
Vol.:(0123456789)1 3

Photosynthesis Research (2019) 139:81–91 
https://doi.org/10.1007/s11120-018-0583-z

ORIGINAL ARTICLE

Maintaining homeostasis by controlled alternatives for energy 
distribution in plant cells under changing conditions of supply 
and demand

Renate Scheibe1 

Received: 5 June 2018 / Accepted: 6 September 2018 / Published online: 10 September 2018 
© The Author(s) 2018

Abstract
Plants depend on light energy for the generation of ATP and reductant as well as on supply of nutrients (inorganic C, N, and 
S compounds) to successfully produce biomass. Any excess of reducing power or lack of electron acceptors can lead to the 
formation of reactive oxygen species (ROS). Multiple systems are operating to avoid imbalances and subsequent oxidative 
stress by efficiently scavenging any formed ROS. Plants can sense an upcoming imbalance and correspondingly adapt to 
changed conditions not only by an increase of ROS scavengers, but also by using excess incoming light energy productively 
for assimilatory processes in actively metabolizing cells of growing leaves. CO2 assimilation in chloroplasts is controlled by 
various redox-regulated enzymes; their activation state is strictly linked to metabolism due to the effects of small molecules 
on their actual activation state. Shuttle systems for indirect transfer of reducing equivalents and ATP specifically distribute 
the energy fluxes between compartments for optimal biomass production. Integration of metabolic and redox signals involves 
the cytosolic enzyme glyceraldehyde-3-P dehydrogenase (GapC) and some of its many moonlighting functions. Its redox- 
and metabolite-dependent interactions with the mitochondrial outer membrane, the cytoskeleton, and its occurrence in the 
nucleus are examples of these additional functions. Induction of the genes required to achieve an optimal response suitable 
for the respective conditions allows for growth when plants are exposed to different light intensities and nutrient conditions 
with varying rates of energy input and different assimilatory pathways for its consumption are the required in the long term. 
A plant-specific respiratory pathway, the alternative oxidase (AOX), functions as a site to convert excess electrons into heat. 
For acclimation, any imbalance is sensed and elicits signal transduction to induce the required genes. Examples for regulated 
steps in this sequence of events are given in this review. Continuous adjustment under natural conditions allows for adaptive 
responses. In contrast, sudden light stress, as employed when analyzing stress responses in lab experiments, frequently results 
in cell destruction. Knowledge of all the flexible regulatory mechanisms, their responsiveness, and their interdependencies 
is needed when plant growth is to be engineered to optimize biomass and production of any desired molecules.
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Abbreviations
AOX	� Alternative oxidase
ADP	� Adenosine diphosphate
ATP	� Adenosine triphosphate
COX	� Cytochrome c oxidase
CBC	� Calvin–Benson cycle

Fdred	� Ferredoxin (reduced)
GAPDH	� Glyceraldehyde 3-phosphate dehydrogenase
Glu	� Glutamate
G6P	� Glucose 6-phosphate
G6PDH	� Glucose 6-phosphate dehydrogenase
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NAD(P)(H)	� Nicotinamide adenine dinucleotide (phos-

phate) (reduced)
NDin/ex	� NADH dehydrogenases (internal and 

external)
NR	� Nitrate reductase
NiR	� Nitrite reductase
OAA	� Oxaloacetate
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OPP	� Oxidative pentose-phosphate
PGA	� 3-phosphoglycerate
PGK	� 3-phosphoglycerate kinase
PET	� Photosynthetic electron transport
RET	� Respiratory electron transport
RuBP	� Ribulose 1,5-bisphosphate
TP	� Triose phosphate
TPT	� Triose-phosphate-phosphate translocator
VDAC	� Voltage-dependent anion channel

Introduction

Plants as sessile organisms which depend on light as the 
primary energy source cannot easily escape stressful con-
ditions. Therefore, their energy metabolism requires per-
manent adjustment to avoid imbalances and formation of 
harmful radicals. Particularly the ATP/ADP and NAD(P)
H/NAD(P)+ ratios need to be balanced in each cellular 
compartment as well as the ATP/NADPH ratios therein. In 
each compartment, specific isoenzymes of basic metabo-
lism provide reductants and ATP, while others consume 
these energy carriers for assimilation of C, N, and S to 
produce biomass (for review: Scheibe and Dietz 2012). 
Chloroplasts are the major sites of origin of reducing 
equivalents and ATP required for assimilatory processes. 
But on the other hand, chloroplasts and mitochondria are 
also the source of radicals. Any reactive forms of oxy-
gen and nitrogen (ROS/RNS) resulting from over-reduced 
electron transport chains are scavenged by multiple anti-
oxidant systems. Since radicals are inevitably formed dur-
ing metabolic activities, antioxidant systems are present 
at sufficiently high levels in all compartments which can 
be enhanced when required (Foyer and Noctor 2011). On 
the other hand, the early increase of ROS is an important 
signal to induce systems for defense and repair (Mittler 
2016). However, adaptation can also initiate reshuffling of 
the incoming energy into productive pathways for assimi-
latory processes. Therefore, it seems to be important to 
consider the actual conditions in a cell for analysis of pro-
ductivity and stress responses. Time course and intensity 
of the applied challenge together with nutrient availability 
determine whether positive effect or damage is the result 
of a change of conditions. Sites of energy conversion and 
distribution as well as the regulatory principles acting in 
successful adaptive responses are discussed in this review. 
The Calvin–Benson cycle (CBC), the malate valves, the 
alternative oxidases, and major steps of reductant genera-
tion from the OPP pathway, triose-P oxidation, as well as 
glycolysis are described as examples for energy fluxes. 
Components of these major metabolic pathways are tightly 
linked to sensing of imbalances and initiating responses.

Short‑term adaptation to incoming light 
intensities and protection from oxidative 
stress

ROS generation is intimately interlinked with cellular 
redox-processes in photosynthesis and respiration but 
does not lead to biomass production. With an excess of 
incoming energy, the danger of oxidative stress is even 
increasing. In order to decrease the negative effects, many 
mechanisms exist in plants and in algae to allow for short-
term responses of the electron flow in the thylakoids when 
coping with fluctuating input of light. The increase of 
ROS levels resulting from most types of impact leads to 
induction of antioxidant activities as part of the general 
adaptation syndrome first described in medicine for human 
stress (Selye 1950). Antioxidant enzymes are an essen-
tial part of the defense response and do not contribute to 
biomass production but rather to biomass consumption. 
As markers that indicate a response to oxidative stress, 
expression levels of 2-Cys peroxiredoxin (Prx), superox-
ide dismutase (SOD), and ascorbate peroxidase (APX) or 
the transcriptional repressor ANAC089 are usually moni-
tored (Pulido et al. 2010; Dietz and Pfannschmidt 2011; 
Oelze et al. 2012; Klein et al. 2012). Ascorbate and glu-
tathione are generally sufficient as redox buffers for most 
physiological requirements when changing conditions as 
fluctuating light or shift of the nutritional status disturb 
the cellular redox state (Foyer and Noctor 2011). Photo-
protection at the cellular level is realized in many ways, 
starting with the closure of photosystems to decrease the 
amount of absorbed and excited energy and dissipation 
of the absorbed energy by a number of mechanisms, e.g., 
the xanthophyll cycle, state transitions, and contributions 
of various proteins to cyclic electron flow (Ruban et al. 
2012; Hanke and Scheibe 2018; Alric and Johnson 2017). 
In particular, in lower photosynthetic organisms such as 
Chlamydomonas or Marchantia, and in cyanobacteria, 
the contributions from PGR5, PGR5-like, and flavodiiron 
proteins appear to be essential in particular under fluctu-
ating light conditions (Alric 2010; Allahverdiyeva et al. 
2013; Steinbeck et al. 2015; Shimakawa et al. 2017; Jokel 
et  al. 2018). Faster recovery from the protected states 
in fluctuating light was suggested to help improve yield 
(Kromdijk et al. 2016). The repair machinery for the D1 
protein prevents damage at this crucial point after energy 
capture in the reactive center of photosystem II (Theis and 
Schroda 2016). If the environmental change, however, is 
as substantial as to overstress the cell’s defense and repair 
mechanisms, an increase of ROS will be detectable as a 
result of “oxidative stress,” finally leading to cell death 
and necrosis.



83Photosynthesis Research (2019) 139:81–91	

1 3

When light-generated reductants are not used, the 
removal of energized electrons via water–water cycles 
(Beck/Halliwell/Asada pathway or NTRC/peroxiredoxin), 
photorespiration, or alternative oxidase (AOX) avoids 
radical formation in the electron transport chains both in 
chloroplasts and mitochondria (Scheibe et al. 2005; Sunil 
et al. 2013; Voss et al. 2013). The antioxidant systems 
need NADPH for regeneration provided by linear elec-
tron flow. Through the OPP pathways, both in plastids and 
cytosol, an alternative source for NADPH by carbohydrate 
oxidation is available in plants when required during dark 
metabolism. An electron acceptor limitation at PSI due 
to the lack of the major ferredoxin (Fd2) in a knockout 
line of Arabidopsis leads to insufficient rates of reduct-
ant generation and even results in oxidative activation of 
the plastidial G6PDH in the light (Voss et al. 2008). In 
mitochondria, NADP-isocitrate dehydrogenase provides 
reductant for the NTR system (Møller 2001).

Rapid flux adjustments by post‑translational 
regulation of chloroplast enzymes

Various steps in the Calvin–Benson cycle (CBC) are con-
trolled by light/dark-modulated enzymes (Buchanan and 
Balmer 2005) to maintain homeostasis even under chang-
ing conditions. For reversible mediation of redox modi-
fications to the various target proteins, a large number of 
thioredoxins and glutaredoxins are present in each compart-
ment (Meyer et al. 2008). Metabolism determines the actual 
flux through the respective step by changing the rates of the 
redox interconversions between reduced and oxidized forms 
of these enzymes individually (Scheibe 1991). On the one 
hand, this mechanism allows for diurnally separated fluxes 
through reductive and oxidative pentose-phosphate cycle, 
respectively. But most importantly, continuous adjustment 
of enzyme activities is possible during illumination (Scheibe 
1991; Knuesting and Scheibe 2018). As a key step of the 
CBC, the heterotetrameric isoform of GAPDH (GapA/B) is 
redox- and metabolite-controlled in its light/dark modulation 
(Baalmann et al. 1995, 1996). Both, reduced thioredoxin 
and the substrate 1,3bisPGA, determine the active por-
tion of the enzyme required for the actual flux. As another 
example, the stromal FBPase activity is strictly following the 
demand as communicated by rising stromal concentrations 
of the substrate FBP. In addition to its role as a substrate, 
FBP functions as a positive effector for reductive activa-
tion of FBPase, and as the inhibitor of oxidative inactiva-
tion, with both effects acting on the redox-cycle resulting in 
the required enzyme activity at any time at this step of the 
CBC (Scheibe 1991). On the other hand, the lack of electron 
acceptor and an increased NADPH level (i.e., a low con-
centration of the inhibitor NADP+) causes the malate valve 

to open via reductive activation of the NADP-dependent 
malate dehydrogenase (NADP-MDH) for indirect export of 
NADPH in illuminated chloroplasts. In contrast, if reducing 
equivalents are consumed for 3-PGA reduction, the higher 
NADP+/[NADPH + NADP+] ratio inhibits NADP-MDH 
activation and prevents export of reducing equivalents from 
the chloroplasts (Scheibe 2004).

Such autoregulatory mechanism is making use of sub-
strates or products of an enzyme for fine-tuning its activ-
ity specifically, thus supporting homeostasis of metabolism 
even under changing conditions (Faske et al. 1995; Holtgrefe 
et al. 1997). The hierarchy of the various electron acceptors 
is evident in experiments with isolated chloroplasts under 
defined metabolic conditions (Backhausen et  al. 1994, 
2000). CO2 assimilation as the major reductive pathway is 
continuously fed with energy, but any sulfate or nitrite will 
be reduced directly with Fdred prior to NADPH generation. 
Enzyme regulation allows for adaptation of the plant to cope 
with an increased energy input and usage of electrons pref-
erentially for biomass production. An increase of the light 
intensity immediately leads to some over-reduction of the 
components of the electron transport chain, and the system 
responds with oscillations that are dampened due to the 
changed enzyme activities to reach a new steady state. The 
rapid activation of NADP-MDH and a subsequent decrease 
of activity when the redox balance has been re-established 
prevents any severe imbalances (Scheibe and Stitt 1988). 
Similar responses adjust the fluxes through the various parts 
of the CBC. Such rapid responses, however, are only pos-
sible due to the post-translational modification of enzymes 
that are already present. Increased enzyme levels can only 
be achieved by gene transcription and translation requiring 
more time (see “Moonlighting and multitasking of enzymes 
involved in energy metabolism” section).

Distribution of assimilates and energy 
across compartment borders

The primary products of carbon assimilation are the triose 
phosphates (TP). Five out of six molecules produced dur-
ing three CBC turnovers are used for the regeneration of the 
CO2 acceptor ribulose 1,5-bisphosphate (RuBP), while every 
sixth one is a net product and can be partitioned either into 
transitory starch or into sucrose synthesis in the cytosol after 
TP export. The TP-phosphate translocator (TPT) functions 
as an antiporter, shuttling TP in exchange with inorganic 
phosphate (Pi) or 3-phosphoglycerate (3-PGA), the direction 
depending on the actual metabolic fluxes (Flügge and Heldt 
1984) (Fig. 1). Export of TP can be linked to the indirect 
export of NADPH and ATP, and, therefore, it can also serve 
as another means for shuffling energy across membranes 
for the supply of neighboring compartments. The release of 
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the indirectly transported energy can occur in the glycolytic 
steps catalyzed by cytosolic NAD-GAPDH (in plants GapC) 
and 3-phosphoglycerate kinase (PGK) to provide NADH 
and ATP for cytosolic metabolism. Alternatively, a plant-
specific glyceraldehyde 3-phosphate dehydrogenase (GapN) 
catalyzes an irreversible oxidation of the aldehyde (TP) to 
yield the acid 3-PGA without coupling the oxidation with 
substrate phosphorylation and ATP generation (Fig. 1). Such 
indirect export of reductant from the chloroplast appears to 
be used when neither ATP nor NADPH are consumed in 
plastidial metabolism, e.g., due to the lack of CO2 during 
drought stress (Bustos et al. 2008). As expected, the lack of 
GapN in knockout plants leads to an increased expression of 
the cytosolic G6PDH isoforms 5 and 6 (Rius et al. 2006). In 
plants, NADPH can thus be formed from oxidation of glu-
cose-6-P (G6P) or triose-P (TP), respectively, by cytosolic 
glucose 6-phosphate dehydrogenase (G6PDH) and, specifi-
cally in plants, by non-phosphorylating GAPDH (GapN). 
GapN has been shown to be rather stable under oxidizing 
conditions (Piattoni et al. 2013). An increased G6PDH or 
GapN activity, therefore, enables maintenance of redox 
homeostasis before any oxidative damage would occur dur-
ing short-term stress (Landi et al. 2016).

Although cytosolic enzymes are potential sources of 
NADH and ATP (glycolytic step catalyzed by GapC/
PGK, and by NAD-malic enzyme), provision of NADH 
for nitrate reduction and of ATP for sucrose synthesis 

through interorganellar transport originating from chlo-
roplasts and mitochondria, respectively, has been shown 
to be necessary for net production (Gardeström and Igam-
berdiev 2016; Scheibe 2004; Krömer and Heldt 1991). As 
described in “Rapid flux adjustments by post-translational 
regulation of chloroplast enzymes” section, the chloroplast 
NADP-MDH as part of the malate valve operating in the 
light for export of excess NADPH is strictly controlled 
by the NADP+-to-NADPH ratio acting on the redox-cycle 
between reduced and oxidized enzyme form driven by 
the ferredoxin-thioredoxin system and the concomitant 
reoxidation of the enzyme. It allows for indirect export 
of reducing equivalents only when they are in excess 
(Scheibe 2004). Malate can then be used in many ways in 
the various compartments that possess MDH activities of 
the NAD-dependent isoforms. The relevant membranes are 
equipped with the specific dicarboxylate transporters that 
operate along the concentration gradient determined by 
production and consumption on each (Selinski and Scheibe 
2018).

A different type of malate valve to maintain redox bal-
ance in plastids of non-green cells or in chloroplasts in 
the absence of light could be identified. NADH gener-
ated in the glycolytic step by the plastidial NAD-GAPDH 
(GapCp in A. thaliana) will be converted by a plastidial 
NAD-MDH resulting in the so-called dark malate valve 
(Backhausen et al. 1998b; Scheibe 2004) (Fig. 1). For 

Fig. 1   Generation and indirect 
transport of reducing equiva-
lents and ATP. Excess NADPH 
from the light reactions, not 
needed for stromal metabolism, 
e.g., CBC, or for balancing the 
ATP/NADPH ratio, is trans-
formed to malate by the light/
dark-modulated NADP-depend-
ent malate dehydrogenase 
(NADP-MDH). Malate can be 
used to generate NADH in the 
cytosol or ATP in the mitochon-
dria. When NADPH is needed 
as a reductant in the cytosol, 
either the irreversible GapN 
(non-phosphorylating GAPDH) 
or the oxidative pentose-phos-
phate (OPP) pathway oxidize 
assimilates (TP or G6P) for the 
sake of protection from oxida-
tive stress, defense, and repair
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metabolic processes, therefore, NADPH (from glucose 
6-P (G6P) in the plastidial oxidative pentose-phosphate 
(OPP) pathway) and ATP (from substrate phosphorylation 
in plastidial glycolysis) are generated independently at 
the required rates.

The interplay between light reactions and mitochon-
drial metabolism has been suggested to play an important 
role to optimize photosynthesis (Raghavendra and Pad-
masree 2003). The particular role of AOX in avoidance 
of ROS formation under conditions such as high light or 
drought (lack of acceptor CO2) has been demonstrated in 
transgenic lines lacking the major isoform of the alterna-
tive oxidase AOX1A (Strodtkötter et al. 2009). AOX1A 
is required for the controlled release of unused electrons 
under high light intensities. An increased expression of 
AOX1D does not entirely alleviate the lack of AOX1A in 
the mutant plants. The specific fine-tuning of the activity 
of each AOX isoform appears to be achieved at multiple 
levels, including the post-translational modifications of 
the reduced (activated) proteins by specific tricarboxylic 
acid cycle intermediates (Selinski et al. 2017, 2018a). 
Again, metabolites determine the activities of a valve 
to release any excess reducing power that has not been 
used elsewhere in the cell as heat only when indicated by 
changing metabolite pools (Selinski et al. 2018b). In this 
sense, AOX activities are determined by redox state and 
mitochondrial metabolism, and they act as a sensor of 
imbalances due to the regulatory properties of this valve 
functioning for the final non-destructive dissipation of 
excess electrons as thermal energy.

Energy distribution according to kind 
and availability of nitrogen source

Not only the availability of light and CO2, but also the type 
of N-source, whether nitrate or ammonium as a nutrient, 
is a challenge for plants. Although nitrate is the preferred 
nitrogen source, ammonium can also be assimilated since 
the required enzymes are present due to the photorespira-
tory NH4

+ re-assimilation in all C3-plants. N-assimilation 
can take place either in green tissues or directly in root cells 
(Fig. 2). Photorespiration itself with its energy-consuming 
glycollate detoxification pathway provides another option 
for buffering and rebalancing the energy status during stress 
(Wingler et al. 2000; Hodges et al. 2016).

Integration and cooperation of these metabolic activities 
pose some problems, since energy carriers required in the 
various cellular compartments need to be shuttled indirectly 
across membranes (Scheibe 2004; Taniguchi and Miyake 
2012). In the absence of photosynthesis, electrons are made 
available by carbohydrate oxidation (glycolysis or OPP path-
way) (Hansen et al. 1998). Therefore, the aspects of macro- 
and micro-compartmentation need to be taken into account 
as already mentioned in the context of CO2 assimilation. 
Metabolite transporters, as well as the formation of metabo-
lons, facilitate such complex metabolic networks (Sweetlove 
and Fernie 2013).

The requirement for reductants and ATP differs consider-
ably, also as the sites of usage are concerned, when short-
term or long-term exclusive ammonium supply needs to 
be coped with (Fig. 2). Short ammonium exposure (3 h) of 

Fig. 2   Energy requirements for 
N-assimilation as dependent 
on the N-source. Nitrate and 
ammonium assimilation require 
different kinds of reductant and 
ATP in the various compart-
ments. Balancing of the ATP/
NAD(P)H ratio and indirect 
transport of the energy carriers 
as necessary in light and dark 
is achieved by the provision 
of reduced ferredoxin (Fdred), 
NADPH, ATP, and NADH 
for the respective isoenzymes. 
In darkened chloroplasts or 
non-green plastids, ATP and 
Fdred are obtained via plastidial 
glycolysis at the substrate phos-
phorylation step of plastidial 
NAD-GAPDH (GapCp) in 
conjunction with the plastidial 
OPP pathway and the dark 
malate valve
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Arabidopsis plants grown originally on nitrate resulted in 
a fast response to achieve protection from oxidative stress 
(Podgórska et al. 2017), with increases in antioxidative 
enzymes, such as CuZn-SOD, and induction of alternative 
electron transport pathways in mitochondria (Escobar et al. 
2006). Under these conditions, less reductant is needed and 
is dissipated via AOX to prevent radical formation. Upon a 
long-term exposure, ammonium causes adverse effects on 
the cellular redox balance and the adenylation status, mainly 
in the extrachloroplastic fraction, and on mitochondrial ROS 
production, resulting in massive growth retardation, but 
chloroplasts appeared to remain functional (Podgórska et al. 
2013). As an increased NADH-GOGAT is necessary for suc-
cessful NH4

+ assimilation (Konishi et al. 2014), Arabidopsis 
plants with a decreased expression of the plastidial NAD-
dependent MDH (plNAD-MDH) could survive growth on 
ammonium better than the wild type, due to a compensatory 
increase of NADH-GOGAT (Selinski and Scheibe 2014). 
Interestingly, plants lacking the complex I in the respira-
tory electron transport chain in mitochondria (frostbite1) 
also exhibited improved growth on ammonium compared 
to nitrate (Podgórska et al. 2015).

Under nitrate nutrition, requirements for reductant and 
ATP supply differ entirely from ammonium conditions 
(Fig. 2) (Escobar et al. 2006). In particular, large amounts 
of electrons are required in the plastids for nitrite reduction. 
In green cells, provision of plastidial reductants results from 
photosynthetic electron flow taking electrons from reduced 
ferredoxin (Fdred) directly. In non-photosynthetic conditions, 
NADPH generated in the plastidial OPP pathway together 
with ferredoxin-NADP oxidoreductase (FNR) to reduce the 
root ferredoxins is required. Indeed, expression levels of 
the plastidial isoforms of glucose 6-phosphate dehydroge-
nase (G6PDH2 and 3) are increased in roots and shoots of 
nitrate-grown plants (Wang et al. 2003; Bussell et al. 2013). 
Knockout plants for NADP-MDH compensate the lack of 
the malate valve with increased expression of alternative 
systems for reductant dissipation but exhibit improved 
growth on nitrate as N-source when compared to wild type 
(Hebbelmann et al. 2012). Taken together, the lack of malate 
valves for export of NADH and of NADPH from plastids 
in darkness or during illumination, respectively, leads to 
a shift in reductant availability that improves either NH4

+ 
or NO3

− assimilation compared to wild type (Selinski and 
Scheibe 2014).

Moonlighting and multitasking of enzymes 
involved in energy metabolism

A complex network of reactions during primary metabo-
lism is characterized by multiple control points for flexible 
integration and adjustment of fluxes dependent on supply 

and demand in accordance with changing environmental 
conditions. Sustained environmental stress factors, e.g., 
shortage of nutrients and the presence of abiotic stress-
ors affecting developmental programs, are perceived and 
responded to through altered gene expression when the 
capacities of the regulated enzymes are exhausted. Input 
signals (redox state and metabolite levels) generated from 
a change of conditions or the incidence of different types 
of stress are integrated to yield very specific answers. 
Responses at all levels of regulation and over the total time 
span after application of an environmental change such as 
increase of light intensity become evident (Dietz 2015).

The glycolytic enzyme GAPDH (GapC1 and 2 in A. 
thaliana), as well as aldolase, is subject to modulation 
by the redox status of the cytosol, namely by S-glutath-
ionylation and S-nitrosylation of their cysteine residues, 
resulting in reversible or irreversible inactivation, depend-
ing upon the presence of substrate that prevents the inac-
tivation (Holtgrefe et al. 2008; van der Linde et al. 2011). 
A role of glycolytic enzymes such as GAPDH has been 
suggested already as a redox sensor for H2O2 increase 
(Hancock et al. 2006). There is now a growing number of 
publications describing the “moonlighting” properties of 
enzymes involved in central energy metabolism, namely 
the cytosolic glyceraldehyde-3-P dehydrogenase (NAD-
GAPDH, GapC in plants), in all organisms (Sirover 2011; 
Hildebrandt et al. 2015). Redox-dependent association 
of GAPDH with mitochondria was suggested to induce 
improved energy generation. We found these glycolytic 
enzymes associated with the actin cytoskeleton and with 
mitochondria attached via the voltage-dependent anion 
channel (VDAC) (Wojtera-Kwiczor et al. 2012; Schneider 
et al. 2018). The redox-dependent change of the properties 
of the modified protein is the basis for changes in activity, 
subcellular localization, and protein–protein interactions 
in the context of many more cellular responses yet to be 
identified. As a target of H2O2, cytosolic GAPDH has been 
suggested to mediate any redox imbalance in a signaling 
cascade to induce antioxidant defense (Hancock et  al. 
2005). The high sensitivity of the catalytic cysteine resi-
due present in the active site of GAPDH towards oxidation 
provides the basis for its prominent role as a central regu-
lator (Peralta et al. 2015; Zaffagnini et al. 2016). There are 
some evidences that redox-imbalances trigger the nuclear 
localization of GapC (Schneider et al. 2018). As a well-
studied example in the mammalian system, an association 
of S-nitrosylated GAPDH with SIAH1, an E3-ubiquitin 
ligase, leads to nuclear translocation and induction of cell 
death (Hara et al. 2005). In fact, a similar protein, namely 
SINAL7, was identified as a binding partner of GAPDH in 
plants (Peralta et al. 2016), suggesting moonlighting func-
tions of the metabolic enzymes in plants as also evidenced 
in yeast and animals. Furthermore, cytosolic GAPDH was 
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detected in nuclei of cadmium-treated roots (Vescovi et al. 
2013).

With the aim to identify cis-elements and proteins of 
the transcriptional machinery involved in the induction of 
NADP-MDH expression as seen under high light in short-
day-grown plants (Becker et al. 2006), we have performed a 
yeast-one-hybrid screen with gene fragments of the NADP-
MDH gene. Interestingly, the glycolytic enzymes GapC and 
aldolase were identified as prominent binding partners of 
these fragments comprising parts of the coding sequence 
and an intron (Hameister et al. 2007). We could show that 
under conditions of excessive illumination, NADP-MDH 
transcript is increased, but only in actively metabolizing 
cells in leaves of vegetatively growing plants under short-
day photoperiod (8 h light, 16 h dark) (Becker et al. 2006). 
In contrast, plants grown under long-day photoperiod that 
are flowering-induced and aim for finishing their life cycle 
as soon as possible with seed production induce only protec-
tive mechanisms for ROS scavenging, but not NADP-MDH 
expression. Consequently, the highest capacities of NADP-
MDH were found in growing leaves of young tobacco 
plants (Faske et al. 1997; Backhausen and Scheibe 1999). 
The assumption that NADP-MDH contributes to improved 
growth was also confirmed when potato plants that overex-
press NADP-MDH were found to grow faster than antisense 
plants when they were kept under ambient (e.g., fluctuating 
light) conditions (Backhausen et al. 1998a). Imbalances in 
the photosynthetic electron transport chain lead to a signal 
transfer via oxidation of cytosolic GAPDH and its nuclear 
translocation to activate transcription of NADP-MDH 
(Zachgo et al. 2013; Hildebrandt et al. 2015). When grown 
in long-day photoperiod (as is usually the case when rapid 
growth and reproduction are the primary aims of experimen-
tal plant cultivation), protection from oxidative stress or cell 
death is induced upon environmental challenges, and no fur-
ther acclimation or improvement of metabolism is observed.

The various isoforms of MDH present in all compart-
ments together with dicarboxylate translocators of the orga-
nellar membranes allow for interorganellar communication 
(Selinski and Scheibe 2018). In this respect, a central role 
of peroxisomal NAD-MDH is suggested for interorganel-
lar communication in Chlamydomonas (Kong et al. 2018). 
Interestingly, as is known for GapC, cytosolic NAD-MDH1 
appears to be subject to redox modifications as well (Hara 
et al. 2006), and the reversible oxidation of its C-terminal 
cysteine residue might help to protect the enzyme from oxi-
dative damage (Huang et al. 2017). Redox-dependent sign-
aling and effects on gene expression might, therefore, also 
derive from imbalances between the compartments, sensed 
by the involved enzymes and transferred to the nucleus. 
Upon redox-imbalances and ROS formation due to stress 
impact, plants can adapt and acclimate to various stress fac-
tors resulting even in cross-tolerance (Locato et al. 2018). 

Malate itself has now been suggested to serve as a signal in 
cases of imbalances between chloroplast and mitochondria 
(Zhao et al. 2018). Malate as a signal and the nucleo-cyto-
solic occurrence of NAD-MDH are most likely indicators for 
redox-imbalances not only in plants, but also in mammalian 
cells when adaptation to metabolic imbalances is required 
and p53 transcriptional activity is induced upon metabolic 
stress (Lee et al. 2009).

Redox‑regulation at all levels for optimal 
adaption of energy metabolism

In addition to causing oxidative stress and damage, ROS/
RNS can cause oxidative cysteine modifications such as the 
reversible formation of disulfide bridges, S-glutathionyla-
tion, and S-nitrosylation found to occur at various target 
proteins. These post-translational redox modifications are 
components of regulatory systems on the one hand control-
ling enzyme activities diurnally as on/off switches, and dur-
ing illumination by fine-tuning of light–dark modulation of 
chloroplast enzymes (Scheibe 1991; Knuesting and Scheibe 
2018). On the other hand, when cytosolic enzymes of central 
energy metabolism are affected upon a shift towards oxi-
dizing conditions, they act in signal transduction pathways 
involved in transcriptional regulation (Zachgo et al. 2013; 
Hildebrandt et al. 2015). For such cases of regulation, ROS 
are good (Mittler 2016).

Light–dark modulation and fine-tuning by metabolites in 
the case of the thioredoxin-dependent of reversible redox 
modifications of preexisting chloroplast enzymes allows for 
fast responses to changing conditions, but only within the 
range of activity that is limited by its presently available full 
capacity (100% of its activity). However, sustained demand 
for the full capacity results in induction of gene expression 
and the increased synthesis of the limiting enzyme. Since 
the respective chloroplast enzymes are nuclear encoded, 
retrograde signaling from the chloroplast to the nucleus 
has to be assumed. This scenario requires a signal to be 
transferred through the cytosol. Since apparently, post-
translational redox modifications affecting activities are 
not only observed in chloroplasts but also in other cellular 
compartments, such signal can be transduced to the cytosol. 
Concerning the glycolytic enzymes in the cytosol, not only 
their activities but also their subcellular localizations and 
binding properties are modified allowing for their moon-
lighting functions. Enzymes of central energy metabolisms 
such as GapC or cytosolic MDH act as sensors to integrate 
incoming information on the actual energy status. The out-
put allows for adjustment of metabolic fluxes to variable 
conditions. Therefore, GapC and cytosolic MDH are central 
not only as part of the energy fluxes but also as hubs to link 
redox state and energy-requiring metabolism in this highly 
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complex network. Oxidative inactivation by modification 
of sensitive cysteine residues can elicit changes in energy 
metabolism depending on the general situation of the cell. 
At both ends, namely in chloroplasts and in mitochondria, 
malate valve and AOX, respectively, respond directly to and 
can also be seen as sensors of energy status for maintenance 
of homeostasis.

Conclusions and outlook

Plants possess the capability to avoid imbalances or any sig-
nificant increase in ROS. In most situations which are not 
destructive, cellular homeostasis is maintained over a wide 
range of conditions. Under optimal conditions in nature, and 
in carefully controlled experimental setups, the changed pro-
tein–protein interactions and localizations of GapC causative 
for induction of the respective genes result in sustained or 
even increased biomass production and avoidance of oxi-
dative stress. A sudden, massive change of light intensity, 
however, leading to a more pronounced and eventually toxic 
increase of ROS, induces transcription of defense genes, or 
programmed cell death, or leads to uncontrolled damage 
and necrosis. The signal transduction networks of plants 
are highly complex due to their ability to integrate multiple 
kinds of information for a proper response. In this challeng-
ing situation, metabolism and redox homeostasis perma-
nently require adjustment and optimization (Kocsy et al. 
2013; Mittler 2016; Foyer et al. 2017a). Cytosolic GAPDH 
and the isoforms of MDH and AOX as control hubs during 
active metabolism are capable to sense and mediate incom-
ing challenges.

The role of GapC in improving biomass production by 
redirecting energy fluxes according to the light and nutri-
ent availability requires analysis of mechanisms at multiple 
regulatory levels. To improve productivity by increasing 
the efficiency of photosynthesis, the aspect of adaptation 
and the required signals and time span to realize an altered 
machinery for flexible responses need to be taken into con-
sideration (Foyer et al. 2017b; Bailey-Serres et al. 2018). 
It is crucial to obtain a better understanding of the interac-
tion of the various mechanisms that help to fine-tune the 
responses of plant cells to changing environments, when 
aiming for “better plants” to be created by biotechnological 
approaches (Kramer and Evans 2011; Kerchev et al. 2015). 
Any breeding or biotechnological approaches aiming for a 
productive outcome should have in mind the complex regu-
latory network to avoid failure of seemingly straight-forward 
approaches. The actual situation in a cell or plant is deter-
mined by its redox state (normal or stressed) and its meta-
bolic status (fasting and feeding). Failure of the coordination 
of nutritional status with growth activities is detrimental to 

the success in biomass production (Dietz et al. 2010; Dolf-
erus 2014).
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