensive view of 
biological processes leading to a better understanding of 
these systems compared to single-layer analysis (Chari 
et al. 2010; Wang et al. 2014).

However, there are several challenges to the translation 
of multi-omics data into clinically actionable biomarkers. 
First, combing data profiles at various levels would result 
in high dimensionality with large number of covariates. 
Data sparsity from high dimensionality combined with 
high heterogeneity from diverse types of data imposes a 
significant difficulty in integrative analyses. Many dimen-
sion reduction techniques such as multiple co-inertia 
analysis and multiple factor analysis have been developed 
to facilitate downstream joint analyses by mapping the 
data to lower dimensional space without a significant loss 
of information and transforming observations across data 
sets (Meng et al. 2016). Various integrating frameworks 
especially network-based approaches which use graphi-
cal algorithms to capture molecular network interactions 
and multi-level Bayesian models which impose realistic 
assumptions for parameter estimation through a prior-pos-
terior Bayesian structure have been commonly applied in 
advanced strategies for multi-omics data analysis (Ber-
sanelli et al. 2016).

Second, better standards for data generation and report-
ing are needed to facilitate data integration and to reduce 
bias (Ibrahim et al. 2016; Li et al. 2017). Sample acqui-
sition and preparation procedures need to be well regu-
lated for data generation and sequencing platform, and 
computational pipelines need to be carefully calibrated 
and validated. For instance, for NGS data, reference mate-
rial (CLSI QMS01-A 2018; CLSI MM01A3E 2018; NIST 
2018) whose properties are sufficiently homogeneous and 
well established to be used for the calibration of sequenc-
ing system is needed. The Centers for Disease Con-
trol (CDC) and Prevention’s Genetic Testing Reference 
Material Coordination Program (GeT-RM) is engaging to 
generate renewable and publicly available characterized 
gDNA reference materials that can be used for clinical 
NGS testing. Other than reference materials, laboratory 
practice guidelines were published by CDC’s Nex-StoCT 
II working group (Gargis et al. 2015). However, since 
hardware and software often get updated frequently 
and NGS analysis often encompass complex multi-step 

processes, further guidance for quality control criteria is 
needed, especially when sharing data among different lab-
oratories. Those standards will help different laboratories 
to validate procedures, assess the quality of sequencing, 
evaluate performance of new platforms, and compare or 
share results among them.

Last, but not least, well-designed studies with causal 
inference are needed to filter out biomarkers that have strong 
correlative effects but no real causative effects in tumori-
genesis (Ibrahim et al. 2016; MacArthur et al. 2014). Mul-
tiple classes of evidence may contribute to the pathogenic 
inference, including genetic, informatic, and experimental 
data. On the genetic level, the pathogenic variants could be 
significantly enriched in cases compared to controls and/
or the variant is co-inherited with disease status within 
affected families. On the informatic level, the pathogenic 
variants could be found at the location predicted to cause 
functional disruption (for example, protein-binding region). 
And on the experimental level, the pathogenic variants could 
significantly alter levels, splicing, or normal biochemical 
function of the product of the affected genes. This can be 
shown either in patient cells or well validated with in vitro 
or in vivo models such as introduction of the variant or an 
engineered gene product carrying the variant into cell lines 
or animal models results in phenotype consistent with the 
disease. Finally, the cellular phenotype in patient-derived 
cells, model organisms, or engineered equivalents can be 
rescued by addition of wild-type gene product or specific 
knockdown of the variant allele (MacArthur et al. 2014). 
Careful attention should be drawn on these aspects in regard 
to evaluating pathogenicity of new discovered biomarkers 
from omics data.

The advancement of ML technologies is bound to impact 
the interpretation of genomic sequencing data, which has 
traditionally relied on manual curation by experts in the 
field. These curation efforts rely on protein structure, func-
tional studies and more recently, on “in silico” models that 
predict the functional impact of genetic alteration such as 
SIFT, PANTHER-PSEP, PolyPhen2, and others (Tang and 
Thomas 2016). Genomic databases such as ClinVar or COS-
MIC have proliferated as means of concisely compiling a 
collection of classified genetic variants. They provide the 
evidence supporting the classification of a variant as being 
pathogenic, benign or of unknown significance (VUS).

Two key limitations of manually curating and interpreting 
the results from genomics data are scalability and reproduc-
ibility. These challenges continue to grow as more genomic 
data become available. The number of curation experts 
or variant scientists and the amount of time that they can 
dedicate daily to this task is limited. Different variant scien-
tists among companies, research groups, and hospitals can 
introduce bias due to subjectivity in curation criteria, adher-
ence to Standardized Operating Procedures and training. To 
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address these limitations, organizations are working to build 
and standardize multi-step protocols for variant classifica-
tion such as the American College of Medical Genetics and 
Genomics and the Association for Molecular Pathology 
(ACMG-AMP), who, in 2015, published a series of guide-
lines for the interpretation of germline genetic variants for 
genes causative of hereditary human disorders (Richards 
et al. 2015). These guidelines have been adopted, refined, 
and tested in multiple institutions for several genetic diseases 
including cancer, Marfan Syndrome, and diabetes among 
others (Amendola et al. 2016; Muino-Mosquera et al. 2018; 
Richards et al. 2015; Santana et al. 2017; Sukhai et al. 2016). 
Similarly, the International Society for Gastrointestinal 
Hereditary Tumors (InSiGHT) has developed a standardized 
classification scheme for variants occurring in genes associ-
ated with hereditary gastrointestinal tumors such as Lynch 
Syndrome (Thompson et al. 2014). More recently, ACMG 
and AMP in collaboration with the American Society of 
Clinical Oncology, and College of American Pathologists 
have published guidelines for the classification, annotation, 
interpretation, and reporting for somatic sequence variants in 
cancer (Li et al. 2017). Yet, the ability to scale NGS variant 
interpretation and to maintain strict quality control remains 
limited.

Precision medicine and AI

Precision medicine or personalized medicine tackles dis-
eases by tailoring treatment based on genomic, lifestyle, and 
environmental characteristics of each patient. With precision 
medicine and the advancement of NGS, genomic profiles of 

patients have been increasingly used for risk prediction, dis-
ease diagnosis, and development of targeted therapies. Gene 
expression is an important part of the patients’ genomic pro-
files, and interestingly, ML classification methods applied to 
gene expression data are not new. Historically, comprehen-
sive gene expression analysis was done with microarrays and 
now with RNA-seq. Expression data are analyzed to identify 
the significant genes in the upregulated or downregulated 
pathways (Lyu and Haque 2018; Hwang et al. 2002), and 
are also trained to predict the cancer subtypes and prognosis 
when outcome data or diagnosis information is available 
(Bartsch et al. 2016; Pepke and Ver Steeg 2017). Multiple 
review papers have already covered different ML applica-
tions on gene expression data (Molla et al. 2004; Sajda 2006; 
Kourou et al. 2014; Libbrecht 2015; Bashiri et al. 2017; 
Noor and Narwal 2017). In our review, we, however, will 
focus on AI applications related to NGS and cancer genom-
ics testing (Fig. 1).

Variant calling

Variant calling is the process to identify variants in NGS 
data. Raw sequencing reads are first aligned to the reference 
genome and then run through multiple quality improve-
ment steps to prepare for the variant calling (e.g., quality 
evaluation, recalibration, indel realignment, and identify-
ing duplicates). Randomness of DNA molecule selection at 
the enrichment step, platform-dependent systematic errors, 
sequencing errors, and alignment errors constitute the main 
challenges of this step.

Out-of-box usage of most variant callers is not ideal, 
especially in a clinical setting. Often, users need to 

Fig. 1   Topics discussed in the review paper. This figure demonstrates that several key topics discussed in the paper with the green icons repre-
senting benefits or improvements and red icons representing challenges or caveats
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heuristically tune parameters and apply multiple custom-
ized filters to remove false positives before an acceptable 
accuracy is achieved. This is a time-consuming effort that 
requires expertise to fine tune quality scores and attrib-
utes within contexts of sequencing, amplicon, alignment, 
and genomics.

Different groups are now leveraging ML algorithms 
and training on those underlying quality features such as 
sequencing and alignment quality to improve the perfor-
mance of the variant calling, especially in sub-optimal 
scenarios (Ding et al. 2012; Hao et al. 2017; Hill et al. 
2018; Spinella et al. 2016). Tumor ploidy and purity are 
two major factors that contribute to cancer complexity. 
Sub-clonal variants (present only in a few cells) are diffi-
cult to detect, because their representation in the sequenc-
ing library is low. This can result in variability across 
analysis methods, thresholds, and quality scores which 
may not be flexible enough to detect sub-clonal variants. 
Instead of setting up static rules, ML methods are able to 
adjust the thresholds dynamically based on the patterns. 
Variants with very low allele frequencies can still be 
reported if the sequencing depth and other quality metrics 
outperform and pass the overall confidence threshold. For 
instance, a convolutional neural network (CNN) model of 
which the algorithms are often used in image recognition 
achieved F1 score of 0.96, and was able to reach vari-
ants with allele frequency as low as 0.0001 (Hill et al. 
2018). F1 score is an accuracy measure that takes into 
account both precision and recall. In another instance, 
a Random Forest-based ML approach (Cerebro) applied 
to NGS data showed improved accuracy, as measured by 
F1 score, in the identification of tumor mutations when 
compared to the existing variant calling programs such as 
MuTect1, MuTect2, SomaticSniper, Strelka, VarDict, and 
VarScan2. While their recall values are fairly similar, Cer-
ebro showed increased precision values comparing to the 
other methods (Wood et al. 2018). Similar successes of 
ML have been described in copy-number variation (CNV) 
analyses (Antaki et al. 2018; Onsongo et al. 2016).

Besides standard variant detection paradigms, Google’s 
DeepVariant transforms a variant calling problem into an 
image recognition problem by converting a BAM file into 
images similar to genome browser snapshots and calls the 
variants based on likelihoods, using the Inception Ten-
sor Flow framework which was originally developed for 
image classification (Going Deeper with Convolutions 
2014). Another recent study successfully applied ML on 
sequencing data from multiple regions of a tumor to iden-
tify and learn growth patterns as accurate predictors for 
tumor progression (Caravagna et al. 2018).

Variant interpretation and reporting

Variant annotation and classification are the basis of genetic 
diagnostics and are crucial to clinical patient care and treat-
ment planning. In vivo or in vitro functional studies are 
considered the gold standard for determining whether a 
mutation is benign or disease causing. Several computa-
tional methods have been applied for the identification of 
cancer driver mutations based on non-random distribution 
of mutations within proteins (Porta-Pardo et al. 2017). In 
silico prediction tools like PolyPhen and SIFT are widely 
used to assist the manual curation but have not established 
themselves as the determining factors in the clinical setting 
(Adzhubei et al. 2010; Vaser et al. 2016). Many research 
groups are training ML models on features encoding sec-
ondary structures, intrinsic disorders, DNA-binding, phos-
phorylation, conservation, predicted structure, and homolog 
counts to further improve the accuracy of variant classifica-
tion, to incorporate high-dimensional data sets, and to unify 
the variant interpretation among laboratories. Some notable 
examples are deep neural networks (Bromberg et al. 2008; 
Ferrer-Costa et al. 2005; Qi et al. 2018; Quang et al. 2015), 
decision tree (Dobson et al. 2006; Krishnan and Westhead 
2003), random forrest (Bao and Cui 2005; Carter et al. 2009; 
Kaminker et al. 2007; Li et al. 2009a; Wainreb et al. 2010), 
and support vector machine (Calabrese et al. 2009; Capriotti 
et al. 2006, 2008; Karchin et al. 2005; Yue and Moult 2006).

It is also imperative to evaluate and validate prediction 
tools. The critical assessment of genome interpretation 
(CAGI) has carried out prediction challenges accompanied 
with experimentally confirmed validated results throughout 
the years. The shared data and assessment publications are 
invaluable sources to set the standards for evaluation on 
the performance of any prediction tool. For example, the 
proprietary classification for BRCA mutations carried by 
Myriad Genetics has been considered an established assess-
ment to evaluate pathogenicity in functional studies. Using 
ensemble learning methods on multimodal data sets, Pejaver 
et al. have developed missense variant pathogenicity predic-
tors with high accuracy of predictions on BRCA missense 
variants classified by Myriad Genetics. Unfortunately, their 
evaluation is inconclusive due to small sample size, and only 
a small number of mutations were evaluated in this study 
(Pejaver et al. 2017). Saturation genome editing has been 
used in a recent study to assay all possible single-nucleotide 
variants in functionally critical domains of BRCA1 for vari-
ant functional classification and could be a viable strategy to 
overcome the challenge of lacking variant functional data, 
especially for those rare and low-frequency variants and to 
enable approaches with systematically derived measure-
ments for functional analysis (Findlay et al. 2018).

Cancer biologists and molecular pathologists are trained 
to classify cancer sequence variants for their pathogenicity 
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and clinical relevance. This is a complex process which is 
difficult to compile into a set of rules comprehensive enough 
to cover all scenarios. To what degree can ML algorithms 
learn the complex clinical decisions made by individual 
pathologists and classify the variants automatically? Mas-
sachusetts General Hospital (MGH) did the experiment and 
got very promising results. They selected ~ 500 features, 
built multiple ML models on ~ 20,000 clinical sign-out vari-
ants reported by board-certified molecular pathologists and 
then compared the prediction results to find the best model 
(Zomnir et al. 2018). The logistic regression model dem-
onstrated the best performance with only 1% false negativ-
ity and 2% false positivity, which is comparable to human 
decisions.

Literature mining

Owing to the open-access policies of many journals and the 
steady growth of scientific publications (Fig. 2), there is 
widespread availability of the published literature. PubMed 
currently comprises of over 28 million citations from Med-
line, life science journals, and online books (PubMed). The 
number of publications each year, as indexed in PubMed, has 
exceeded 1 million since 2011. This volume and veracity in 
publications indicate multiple hypotheses are being tested at 
the same time, which makes it harder for researchers to stay 
up to date in their field in the absence of some automated 
assists. It, therefore, impacts their ability to generate mean-
ingful and coherent conclusions in a timely manner which 
are required for evidence-based recommendations in the 
context of precision medicine (Harmston et al. 2010). Appli-
cations and use of NLP-based solutions reduce the time and 

effort required for information retrieval (IR) and speed up 
curation, and provide novel opportunities for hypothesis gen-
eration based on the published literature (Caporaso et al. 
2008; Extance 2018). In cancer genomics, publications per 
year can easily run into tens of thousands—far more than a 
researcher can keep up with—and this growth in publication 
has resulted in rapid growth of application of text mining 
and NLP techniques (Fig. 2). Biomedical named entity rec-
ognition (Bio-NER) and relationship extraction are two key 
NLP processes used in evidence extraction. The publicly 
available tools are reviewed and compared here (Table 1).

Entity extraction

Bio-NER is the foundation of evidence extraction for preci-
sion medicine. In cancer genomics, NLP tools have been 
used for the automated extraction of entities such as gene, 
genetic variants, treatments, and conditions. Identifying 
genetic variants is a key step for tumor molecular profiling 
and downstream gene–protein or gene–disease relationship 
analysis. Medical providers require the accurate identifica-
tion and interpretation of genetic variation data to design 
effective personalized treatment strategies for their patients. 
Unfortunately, there is no universal standard for how genetic 
variants are called out and there are multiple ways of present-
ing the same event in the literature and genomic databases. 
Variation could be described at multiple description levels 
such as genomic and protein levels, and mapped against dif-
ferent reference genomes. Their mentions are often written 
as various natural language phrases besides the standard 
alphanumeric formats (HGVS format). To consolidate the 
knowledge on genetic variation from the literature mining 
and integrate it with curated data in existing resources such 

Fig. 2   Publication number plot-
ted against publication year. In 
this figure, two y-axes have been 
plotted. One y-axis represents 
the number for papers related to 
“Cancer Genomics”. The other 
y-axis represents the number 
for papers related to “Cancer 
Genomics + NLP”. The x-axis 
represents the publication year
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as ClinVar and COSMIC, it is essential to both standardize 
the genetic variations to HGVS nomenclature and normalize 
them to unique identifiers such as reference SNP ID number 
(RSIDs).

Current biomedical named entity recognition techniques 
fall into three major categories: dictionary-based approaches, 
rule-based approaches, and ML/deep learning approaches 
(Cohen and Hersh 2005; Li et al. 2009b). Dictionary-based 
approaches tend to be fast and simple but often miss unde-
fined terms that are not mentioned in the dictionary, while 
rule-based approaches usually require handcrafted rules that 
identify terms from text but could be too specialized to adapt 
to new entity types (Rebholz-Schuhmann et al. 2011). ML 
approaches generally require the standard annotated training 
data sets for which the generation process is usually time- 
and labor-consuming (Krallinger et al. 2011). Recently, sev-
eral deep learning methods have been applied to biomedical 
named entity recognition showing large performance gain 
by better integrating multi-dimensional features and, at the 
same time, minimizing manual feature generations (Habibi 
et al. 2017; Wu et al. 2017).

Relationship extraction

Relationships between recognized entities from the biomedi-
cal literature are key to identify the associations of genetic 
alterations, conditions, and treatments. These can be used 
as evidence for genetic test reporting by linking genotype-
to-phenotype data, such as an association of a specific vari-
ant with drug sensitivity or of a variant with predisposi-
tion to a specific cancer type. The most intuitive and fastest 
approach for relation extraction is co-occurrence analysis, 
which tends to achieve high recall but low precision (Cheng 
et al. 2008; Doughty et al. 2011; Lee et al. 2016a). A rule-
based approach can achieve higher precision (Hakenberg 
et al. 2012), but defining those rules can be time-consum-
ing and labor-intensive. Many more sophisticated learning 
methods have been developed over the last decade and they 
conceptually fall into three categories: the supervised learn-
ing approach, the unsupervised or semi-supervised learn-
ing approach, and the hybrid learning approach. Within 
the scope of supervised learning, several papers focused 
on feature-based approach (Rink et  al. 2011; Xu et  al. 
2012), while several other papers mainly used kernel-based 
approach (Kim et al. 2015; Ma et al. 2015; Tikk et al. 2013; 
Yang et al. 2011). Supervised approaches commonly require 
expensive labeled training data and their feature engineer-
ing and kernel selection would be time-consuming. Unsu-
pervised learning approaches, on the other hand, focus on 
learning inherent structure in data and do not require labeled 
training data (Alicante et al. 2016; Quan et al. 2014). Unsu-
pervised learning approaches such as association mining can 
help to identify interesting associations. Since the field of 

cancer genomics is rapidly evolving, to come up with mean-
ingful evidence-based recommendations, it is important to 
make sense of vast available data sets and publications. 
Association mining has been used to identify frequently co-
occurring entities to develop meaningful conclusions and 
recommendations (Alves et al. 2009). Other unsupervised 
technique such as clustering is used to develop insights into 
cancer signatures from multi-omics data. Semi-supervised 
learning such as the distant supervision approach usually 
utilize weakly labeled data derived from a knowledge base, 
which has been explored in cancer research (Quirk and Poon 
2017). Hybrid approaches usually integrate pattern, rules, 
domain knowledge, and learning-based methods together 
to build models (Muzaffar et al. 2015). Deep learning inte-
grates both supervised and unsupervised features by apply-
ing multi-layer non-linear functions for analysis and classifi-
cation. Over recent years, deep learning methods like CNNs 
(Lee et al. 2018) and recurrent neural networks (RNNs) 
(Peng et al. 2017) have been applied into the relation extrac-
tion field and have led to promising results. Lee et al. demon-
strated that CNN can be used for sentence-level relation clas-
sification. With features combining word embedding, type 
embedding, and position embedding, they achieved F1 score 
of 0.954 and 0.845 for mutation-gene and mutation-drug 
relationship classification, respectively, without explicitly 
defining keywords for relation extraction. Peng et al. showed 
that, by applying graph LSTM for drug–gene–mutation ter-
nary relation extraction, they achieved precision 0.75 (with 
output probability threshold 0.9) in cross-sentence setting. 
In addition, graph LSTM outperformed a well-engineered 
feature-based classifier in extracting genetic pathway inter-
actions using GENIA Event Extraction data set, illustrating 
its advantage of handling sparse linguistic patterns without 
intense feature engineering.

Challenges to AI adoption in healthcare

Lack of ground truth to validate the benefit

The evaluation of AI accuracy is critical to help gauge how 
well the system performs in assisting experts, and to make 
AI less of a black box. In cancer genomics, variant classifi-
cation, clinical relevance, literature validation, and summari-
zation are traditionally done by human experts. To prove the 
usefulness of an AI application, it needs to be evaluated in 
comparison with human experts and not only with the other 
AI solutions. However, this is rarely done due to the lack of 
publicly accessible knowledge bases for ground truth data.

Increasingly abundant patient genomic and clinical 
data generated from various genomic testing platforms are 
enabling AI solutions to discover novel clinically relevant 
patient subgroups for better clinical outcome (Kristensen 
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et al. 2014; Kalinin et al. 2018). However, the difficulty of 
getting a statistically significant patient outcome data is 
one of the most pressing challenges to achieve an impactful 
solution. Patient outcome data are personal health informa-
tion (PHI) that must be protected by the HIPAA guidelines 
in the US and GDPR in Europe. Given such regulations, 
sharing such data is not done lightly, as security considera-
tions are vital to preventing sensitive data from being com-
promised (General Data Protection Regulation 2016; The 
Health Insurance Portability and Accountability Act of 1996 
2014). Furthermore, there is a scarcity of patient outcome 
data available to be used in training and evaluation of AI 
systems for guiding the decisions of clinicians and experts 
in the design of treatment plans.

Transparency and reproducibility

AI is a hot field and its use has been claimed by many plat-
forms and companies. However, detailed information on AI 
techniques and models is not clearly presented and there 

is considerable variability in methodologies from company 
to company. Based on publicly accessible information, we 
classify five different levels of transparency with a list of 
examples (Table 2).

Reproducibility of experimental results is the hallmark of 
science. Therefore, being able to replicate ML results and 
experiments is paramount. Because ML algorithms typi-
cally have lots of tunable components, performance can be 
affected by the sensitivity to the scale and quality of training 
data, empirical setting of hyperparameters, and initializa-
tion and optimization processes. Many publications fail to 
disclose simplifying assumptions or implementation details, 
and thus make it hard to reproduce results. This coupled with 
the fact that researchers often do not share their source code 
makes reproducibility a major challenge. Even if all details 
were shared, reproducibility is not easy to implement, as this 
requires that we either expect reviewers (a) to very carefully 
study the code and scripts needed to produce the results or 
(b) to create a new script based on the description of the 
algorithm and parameters in the paper. Simply running the 

Table 2   Major functionalities and transparency for key players in text mining and personalized medicine field

For each company, the main functionality and transparency are summarized

Players Functionality Transparency

Blueprint genetics Offers single gene test, targeted variant testing or whole 
exome sequencing service along with interpretation

No explicit AI description

Cambridge cancer genomics Uses blood tests to guide cancer therapy No explicit AI description
Deep gene Provides cancer-type classifier based on deep learning 

and somatic point mutations
Publication is available (Yuan et al. 2016)

Deep genomics Develops genetic medicines using artificial intelligence 
technology, with a focus on the preclinical develop-
ment of oligonucleotide therapies

No detailed explanation but related publication is avail-
able (Wainberg et al. 2018)

DeepVariant Analysis pipeline using a deep neural network to call 
genetic variants from NGS DNA data

Available in GitHub https​://githu​b.com/googl​e/deepv​
arian​t

Genomenon Genomic search engine and database to provide disease-
gene-variant relationships from the full text of the 
scientific literature for gene and variant interpretation

No explicit AI description

Genoox Fully customized platform for genetic applications 
including primary, secondary and tertiary analyses

No explicit AI description but related publications 
available (Stajkovska et al. 2018)

Literome Automatic curation system to extract genomic knowl-
edge from PubMed articles to facilitate browsing, 
searching, and reasoning

Publications are available (Poon et al. 2014, 2015)

Perthera Manage process from tumor testing through Perthera 
Report to provide cancer patients and physicians 
with therapeutic options ranked by the probability of 
outcome

No explicit AI description

Sophia Genetics Provides NGS data analysis to detect, annotate and 
pre-classify genomic variants associated to multiple 
disorder areas

No explicit AI description

Watson for Genomics Provides in-depth clinical interpretation of the genetic 
alterations in the sample automatically, enabling clini-
cal decision-making for personalized cancer care

No explicit AI description but related publication is 
available (Patel et al. 2018)

WuXi NextCODE Uses genomics to identify the underlying biology and 
advance the scientific understanding of disease and 
propel the next generation of transformative therapies

No explicit AI description but related publication is 
available (Zhang et al. 2018)

https://github.com/google/deepvariant
https://github.com/google/deepvariant
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scripts and checking whether the tables and graphs of the 
paper can be reproduced would do little to validate the work. 
These discussions promote the publication of well-described 
research methods and protocols, and thus help the advance-
ment and adoption of AI technologies (Hutson 2018). Even 
after such hurdles are overcome, large-scale deployment 
of AI solutions in healthcare may happen only when ben-
efits are realized via closely monitored and formally tested 
assessment in real world.

Patient/physician education

Digitization of healthcare has provided the access to big-
data information and cognitive insights to both caregivers 
and patients, transforming healthcare and clinical workflows 
(Mesko et al. 2017). The point-of-care has shifted from the 
clinic and physician to the patient. The old paradigm of 
paternalistic physician–patient relationship has been trans-
formed into an equal-level partnership with shared medical 
decision-making. Experience-based medicine has evolved 
into evidence-based and patient-centered approaches. Both 
physicians and patients need to be prepared for this revolu-
tionary role of AI in healthcare (Mesko et al. 2017).

Medical professionals must learn how to work alongside 
data-enabled technology applications and acquire knowl-
edge about how AI works for healthcare delivery. Precision 
medicine relies on an increasing amount of heterogeneous 
data of molecular genetics, clinical, and biological param-
eters for each patient. The total number of parameters for 
medical decision-making on a single patient could be up to 
10,000 by 2020 (Abernethy et al. 2010). It becomes impos-
sible for a physician to bear with all the responsibilities 
of data management and analysis, not to mention patient 
communications. Physician burnout has become a press-
ing health challenge. The application of AI in healthcare 
aims to advise clinicians with better and faster insights to 
ultimately improve the lives of patients. By embracing AI, 
clinical teams could be relieved from repetitive daily work 
and have more time to focus on the other aspects of patient 
care (Fogel and Kvedar 2018). For instance, in one study, 
Watson for Genomics identified genomic alterations with 
potential clinical impact that were not recognized by the 
traditional molecular tumor boards in 323 (32%) of patients 
using an analysis that took only a few minutes (Patel et al. 
2018). At MGH, the clinical implementation of an AI-based 
decision support tool for variant reporting allows molecular 
pathologists to quickly make decisions and empowers them 
to explore the underlying reasoning behind them (Zomnir 
et al. 2018). As we move to an age of AI, medical education 
must move beyond the foundational biomedical and clinical 
sciences to knowledge of information platforms and intel-
ligence tools in healthcare and the skills to effectively use 
them (Wartman and Combs 2018).

On the other hand, capturing data on individual variabil-
ity in genomic, lifestyle, and clinical factors is at the core 
of precision medicine, which would empower patients to be 
more engaged in their health care. With augmented direct 
access to health and innovative technologies, transparency 
in healthcare would be improved and may lead to enhanced 
accountability and productivity. However, at the same time, 
the risk of patients getting exposed to unreliable or mis-
interpreted information and turning to non-validated and 
unregulated technological solutions is increasing (Mesko 
et al. 2017). To facilitate patient participation in this AI-
empowered digital health transformation, medical profes-
sionals should provide robust patient education initiatives 
related to precision medicine, benefits and risks of AI, data 
sharing, and protection. Healthcare providers need to be sen-
sitive to varying degrees of patient preferences for privacy 
and properly obtain consent for patient data collection and 
use. The awareness of patients’ rights and health literacy 
should be promoted to help patients navigate the modern 
technology-intensive healthcare system and to become 
accustomed to shared decision-making. Ethical principles 
should be developed to help ensure that development and 
use of AI applications, specifically within healthcare, are 
accurate, understandable, and beneficial.

Perspectives: 5 years down the road

We have entered the advent of an era in which AI can help 
across the medical continuum from research to prognosis, 
therapy, and post cancer treatment care. AI will remain the 
main driver to healthcare transformation towards precision 
medicine. While digital health has become essential for 
providing best practice in healthcare, it raises some unprec-
edented challenges (Bibault et al. 2016; Mesko et al. 2017). 
How this revolutionary role of AI in healthcare translates 
into an improvement in the actual lives of patients remains 
to be demonstrated and will be dependent on the availabil-
ity of patient outcome data. More and more crowd-source 
challenges will be uniquely designed for problems in can-
cer genomics with experimentally defined ground truth to 
objectively and transparently evaluate the accuracy (CAGI 
2018; Dream Challenges 2018; Grant Challenges 2018; Pre-
cisionFDA True Challenge 2018). The data sets that will get 
published following these efforts will help to establish the 
standards for benchmarking and testing novel algorithms in 
the cancer community. Data protection, data sharing, and 
international standardization will be addressed and regulated 
(Center for Data Innovation). All those unprecedented chal-
lenges digital health poses should be addressed to ensure AI 
safety and beneficial impact to healthcare.
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