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Abstract
Background  We aimed to identify novel metabolite and lipid signatures connected with the metabolic syndrome in a Dutch 
middle-aged population.
Methods  115 individuals with a metabolic syndrome score ranging from 0 to 5 [50 cases of the metabolic syndrome 
(score ≥ 3) and 65 controls] were enrolled from the Leiden Longevity Study, and LC/GC–MS metabolomics and lipidomics 
profiling were performed on fasting plasma samples. Data were analysed with principal component analysis and orthogonal 
projections to latent structures (OPLS) to study metabolite/lipid signatures associated with the metabolic syndrome. In addi-
tion, univariate analyses were done with linear regression, adjusted for age and sex, for the study of individual metabolites/
lipids in relation to the metabolic syndrome.
Results  Data was available on 103 metabolites and 223 lipids. In the OPLS model with metabolic syndrome score (Y-vari-
able), 9 metabolites were negatively correlated and 26 metabolites (mostly acylcarnitines, amino acids and keto acids) were 
positively correlated with the metabolic syndrome score. In addition, a total of 100 lipids (mainly triacylglycerides) were 
positively correlated and 10 lipids from different lipid classes were negatively correlated with the metabolic syndrome score. 
In the univariate analyses, the metabolic syndrome (score) was associated with multiple individual metabolites (e.g., valeryl 
carnitine, pyruvic acid, lactic acid, alanine) and lipids [e.g., diglyceride(34:1), diglyceride(36:2)].
Conclusion  In this first study on metabolomics/lipidomics of the metabolic syndrome, we identified multiple novel metabolite 
and lipid signatures, from different chemical classes, that were connected to the metabolic syndrome and are of interest to 
cardiometabolic disease biology.
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1  Introduction

The metabolic syndrome is a strong risk factor for cardio-
vascular disease, and increases the risk of (cardiovascular) 
mortality (Isomaa et al. 2001; Lakka et al. 2002). The meta-
bolic syndrome is a composite of metabolic disturbances 
in lipid (triglycerides and HDL cholesterol) and glucose 
metabolism, blood pressure regulation and being overweight 
(Grundy et al. 2005). The relative contribution of the differ-
ent components to the diagnosis of the metabolic syndrome 
has changed during the past decades, owing to improved 
medication management and increased obesity prevalence 
(Afshin et al. 2017; Beltran-Sanchez et al. 2013). Impor-
tantly, four out of the five components of the metabolic syn-
drome (with the exception of HDL cholesterol) are causally 
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associated with the risk of developing cardiovascular dis-
ease, as observed in Mendelian Randomization studies (Dale 
et al. 2017; Holmes et al. 2015; Lyall et al. 2017).

Besides the use of clinical markers, an increasing num-
ber of cohort studies uses metabolomics for the discovery 
of disease-related diagnostic and prognostic markers, as 
well as for an enhanced understanding of disease aetiology. 
For example, in several prospective cohort studies multi-
ple metabolites were observed to be predictive for cardio-
vascular disease and mortality (Fischer et al. 2014; Wurtz 
et al. 2015). Studies on cardiometabolic disease phenotypes, 
however, have been generally focussed on the specific com-
ponents of the metabolic syndrome (most notably glucose 
regulation and adiposity), not on the overall metabolic syn-
drome definition. With respect to the glucose component of 
the metabolic syndrome, different metabolites (e.g., glycerol, 
ketone bodies and branched-chain amino acids) have been 
identified in relation to (future) insulin resistance and inci-
dent type 2 diabetes mellitus (Mahendran et al. 2013a, b; 
Tillin et al. 2015; Wurtz et al. 2013, 2012b). Furthermore, 
the metabolite 1,5-anhydroglucitol has been identified as a 
novel risk factor for the development of type 2 diabetes, 
and a marker for short-term glycaemic control (Mook-Kan-
amori et al. 2014). Increased adiposity has been reported to 
cause changes in concentrations of multiple metabolites and 
lipids, which include fatty acids, ketone bodies and amino 
acids (Wurtz et al. 2014). However, these studies generally 
focused on a single component of the metabolic syndrome 
and investigated a limited number of metabolites. To the 
best of our knowledge, only 1 study examined the associa-
tion between concentrations of several amino acids and the 
metabolic syndrome (Ntzouvani et al. 2017). The assessment 
of the heterogeneous population of metabolic syndrome 
patients could potentially highlight a common biochemi-
cal mechanism of importance for multiple cardiometabolic 
diseases.

A comprehensive approach, focusing on all components 
of the metabolic syndrome and including multiple metabo-
lites and lipids from different chemical classes not often 
investigated in epidemiological cohort studies before, is 
likely to provide novel insights in cardiometabolic disease 
biology that facilitates in the search for novel innovative 
strategies for the treatment and prevention of cardiometa-
bolic disease. In the presented study we aimed to identify 
metabolite and lipid patterns associated with the metabolic 
syndrome in middle-aged individuals as well as with the 
subcomponents of the metabolic syndrome in order to 
increase our understanding about the underlying biochemi-
cal processes.

2 � Methods

2.1 � Study setting and design

The present study was embedded in the Leiden Longev-
ity Study, which aims to investigate biomarkers associ-
ated with familial longevity and healthy ageing. A more 
detailed description of the study design and recruitment 
strategy has been described elsewhere (Schoenmaker 
et al. 2006). In short, between 2003 and 2006 a total of 
421 long-lived families were recruited, without selec-
tion based on health condition or demographics. Families 
were included when at least two long-lived siblings were 
still alive and fulfilled the age criteria of being at least 
89 years for men and 91 years for women. Of these long-
lived families, we recruited 1671 of their offspring and 744 
partners thereof as controls resembling the general Dutch 
population at middle age. The Leiden Longevity Study was 
approved by the medical ethics committee of the Leiden 
University Medical Center. All participants provided writ-
ten informed consent.

For the present study, we used fasting blood samples 
collected between 2006 and 2008 from a subpopulation 
(N = 280) of the Leiden Longevity Study that lived in close 
approximation (< 45 min by car) from the research center, 
as we have previously described (Rozing et  al. 2010). 
Within this subpopulation, cases of the metabolic syn-
drome were identified on the basis of the criteria from the 
Third Report of the National Cholesterol Education Pro-
gram (Klose et al. 2014), which is dependent on 5 subcom-
ponents (waist circumference > 102 cm in men, > 88 cm 
in women; triglyceride concentration ≥ 1.69  mmol/L; 
HDL cholesterol (HDL-C) < 1.04  mmol/L in men, 
< 1.29 mmol/L in women; fasting glucose ≥ 6.1 mmol/L or 
diagnosed diabetes; systolic blood pressure ≥ 130 mmHg, 
diastolic blood pressure ≥ 85 mmHg, or treated for hyper-
tension) giving a score ranging from 0 to 5 points. Using 
this score, participants with a score ≥ 3 were considered as 
having the metabolic syndrome; others were considered as 
controls without the metabolic syndrome.

For the present study, for each of the sample subclasses 
(N = 24, based on metabolic syndrome score, sex and off-
spring/control group), multivariate characterization was 
used for the design of experiment-based sample selec-
tion, as was described before (Surowiec et al. 2017a, b). 
In short, for each metabolic syndrome score value, two-
component PCA models on available clinical data were 
constructed for four main classes of samples; a full two-
factor, two-level factorial design with one centre point 
was fitted to the PCA score plots, aiming for the selec-
tion of five samples for each subclass (offspring and con-
trols; stratified by sex), and hence 20 samples from each 
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metabolic syndrome score value (ranging from 0 to 5). 
It was however not possible to fully follow the presented 
strategy for all groups, either because of low number of 
samples for specific groups (for example for metabolic 
syndrome score equal 5), or because of not even distribu-
tion of the samples on the PCA score plots. In the last 
case, to obtain a balanced and representative selection, 
additional samples were included in the study. At the end, 
115 representative samples were chosen, with 17, 25, 23, 
23, 22 and 5 samples for the metabolic syndrome score 
equal 0, 1, 2, 3, 4 and 5 respectively. If possible, we did 
not include samples from participants who were on anti-
hypertensive or lipid-lowering medication (a total of 31 
users of antihypertensive and 18 users of lipid-lowering 
medication remained in the analyses).

2.2 � Anthropometrics and clinical information

Waist circumference was measured halfway between the 
lower costal margin and the iliac crest with participants in a 
standing position. Systolic and diastolic blood pressure were 
measured in resting condition twice; the average thereof was 
used for the analyses. Diagnosis of hypertension was based 
on systolic and diastolic blood pressure as well as on the 
use of antihypertensive medication. Use of antihypertensive 
medication was retrieved from the pharmacist of the partici-
pant. Diagnosis of diabetes mellitus was based on a fasting 
blood glucose concentration > 6.9 mmol/L, a diagnosis by a 
medical specialist (by questionnaire from the general prac-
titioner) or by the use of glucose-lowering medication (by 
questionnaire from the pharmacist).

All routine clinical serum measurements were performed 
using fully automated equipment and standardized proto-
cols. Glucose, Hb1Ac, high-sensitivity C-reactive protein, 
HDL-C and triglyceride concentrations were measured with 
the Hitachi Modular P800 (Roche, Almere, the Netherlands). 
Alanine transaminase (ALT), aspartate aminotransferase 
(AST) and gamma-glutamyltransferase (GGT) concentra-
tions were measured on an Abbott ci8200 (Roche, Almere, 
the Netherlands). ALT and AST were measured using the 
NADH (with P-5′-P) methodology and GGT by measuring 
the substrate l-gamma-glutamyl-3-carboxy-4-nitroanilide 
methodology. Coefficients of variation of all measures were 
below 5%.

Information on alcohol intake and current smoking status 
were retrieved by questionnaire. Information on total caloric 
intake was retrieved via a validated food frequency question-
naire (Verkleij-Hagoort et al. 2007).

The anthropometric and clinical characteristics of the par-
ticipants were provided for cases of the metabolic syndrome 
(metabolic syndrome score ≥ 3) and controls separately as 
means (with standard deviation) or numbers (percentage) 
(Table 1).

2.3 � Metabolomics analyses

Fasting EDTA plasma samples from the participants, which 
were not thawed before, were thawed on ice; 630 µL of 
extraction mixture (H2O:methanol (1:9, v/v)) was added to 
70 µL of plasma. Extraction of the metabolites from the 
sample was then carried out using a MM301 vibration Mill 
(Retsch GmbH & Co. KG, Haan, Germany) at a frequency of 
30 Hz for 2 min. Samples were stored on ice for 2 h to allow 
protein precipitation, after which they were centrifuged at 
18 620 RCF for 10 min at 4 °C. An aliquot (200 µL) of the 
resulting supernatant was transferred to a liquid chroma-
tography vial and evaporated to dryness at room tempera-
ture in a miVac QUATTRO concentrator (Genevac LTD, 
Ipswich, UK). Subsequently, samples were dissolved in 
20 µL of methanol:water (1:1 ratio) mixture and analysed 
with liquid chromatography-mass spectrometry (LC–MS) 
system as described in detail in Supplementary Methods. 
Gas chromatography-mass spectrometry (GC–MS) analyses 
was performed after metabolite derivatization as described 
before (Jiye et al. 2005); a detailed description on the meth-
odology is given in Supplementary Methods.

2.4 � Lipidomics analysis

Fasting plasma samples from the participants, which were 
not thawed before, were thawed on ice and 110 µL of extrac-
tion mixture (chloroform:methanol (2:1, V/V)) was added 
to 20 µL of plasma sample. Extraction was carried out using 
a MM301 vibration Mill (Retsch GmbH & Co. KG, Haan, 
Germany) at a frequency of 30 Hz for 2 min. Subsequently, 
samples were stored at ambient temperature for 60 min 
before being centrifuged at 18 620 RCF for 3 min at 4 °C. 
A 50 µL aliquot of the resulting lower phase was transferred 
to a LC vial, 70 µL of a chloroform:methanol (2:1, V/V) 
mixture were added and samples were briefly shaken before 
being analysed by LC–MS as described in detail in Sup-
plementary Methods.

2.5 � Compound identification

Targeted feature extraction of the acquired LC–MS data was 
performed using the Profinder™ software package, version 
B.06.00 (Agilent Technologies Inc., Santa Clara, CA, USA) 
and an in-house retention-time based and mass-spectra based 
libraries consisting of 713 metabolites and 487 lipid spe-
cies. These libraries contained compounds from chemical 
classes such as acylcarnitines, amino acids, carbohydrates, 
fatty acids, lysophosphatidylcholines, organic acids, phos-
phatidylcholines, sphingomyelins, triglycerides and oth-
ers. Detection of the compounds was based on the follow-
ing parameters: allowed ion species in positive ionization 
mode: (+H, +Na, +K, +NH4); in negative ionization mode: 
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(–H, +HCOO); peak spacing tolerance: 0.0025–7 ppm; iso-
tope model: common organic molecules; charge state: 1; 
mass tolerance: 10 ppm; retention time tolerance: 0.1 min. 
After extraction of the peaks, each compound was manually 
checked for mass and retention time agreement with appro-
priate standards from the library; peaks with bad character-
istics (e.g., overloaded, sample noise, non-Gaussian) were 
excluded from the analysis. Identification of compounds was 
confirmed by comparison of MS/MS spectra with MS/MS 
spectra of relevant compounds from the library.

Non-processed files from GC–MS were exported in 
NetCDF format to a MATLAB-based in-house script where 
all data pre-treatment procedures such as baseline correc-
tion, chromatogram alignment, and peak deconvolution 
were performed. Metabolite identification, was implemented 
within the script and was based on the retention index (RI) 
values and MS spectra from the in-house mass spectra 
library established by the Swedish Metabolomics Centre 
(Umeå, Sweden) and consisting of 585 compounds [Level 
1 identification according to the Metabolomics Standards 
Initiative (Salek et al. 2013)].

2.6 � Data processing and multivariate 
and univariate data analysis

For the LC–MS analysis of the metabolites, a combined 
dataset was used, with compounds included that could be 
detected in either negative or positive ion modes. In case a 
single metabolite was detected in both the negative and posi-
tive ion mode, the signal with the highest intensity was used 
for the statistical analyses. When metabolites were detected 
with both the LC–MS and GC–MS methodology, the signal 
detected with the GC–MS method was used for the statisti-
cal analyses. The LC–MS metabolite and lipid signals were 
normalized to the total peak area prior to further statistical 
analyses. GC–MS data were normalized to internal stand-
ards as described before (Redestig et al. 2009).

Metabolite and lipid data were imported separately into 
SIMCA software (version 14.0, Sartorius Stedim Biotech 
Umetrics AB, Umeå, Sweden) for multivariate analyses. 
All data were mean centred and scaled to unit variance. 
Principal component analysis (PCA) was used to obtain 
an overview of the variation in the data and to check for 

Table 1   Characteristics of the study population

HDL high-density lipoprotein, IQR interquartile range, N number of participants, SD standard deviation
a Assessed in 42 metabolic syndrome cases and 49 control participants
b Measured in 42 metabolic syndrome cases and 56 control participants.

Metabolic syndrome (N = 50) Controls (N = 65)

Age in years, mean (SD) 64.4 (6.1) 62.0 (6.5)
Men, N (%) 26 (52.0) 34 (52.3)
Alcohol intake in glasses/week, number (IQR) 6.0 (0.0, 14.0) 9.0 (3.0, 14.0)
Current smoking, N (%) 3 (6.0) 9 (13.8)
Total caloric intake in kCal/day, median (IQR)a 1774 (1498, 2053) 1987 (1656, 2491)
Waist circumference in cm, mean (SD) 106.4 (10.3) 95.9 (11.7)
Triglyceride concentration in mmol/L, mean (SD) 2.34 (1.29) 1.17 (0.53)
HDL cholesterol in mmol/L, mean (SD) 1.13 (0.30) 1.59 (0.41)
Glucose in mmol/L, mean (SD) 6.9 (3.1) 5.4 (1.3)
Type 2 diabetes mellitus, N (%) 11 (22.0) 5 (7.7)
Systolic blood pressure in mmHg, mean (SD) 147.3 (17.8) 129.7 (18.0)
Diastolic blood pressure in mmHg, mean (SD) 84.6 (9.1) 76.3 (8.8)
Use of antihypertensive agents, N (%) 26 (52.0) 5 (7.7)
Metabolic syndrome components (according to cut offs)
Waist circumference, N (%) 42 (84.0) 24 (36.9)
Triglycerides, N (%) 35 (70.0) 7 (10.8)
HDL cholesterol, N (%) 31 (62.0) 2 (3.1)
Glucose, N (%) 28 (56.0) 10 (15.4)
Blood pressure, N (%) 46 (92.0) 28 (43.1)
HbA1c in %, mean (SD)b 5.8 (1.3) 5.2 (0.6)
High-sensitivity C-reactive protein in mg/dL, median (IQR) 1.9 (0.6, 3.5) 1.0 (0.6, 1.9)
Alanine transaminase in U/L, median (IQR) 18.0 (14.0, 23.5) 16.0 (12.0, 18.5)
Aspartate transaminase in U/L, median (IQR) 22.0 (17.0, 28.0) 19.0 (17.5, 23.5)
Gamma-glutamyltransferase in U/L, median (IQR) 27.0 (19.8, 53.0) 22.0 (13.0, 36.5)
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trends and potential outliers for cases of the metabolic syn-
drome and controls. Seven-fold cross-validation was used 
for calculating the models. Orthogonal partial least squares 
(OPLS) method was used to correlate metabolite and lipid 
profiles with the continuous metabolic syndrome score (Y 
variable) of the study participants; 1 + 0 or 1 + 1 compo-
nent models were used to avoid possible over-fitting (Trygg 
et al. 2002). The significance of a metabolite for classifica-
tion in the OPLS models was specified by calculating the 
95% confidence interval for the loadings using the jackknife 
method, which attempts to find precision of an estimate, by 
iteratively making subsets in which estimates are calculated 
(Efron et al. 1983). OPLS models were also created for the 
separate subcomponents of the metabolic syndrome as the Y 
variable (waist circumference, plasma fasting triglycerides, 
HDL-C, and glucose concentrations, and systolic and dias-
tolic blood pressure). Validity and degree of overfitting of 
the OPLS models was checked by conducting CV-ANOVA 
(ANalysis Of VAriance testing of Cross-Validated predictive 
residuals) and permutation analyses.

In addition, we conducted univariate analyses on the 
metabolites and lipids using linear regression in the R 
statistical environment. Metabolites and lipids were log-
transformed and subsequently standardized to approximate 
a standard normal distribution (mean = 0, standard devia-
tion = 1). Hence, results from the univariate analyses can be 
interpreted as the difference in standard deviation in metabo-
lite/lipid level between cases of the metabolic syndrome and 
controls. Results were repeated with the metabolic syndrome 
score as a continuous determinant. Outlying metabolite and 
lipid levels (> 4 standard deviations from the mean) were 
excluded from the analyses. As we studied a high number 
of associations between exposure and metabolite/lipid, there 
is a risk of getting false-positive results. To correct for mul-
tiple testing, we first calculated the number of independent 
metabolites and lipids based on the methodology described 
by Li et al. (2005), and subsequently corrected our threshold 
for statistical significance accordingly. Univariate analyses 
were visualized using the ggplot2 package in the R statistical 
environment (Wickham 2009).

3 � Results

3.1 � Characteristics of the study population

According to the used clinical classification of the metabolic 
syndrome, samples were available for 50 cases (metabolic 
syndrome score ≥ 3) and 65 controls (Table 1). Both groups 
were similar with respect to age (64.4 [SD 6.1] versus 62.0 
[SD 6.5] years, respectively) and percentage of men (52.0% 
versus 52.3%, respectively). Cases currently smoked less and 
had a lower alcohol intake and lower total caloric intake 

compared to controls. In line with the clinical classifica-
tion of the metabolic syndrome, components of the meta-
bolic syndrome were generally higher in cases compared 
to controls with the exception of HDL cholesterol. Further-
more, cases had a higher mean HbA1C and higher median 
hsCRP and had moderately higher median liver enzyme 
concentrations.

3.2 � Multivariate metabolite profiling

PCA on 115 samples and 103 metabolites resulted in a 
model with 7 components, which explained 53% of the total 
variation (R2X(cum) = 0.53), and identified 3 samples out-
side Hotelling’s T2 range that remained in the subsequent 
analyses (Fig. 1a). In the PCA plot, a trend was visible with 
samples from cases with metabolic syndrome (metabolic 
syndrome score ≥ 3) located more frequently in the lower 
half of the plot. A total of 11.7% of the total variation in 
the data was explained by the predictive component of the 
OPLS model with the metabolic syndrome score (rang-
ing from 0 to 5) as the Y variable (1 + 0 model, Q2 = 0.39; 
R2X(cum) = 0.12; CV-ANOVA p-value: 1.2 × 10−12). Addi-
tional diagnoses by permutation analyses for the Y variable 
(Supplementary Fig. 1) showed Y-axis intercepts below 0.3 
for R2Y and below 0.05 for Q2, indicating the OPLS model 
was not influenced by overfitting. The metabolic profile 
connected to the metabolic syndrome score (p(corr) vector 
from the OPLS model] is presented in Fig. 1b, and signifi-
cant results are summarized in Table 2 (all results are sum-
marized in Supplementary Table 1). In the metabolomics 
dataset, a total of 35 metabolites were significantly corre-
lated to the metabolic syndrome score, based on jackknife 
confidence intervals; multiple amino acids, organic acids 
and acylcarnitines were positively correlated with the meta-
bolic syndrome score and several compounds (e.g., some 
fatty acids and sterols) were negatively correlated with the 
metabolic syndrome score. When metabolic syndrome com-
ponents were used as Y variables in the OPLS model, mul-
tiple metabolites were found to be significantly correlated 
with these components (Supplementary Table 1). Metabolic 
profiles for the different components (p(corr) vectors) were 
correlated to the metabolite profile connected to the meta-
bolic syndrome score and strongest correlations with the 
metabolic syndrome score were found with systolic blood 
pressure (R2 = 0.96) and HDL-C (R2 = − 0.94), and lowest 
with glucose (R2 = 0.55).

3.3 � Multivariate lipid profiling

PCA on 115 samples and 223 lipids gave a model of 12 
components explaining 83% of the total variation in the 
data (R2X(cum) = 0.83), and identified one sample outside 
Hotelling’s T2 range that remained in subsequent analyses 



	 I. Surowiec et al.

1 3

23  Page 6 of 13

(Fig. 2a). A trend was visible in the PCA plot with samples 
from individuals with the metabolic syndrome (metabolic 
syndrome score ≥ 3) being more frequently located on the 
upper half (positive t2 values) of the plot. A total of 19.4% of 
the total variation in the data was explained by the predictive 
component of the OPLS model with the metabolic syndrome 
score as Y (1 + 1 model, Q2 = 0.47, R2X(cum) = 0.453, CV-
ANOVA p value: 1.4 × 10−14). Additional diagnosis by the 
permutation analyses for the Y variable (Supplementary 
Fig. 2) showed Y-axis intercepts below 0.3 for R2Y and 
below 0.05 for Q2, indicating the OPLS model was not influ-
enced by overfitting. The lipidomic profile (p(corr) vector 
from the OPLS model) connected to the metabolic syndrome 
score in the OPLS model is presented in Fig. 2b and signifi-
cant lipids are presented in Table 3 (complete list is summa-
rized in Supplementary Table 2). A total of 110 lipids were 
significantly correlated to the metabolic syndrome score. Of 

these, 100 lipids were positively correlated (mainly triglyc-
erides with 76 compounds, phosphatidylcholines, phosphati-
dylinositols and ceramides) with the metabolic syndrome 
score and 10 lipids were negatively correlated with the meta-
bolic syndrome score.

3.4 � Univariate metabolite and lipid analyses

In our data, we had 67 independent metabolites and 73 
independent lipids. Hence, we used a p-value threshold 
of 7.46 × 10−4 for the metabolite analyses and 6.85 × 10−4 
for the lipid analyses. In the univariate regression analyses 
on standardized metabolite (Fig. 3a) and lipid (Fig. 3b) 
levels, where we compared metabolic syndrome cases and 
controls, we identified multiple metabolites and lipids that 
had higher (13 metabolites; 8 lipids) or lower (1 metabo-
lite; 10 lipids) levels in cases of the metabolic syndrome 

Fig. 1   Metabolite profiling. a PCA score plot on metabolic data 
with samples colored according to their respective groups: blue dots 
signify individuals with the metabolic syndrome (metabolic syn-
drome score 3–5) and green dots individuals without metabolic 
syndrome (metabolic syndrome score 0–2); x axis – t[1] first score 
(R2X = 0.146), y axis—t[2], second score (R2X = 0.110). b Metabo-

lite predictive loading vector (p(corr)) from the OPLS model with the 
metabolic syndrome score as the Y variable; metabolites are colored 
according to their chemical classes; p(corr) values indicate when a 
compound is positively (positive p(corr) value) or negatively (nega-
tive p(corr) value) correlated with the metabolic syndrome score
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after correction for multiple testing. Examples of metabo-
lites associated with the metabolic syndrome were valeryl 
carnitine, pyruvic acid, lactic acid and alanine; examples 
of lipids associated with the metabolic syndrome were 
diglyceride(34:1) and diglyceride(36:2). Similar results 
were observed with the metabolic syndrome score as a 
continuous determinant in the analyses. Summary statis-
tics are presented in Supplementary Table 3 (metabolites) 
and Supplementary Table 4 (lipids).

4 � Discussion

In the present study, which is the first of its kind, we 
observed multiple metabolites and lipids from different 
chemical classes to be connected to the metabolic syn-
drome that have not been often described before in epi-
demiological studies, which includes acylcarnitines and 
keto acids. Collectively, our findings highlight the role 

Table 2   Metabolites connected 
to the metabolic syndrome score

P(corr) values obtained from the OPLS model with metabolic syndrome score as Y variable. Statistical sig-
nificance determined with jackknife confidence intervals

Chemical class p(corr) vector

Lower levels with higher metabolic syndrome score
PC(P-16:0/0:0) or PC(0–16:1/0:0) LysoPC − 0.42
Hydroxypalmitic acid Fatty acid − 0.53
2-Hydroxyhexadecanoic acid Fatty acid − 0.52
Sphingosine-1-phosphate Spinholipid − 0.32
PE(18:1(9Z)/0:0) LysoPE − 0.46
Glyceric acid Organic acid − 0.46
Campesterol Sterol − 0.23
Cholesterol Sterol − 0.39
1,5-Anhydro-d-glucitol Carbohydrate − 0.33
Higher levels with higher metabolic syndrome score
Kynurenine Amino acid 0.30
Butyryl-carnitine Acylcarnitine 0.44
Isovaleryl-carnitine Acylcarnitine 0.50
Valeryl-carnitine Acylcarnitine 0.65
Gamma-Glu-Leu Dipeptide 0.46
Indoxylsulfuric acid Organic acid 0.24
Deoxycholic acid Cholic acid 0.23
Lactic acid Organic acid 0.44
2-Oxobutyric acid Organic acid 0.73
Alpha-ketoglutaric acid Organic acid 0.57
2-Oxoisocaproic acid Organic acid 0.40
Alanine Amino acid 0.60
Cysteine Amino acid 0.43
Lysine Amino acid 0.65
Cystine Amino acid 0.58
Glutamic acid Amino acid 0.51
Valine Amino acid 0.67
Proline Amino acid 0.43
Aspartic acid Organic acid 0.60
Tryptophan Amino acid 0.56
Tyrosine Amino acid 0.75
Phenylalanine Amino acid 0.58
Urea Urea 0.49
Uric acid Purine 0.65
Pyruvic acid Organic acid 0.42
Sorbitol Polyol 0.78
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of multiple different biochemical pathways connected to 
the metabolic syndrome that could be used in the design 
of novel interventions for the treatment and prevention of 
cardiometabolic disease.

Our study replicates multiple observations from other 
studies on different cardiometabolic disease outcomes, 
which includes multiple amino acids, 1,5-anhydroglucitol 
and uric acid. Most notably, previous studies found asso-
ciations between high concentrations of branched-chain 
amino acids and the risk of type 2 diabetes mellitus (Wurtz 
et al. 2012a, 2013) possibly by the disturbance of fatty acid 
metabolism in mitochondria (Newgard 2012). In our study 
population, valine (one of the branched-chain amino acids) 

was positively associated with the metabolic syndrome in 
both the OPLS model and univariate analysis. Interestingly, 
high levels of valine have been associated with increased 
oxidative stress and inflammation through the activation of 
mTOC1 (Zhenyukh et al. 2017). In addition, higher levels 
of many other amino acids were associated with the meta-
bolic syndrome score as well, a result which is in line with 
the results from another cross-sectional study (Ntzouvani 
et al. 2017). Alanine, which had the strongest association 
in our univariate analyses, has previously been documented 
to directly affect beta-cell function and insulin secretion 
(Newsholme et al. 2005). Furthermore, in line with previ-
ous research on type 2 diabetes mellitus (Mook-Kanamori 

Fig. 2   Lipid profiling. a PCA score plot on lipidomics data with sam-
ples colored according to their respective groups: blue dots signify 
individuals with the metabolic syndrome (metabolic syndrome score 
3–5) and green dots individuals without metabolic syndrome (meta-
bolic syndrome score 0–2); x axis – t[1] first score (R2X = 0.304), 
y axis – t[2], second score (R2X = 0.155). b Lipidomics predictive 

loading values (p(corr)) from the OPLS model with the metabolic 
syndrome score as the Y variable; metabolites are colored according 
to their chemical classes; p(corr) values indicate when a compound 
is positively (positive p(corr) value) or negatively (negative p(corr) 
value) correlated with the metabolic syndrome score
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et al. 2014) and cardiovascular mortality in normoglycaemic 
individuals (Ouchi et al. 2017), metabolic syndrome cases 
had lower levels of carbohydrate 1,5-anhydroglucitol com-
pared to controls. Most likely, this observation is explained 
by the diabetes subcomponent as reflected by a significant 
correlation with the glucose component in the OPLS model. 
Finally, in line with our research findings, though these asso-
ciations were previously found not to be causal (Palmer et al. 

2013; Sluijs et al. 2015), high levels of uric acid in serum 
have been associated with an increased risk of type 2 dia-
betes (Dehghan et al. 2008) as well as with hypertension, 
the metabolic syndrome and cardiovascular disease (Soltani 
et al. 2013). As the direction of effects of these metabolites 
went in the expected direction, our used platform and study 
design seem to be suitable for the identification of novel 
biochemical pathways.

A class of compounds which brought particular novel 
insights in the biochemical pathways related to the metabolic 
syndrome from our data are the acylcarnitines which were 
positively correlated with the metabolic syndrome. Specifi-
cally, we found valeryl-carnitine to show the strongest con-
nection with the metabolic syndrome in the OPLS and uni-
variate analyses. As not much has been described about this 
particular metabolite, future studies focussing on valeryl-
carnitine in particular are required to elucidate its role in 
cardiometabolic disease. Acylcarnitines are required for the 
transport of fatty acids across the mitochondrial membrane 
for β-oxidation (Mihalik et al. 2010). Higher concentrations 
of acylcarnitines in blood have been associated with obesity, 
insulin resistance and type 2 diabetes mellitus in humans 
(Floegel et al. 2014; Gall et al. 2010; Mihalik et al. 2010; 
Pallares-Mendez et al. 2016). In one previous publication, 
higher acylcarnitine concentrations were shown to cause 
imbalances between insulin synthesis and insulin secretion, 
which consequently caused beta cell dysfunction in human 
and mouse pancreatic tissue samples (Aichler et al. 2017). 
In line, we found multiple acylcarnitines to be positively 
correlated with fasting glucose levels in the OPLS model.

Another main chemical class with strong positive cor-
relations with the metabolic syndrome, as shown by OPLS 
and univariate analyses, were keto acids. For example 
alpha-ketoglutaric acid, lactic acid and pyruvic acid. Alpha-
ketoglutaric acid, although not described in recent clinical 
studies, was found to affect TOR signalling, which affects 
insulin signalling, and has been associated with longevity in 
nematode worms (Chin et al. 2014). Extremely high levels of 
lactic acid are generally known to be lethal, but our results 
show that subclinical elevation of lactic acid levels could 
play a role in cardiometabolic disease as well. Importantly, 
high lactate levels, as a product of oxidation of pyruvic 
acid, are indicative of increased anaerobic metabolism, and 
increased oxidative stress.

Lysophosphatidylcholine(18:2) levels were lower in the 
univariate regression analysis in individuals with meta-
bolic syndrome score as compared to controls, but we 
found no consistent relation between lysophosphatidyl-
cholines as a chemical class and the metabolic syndrome 
score in the OPLS model. Lysophosphatidylcholines play 
a pivotal role in oxidized LDL cholesterol, and are found 
to directly affect progression of atherosclerosis through 
multiple biological pathways including inflammatory 

Table 3   Lipids connected to the metabolic syndrome score

P(corr) values obtained from the OPLS model with metabolic syn-
drome score as Y variable. Statistical significance determined with 
jackknife confidence intervals. Results for the triacylglycerides with 
positive p(corr) vectors are not presented

Lipid class p(corr) vector

Lower levels with higher metabolic syndrome score
PE(O-38:5) Phosphatidylethanolamine − 0.57
PG(36:3) Phosphatidylglycerol − 0.57
PG(38:3) Phosphatidylglycerol − 0.26
PC(31:0) Phosphatidylcholine − 0.61
PC(O-34:2) Phosphatidylcholine − 0.47
PC(O-36:2) Phosphatidylcholine − 0.62
PC(O-38:7) Phosphatidylcholine − 0.33
SM(d18:0/17:0) Sphingomyelin − 0.58
TG(53:2) Triglyceride − 0.50
Higher levels with higher metabolic syndrome score
PI(32:1) Phosphatidylinositol 0.25
PI(34:2) Phosphatidylinositol 0.31
PI(38:3) Phosphatidylinositol 0.42
PI(36:4) Phosphatidylinositol 0.42
Sulfatide(d18:0/18:0) Sulfatide 0.24
Sulfatide(d18:0/22:0) Sulfatide 0.32
Sulfatide(d18:1/22:1) Sulfatide 0.38
PE(38:4) Phosphatidylethanolamine 0.68
PE(38:6) Phosphatidylethanolamine 0.57
PC(32:1) Phosphatidylcholine 0.26
PC(38:3) Phosphatidylcholine 0.46
PC(36:4) Phosphatidylcholine 0.38
PC(38:4) Phosphatidylcholine 0.38
PC(40:4) Phosphatidylcholine 0.37
PC(40:5) Phosphatidylcholine 0.33
PC(40:6) Phosphatidylcholine 0.25
DG(34:1) Diglyceride 0.63
DG(36:2) Diglyceride 0.67
Cer(d18:0/22:0) Ceramide 0.51
Cer(d18:0/23:0) Ceramide 0.39
Cer(d18:0/24:0) Ceramide 0.52
Cer(d18:1/20:0) Ceramide 0.48
Cer(d18:1/22:0) Ceramide 0.39
GalCer(d18:1/18:1) Galactoceramide 0.36
PI(32:1) Phosphatidylinositol 0.25
PI(34:2) Phosphatidylinositol 0.31
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Fig. 3   Univariate metabolite 
and lipids analyses. a Uni-
variate metabolite analyses 
on the metabolic syndrome. b 
Univariate lipid analyses on the 
metabolic syndrome. Analyses 
can be interpreted as the differ-
ence in metabolite/lipid level in 
standard deviation in cases of 
the metabolic syndrome as com-
pared to controls. The difference 
between cases of the meta-
bolic syndrome (in standard 
deviation) is presented on the 
x-axis; the − log(p-value) of the 
comparison is presented on the 
y-axis. Metabolites/lipids that 
were labelled in the figures were 
those that remained significant 
after correction for multiple 
testing; compounds with a 
p-value < 0.05 are presented as 
solid black dots in the plot. In 
our dataset, there were 67 inde-
pendent metabolites (p-value 
cut-off = 7.46 × 10−4) and 73 
independent lipids (p-value cut-
off = 6.85 × 10−4)
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processes (Aiyar et  al. 2007; Lusis 2000). Previously, 
lower concentrations of lysophosphatidylcholines have 
been observed in obesity and type 2 diabetes mellitus (Bar-
ber et al. 2012), and might directly affect insulin resist-
ance state (Motley et al. 2002). Furthermore, an inverse 
relationship between serum lysophosphatidylcholines and 
vascular damage and heart rate was observed in patients 
with atherosclerosis (Paapstel et al. 2018).

In the lipid profiling analysis, we identified predomi-
nantly triglycerides to be correlated with the metabolic 
syndrome. Although not unexpected given the triglyceride 
subcomponent, we observed the odd-chain triacylglycerol 
(53:2/3), which originates mainly from food, to be nega-
tively correlated to the metabolic syndrome as well as 
with several of its subcomponents in the OPLS analysis. 
In addition, multiple ceramides were positively correlated 
with the metabolic syndrome and a number of its compo-
nents. A positive relationship between ceramide levels and 
insulin resistance has been found previously (Blachnio-
Zabielska et al. 2012). Interestingly, in literature, cera-
mides are described to be important mediators of oxidative 
stress in apoptosis signalling (Andrieu-Abadie et al. 2001). 
Furthermore, a number of ether-bound phosphatidylcho-
lines were negatively correlated with the metabolic syn-
drome. Interestingly, this biochemical class is associated 
with decreased oxidative stress levels and slows the ageing 
process (Hung et al. 2001).

The main strength of the present study was to investigate 
the connection between metabolite and lipid profile and the 
metabolic syndrome using platforms enabling detection of 
many compounds not frequently investigated in unstand-
ardized human population studies. However, the use of 
an unstandardized human population likely resulted in an 
increased variability in the data as a consequence of factors 
like lifestyle and disease heterogeneity. This increased vari-
ability in the data is likely the cause of the limited separation 
in the PCA score plots. Nevertheless, using this approach, 
we were able to provide (novel) insights that could be used 
in future population and experimental studies. Validity of 
the results was confirmed by checking significance of the 
obtained OPLS models, application of univariate analysis 
and by putting the results into biological context based on 
the available scientific literature. Still, since metabolomics/
lipidomics is an exploratory approach, with usually limited 
amount of samples included in the hypothesis generating 
study (as was the case also for present study). the described 
findings require verification in the independent cohorts. 
Given the observational nature of the data, no causality of 
our research findings can be inferred. Furthermore, due to 
the design of the study, causality cannot be determined (e.g., 
the altered metabolite/lipid concentration could be either the 
cause as well as the consequence of the metabolic syndrome 
condition).

In summary, within this first combined metabolomics 
and lipidomics study on the metabolic syndrome, we iden-
tified several metabolites and lipids to be connected to the 
metabolic syndrome, which could be of interest for further 
research in the field of cardiometabolic disease biology. 
Interestingly, several of the different biochemical pathways 
that we identified in relation to the metabolic syndrome have 
been previously found to be connected to the regulation of 
oxidative stress. Future studies are however required to fur-
ther elucidate our research findings.
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