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Abstract

Autism spectrum disorders (ASD) is a heterogenous group of neurodevelopmental disorders characterized by problems in social
interaction and communication as well as the presence of repetitive and stereotyped behavior. It is estimated that the prevalence of
ASD is 1-2% in the general population with the average male to female ratio 4-5:1. Although the causes of ASD remain largely
unknown, the studies have shown that both genetic and environmental factors play an important role in the etiology of these
disorders. Array comparative genomic hybridization and whole exome/genome sequencing studies identified common and rare
copy number or single nucleotide variants in genes encoding proteins involved in brain development, which play an important
role in neuron and synapse formation and function. The genetic etiology is recognized in ~ 25-35% of patients with ASD. In this
article, we review the current state of knowledge about the genetic etiology of ASD and also propose a diagnostic algorithm for

patients.

Keywords Autism spectrum disorders - Copy number variants

Introduction

Autism spectrum disorders (ASD) is one of the most prevalent
group of neurodevelopmental disorder that affects around 1—
2% of the population with the average male to female ratio 4—
5:1. ASD is characterized by social interactions and commu-
nication deficits, repetitive and stereotyped behavior (Lai et al.
2014; Baio et al. 2018). Furthermore, approximately 31% of
patients with ASD also present intellectual disability (ID)
(Baio et al. 2018), and 20-37% suffer from epilepsy
(Canitano 2007; Yasuhara 2010). In addition, the epileptic
EEG abnormalities can often be found in autistic children,
even without the incidence of seizures (Yasuhara 2010).
Moreover, children with ASD often present other psychiatric
and medical conditions including anxiety disorders, depres-
sion, attention deficit hyperactivity disorder (ADHD), sleep
disorders, and gastrointestinal problems (Valicenti-
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Mcdermott et al. 2006; Richdale an Schreck 2009; White
et al. 2009).

Essential autism spectrum disorder is diagnosed in approx-
imately 75% of the ASD patients. The prevalence of this type
of ASD is in approximately 35% of the siblings and about
20% of cases have positive family history for ASD. While,
syndromic ASD occurs in approximately 25% of patients. In
these individuals, autistic features co-occur with dysmorphic
features or congenital anomalies. Moreover, the sibling recur-
rence risk is lower (4%—6%) than in essential ASD, and family
history is less frequent (9%) (Elsabbagh et al. 2012).

Although it was shown that ASD have a complex multifac-
torial etiology, twin studies proved a strong genetic contribu-
tion. The concordance rate of autistic disorders in monozygot-
ic twins is 70-90% while in dizygotic twins is up to 30%
(Rosenberg et al. 2009; Hallmayer et al. 2011; Ronald and
Hoekstra 2014) and 3-19% in siblings in general (Ozonoff
et al. 2011; Constantino et al. 2013). Furthermore, twofold
greater concordance among full siblings than in half siblings
provided the evidence that genetic factors play an important
role in the development of ASD (Constantino et al. 2013).
Nowadays, the genetic etiology is recognized in ~25-35%
of patients with ASD.

Even though the background of ASD is only partially un-
derstood, the great number of symptoms observed in patients
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with autistic disorders suggests that ASD have multiple etio-
logical factors, both genetic and environmental. Furthermore,
gene-environment interaction can lead to epigenetic abnor-
malities and cause alterations in the brain anatomy and con-
nectivity characteristic for ASD (Schaevitz and Berger-
Sweeney, 2012).

Chromosomal abnormalities

Currently, it is estimated that classical karyotyping tech-
niques can reveal chromosomal aberrations in approxi-
mately 2-5% of ASD individuals (Devlin and Scherer
2012, Liu and Takumi 2014). Large unbalanced karyotyp-
ic abnormalities are found more often in ASD cases with
associated dysmorphic features. Structural chromosomal
alterations have been reported for every chromosome
and include deletions, duplications, inversions, transloca-
tions as well as marker chromosomes. Most of structural
aberrations are rare and their causal role in ASD is not
clear, but few of them are recurrent (Castermans et al.
2004). The most frequent chromosomal abnormality de-
tected in 1-3% children with ASD is maternally derived
15q11ql13 duplication, with variable size (Hogart et al.
2010). Many genes in this chromosomal region have es-
sential functions in the brain, such as GABRAS5 and
GABRB3 (GABA receptors), UBE3A and HERC2 (com-
ponents of the proteasome complex) and SNRPN (ribonu-
cleoprotein peptide N) as well as CYFIPI (the FMRP
interacting protein) (Menold et al. 2001; Nishimura et al.
2007; Bucan et al. 2009; Puffenberger et al. 2012). Other
chromosomal abnormalities identified in ASD patients in-
clude aneuploidies: 21 (Down syndrome), X (Turner syn-
drome, Klinefelter syndrome, XXX syndrome), and Y
(XYY syndrome) (Devlin and Scherer 2012).

Copy number variations

Array comparative genomic hybridization (array CGH)
allows to detect chromosomal microdeletions and
microduplications that are too small to be identified by
karyotyping. Research studies have shown that clinically
relevant CNVs (copy number variants) invisible in karyo-
type analysis are detected in 7-14% of patients with idi-
opathic ASD (Rosenfeld et al. 2010; Roberts et al. 2014,
Geschwind and State 2015). Rare de novo CNVs are iden-
tified more frequent in individuals with sporadic ASD
then in autistic cases with affected sibling. Sebat et al.
(2007) conducted one of the first studies which proved
association of the de novo CNVs with ASD. They identi-
fied such CNVs in 10% of patients from simplex families
and in 3% of individuals from multiplex families, and in
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only 1% controls (Sebat et al. 2007). This suggests that
rare de novo CNVs may be significant risk factors for
ASD particularly in patients with sporadic disorder.
Similar results were obtained in further studies that iden-
tified de novo CNVs in 5.8-8.4% of sporadic ASD
(Marshall et al. 2008; Levy et al. 2011; Sanders et al.
2011).

Copy number variants can be divided into recurrent
and nonrecurrent CNVs which are correlated with the
presence of specific elements of the genome structure that
predispose to their occurrence. Recurrent CNVs shared a
common size and breakpoints, and are caused by non-
allelic homologous recombination (NAHR) between low-
copy repeats (LCRs). LCRs are DNA blocks of 10 kb to
several hundreds of kilobase in size and have 95-97%
sequence identity. This high degree of sequence similarity
predispose to NAHR and result deletions and/or duplica-
tions. Whereas nonrecurrent CNVs usually arise by non-
homologous end joining (NHEJ), fork stalling and tem-
plate switching (FoSTeS) and microhomology-mediated
break-induced replication (MMBIR). NHEJ is the mecha-
nism used to repair double-stranded DNA break (DSB)
but leaves a so-called “molecular scar” (microhomology
or insertion) in the novel junctions. FoSTeS i MMBIR are
replication-based mechanisms (Gu et al. 2008; Hastings
et al. 2009).

Most CNVs detected in ASD individuals are sporadic and
nonrecurrent which prove genetic heterogeneity of these disor-
ders (Shen et al. 2010). The most common recurrent ASD-
associated CNVs are the approximately 600 kb microdeletions
and microduplications at the 16p11.2 region that are identified in
about 1% of ASD individuals (Weiss et al. 2008; Fernandez et al.
2010) (Table 1). Common phenotypic feature in patients with the
16p11.2 deletion is macrocephaly whereas patients with duplica-
tion have microcephaly. Another recurrent CNVs detected in
ASD cases include 1q21.1, 15q13.3, 17p11.2, 22q11.2,
16p13.1 and microduplication of 7q11.23 (Moreno-De-Luca
et al. 2013; Tropeano et al. 2013) (Table 1). Furthermore, micro-
array analysis revealed several nonrecurrent microdeletion in-
cluding regions of 2p16.3, 7q22q31, 22q13.3, and Xp22
(Marshall et al. 2008; Prasad et al. 2012; Béna et al. 2013).
Most of CNVs harbor numerous genes that mutually may con-
tribute to the ASD phenotype (Doelken et al. 2013). The most
frequently identified recurrent CNVs in patients with ASDs are
listed in Table 1.

Incomplete penetrance and variable
of expression

Some ASD-associated CNVs are inherited from an unaf-
fected parent or are found in control populations which
prove different penetrance of these CNVs. Moreover, the
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Table 1

Recurrent CNVs identified in patients with ASD

Locus

Clinical features associated with CNV

1g21.1 deletion syndrome

1q21.1 duplication syndrome
2q37 deletion syndrome

3q29 deletion syndrome
7q11.23 duplication syndrome
15q11q13 duplication syndrome
15q13.3 deletion syndrome
16p11.2 deletion syndrome
16p11.2 duplication syndrome
16p12.1 deletion syndrome
16p13.1 deletion

17p11.2 deletion syndrome
17p11.2 duplication syndrome
17q12 deletion syndrome
17g21.31 deletion syndrome
17q21.31 duplication syndrome
22q11.2 deletion syndrome
22q11.2 duplication syndrome

Mild to moderate ID, schizophrenia, mild dysmorphic facial features,
congenital heart abnormality, microcephaly, cataracts
Mild to moderate ID, ADHD, mild dysmorphic features, macrocephaly, hypotonia
ID, dysmorphic facial features, brachydactyly
Mild to moderate ID, schizophrenia, mild dysmorphic facial features
ID, schizophrenia, abnormal brain MRI, variable dysmorphic features
Mild to severe ID, epilepsy, ataxia, behavioral problems, hypotonia
Mild to severe ID, epilepsy, learning difficulties, ADHD, variable dysmorphic features
Mild to severe ID, epilepsy, multiple congenital anomalies, variable dysmorphic features, macrocephaly, obesity
Mild to moderate ID, ADHD, microcephaly, dysmorphic features
Mild to moderate ID, ADHD, congenital heart defects, craniofacial dysmorphology
ID, schizophrenia, epilepsy, multiple congenital anomalies, dysmorphic features
ID, speech delay, hearing loss, sleep abnormalities, hypotonia
Mild to severe ID, congenital anomalies, dysmorphic features, hypotonia
Mild to moderate ID, schizophrenia, epilepsy, MODY, dysmorphic facial features
Mild to severe ID, epilepsy, structural brain abnormalities, musculoskeletal anomalies, dysmorphic features, hypotonia
Mild to moderate ID, microcephaly, hirsutism, facial dysmorphism
ID, schizophrenia, learning difficulties, multiple congenital anomalies, congenital heart defect, dysmorphic features
ID, schizophrenia, speech impairment, learning difficulties, heart defect, dysmorphic features, microcephaly

ADHD attention deficit hyperactivity disorder, ID - intellectual disability, MODY maturity onset diabetes of the young

same CNVs are detected both in ASD cases and in pa-
tients with other neurocognitive disorders including men-
tal retardation/DD, epilepsy, schizophrenia, bipolar disor-
der, and ADHD that suggest that the final phenotype de-
pend on the occurrence of additional rare genetic (or non-
genetic) factors (Girirajan and Eichler 2010).

There are some explanations for phenotypic variability in
genomic disorders. First, size of the CNVs can be different,
thus involve various genes and causes different phenotypes.
Furthermore, it can be recessive mutation or functional poly-
morphism within the CNV region which influence on the phe-
notypic variability. A single nucleotide variant can be also in
close proximity to the CNV thereby modifying the expression
pattern of the genes in the CNV region (Girirajan and Eichler
2010). Another cause of incomplete penetrance of the CNVs
is the “two-hit model.” It is estimated that 10% of the patients
also carry another CN'V or point mutation. The second variants
in one individual could change the dosage for several genes
and lead to difference in the severity and variability of clinical
features. It is possible that one hit is sufficient to cause some
clinical features but a second hit is responsible for more severe
phenotype with intellectual disability (Girirajan et al. 2012).

Monogenic syndromes associated with ASDs

Approximately 5-10% of ASD patients have co-occurring
monogenic syndromes or disorders. The mutated genes are
often regulators of the expression of a large group of other
genes. The most common ASD-related syndrome is fragile
X syndrome (FXS) diagnosed in about 1.5-3% of individuals
with ASD. FXS is caused by mutations in the FMR] gene that

regulates about 6000 mRNAs in the brain and plays an essen-
tial role in synaptic plasticity (Ascano et al. 2012) (Table 2).
Another frequent ASD-related syndrome is tuberous sclerosis
complex (TSC) which occurs in about 1% of patients diag-
nosed with ASD. Two causative genes, 7SC/ and TSC2, are
inhibitors in the mammalian target of the rapamycin signaling
pathway (mTOR) that is involved in the local translation in the
central nervous system. Mutations in the MECP2 gene are
responsible for Rett syndrome that is found in an additional
1% of female ASD patients. The MeCP2 protein (methyl
CpG-binding protein 2) is a transcription factor that regulates
the expression of many genes in neurons (Liu and Takumi
2014). Moreover, mutations in the PTEN gene that indirectly
repress the mTOR pathway are responsible for spectrum phe-
notypes including ASD with macrocephaly (Herman et al.
2007) (Table 2). Other examples of single-gene syndromes
associated with ASD include neurofibromatosis type 1 (NF
gene), Duchenne muscular dystrophy (DMD gene), and
Timothy syndrome (CACNAIC gene). ASD can also occur
in some metabolic diseases such as phenylketonuria (PAH
gene) and Smith-Lemli-Opitz syndrome (DHCR7 gene)
(Caglayan 2010). Several studies have proposed that another
group of ASD related to monogenic disorders is caused by
mutations in the mitochondrial DNA (mtDNA) and impair-
ment of mitochondrial energy metabolism (Wang et al. 2016;
Valiente-Palleja et al. 2018).

Genome-wide association studies

Linkage studies examine the co-segregation of chromo-
somal regions with the phenotype among multiply-
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affected pedigrees. Heritable variants investigation within
ASD families is supported by the high sibling recurrence
(Sandin et al. 2014). Nevertheless, linkage study has
small potency for disorders with complex etiology and
inherited variants of uncertain significance. Previous link-
age study identified linkage signals in almost all chromo-
somes but the most replicated chromosomal region was
7935 (IMGSAC 2001).

The genomes of people differ from each other in ge-
netic variants called single nucleotide polymorphisms
(SNPs). Despite that most of these variants are common
and occur at least in 1% of the population, some of these
SNPs may increase the risk of developing complex, poly-
genic diseases (Voineagu 2012). It is thought that single
common variants contribute to genetic, heterogenous dis-
orders by epistatic interaction but the studies’ results in-
dicate that SNP have small effect size on ASD. Several
large-scale genome-wide association studies (GWAS)
found many significant markers associated with ASD
but predominantly specific to a single study (Ronald
et al. 2010, An and Claudianos 2016). Large phenotypic
variety in ASD causes that many GWAS tried to find
association between genetic variants and subphenotypes
of ASD (Hu et al. 2011; An and Claudianos 2016). Hu
et al. (2011) divided all ASD individuals into four
subphenotypic groups and identified 18 significant
SNPs. Whereas, when they combined all patients into
one cohort and analyzed together, there was no associa-
tion found between SNP and ASD. This study confirmed
that it is important to analyze clinical homogeneous
groups of ASD individuals in GWAS (Hu et al. 2011).
In addition, the more complex the disease is, the greater
the probability that many genes are associated and many
different polymorphisms affect its heterogeneity; there-
fore, the greater cohort size must be tested. To date, co-
hort sizes tested in ASD studies were around 2000 fami-
lies while in other common disorders such as epilepsy or
schizophrenia, studies were performed on much greater
numbers of cases (more than 26,000 and 30,000, respec-
tively) (Wang et al. 2009; Weiss et al. 2009; Anney et al.
2010; Anney et al. 2012; International League Against
Epilepsy Consortium on Complex Epilepsies 2014;
Schizophrenia Working Group of the Psychiatric
Genomics Consortium 2014). Considering the large phe-
notypic variety of autistic disorders, the sample sizes are
too small to completely understand the mechanism of
ASD.

Genes associated with ASD

Mutations and CNVs implicate genes encode the proteins
that play an important role in the chromatin remodeling
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(CHDS, BAF155), as well as synaptic cell adhesion mol-
ecules (Neurexin and Neuroligin families, CNTN4), neu-
rotransmitters, scaffolding protein in synapse (SHANK?2
and SHANK3), and ion channel proteins (CACNAIA,
CACNAIH, SCNIA, SCN2A). The proteins are also in-
volved in the signaling pathways and neuronal networks
linked to synaptic gene transcription and translation path-
way (FMRI1, TSCI, TSC2, PTEN, NFI1, CYFIPI),
ubiquitination pathway (UBE3A, PARK2, TRIM33), pro-
tein synthesis and degradation, and participate in the de-
velopment, formation, and function of synapses and neu-
rons (De Rubeis et al. 2014; Iossifov et al. 2014; Pinto
et al. 2014; Cotney et al. 2015; Hormozdiari et al. 2015)
(Table 2). Moreover, results of the studies indicate that an
imbalance in excitation and inhibition synaptic inputs
could explain deficits in social and cognitive functions
present in ASD patients. Chromatin remodeling regulates
gene expression and may influence the formation and dif-
ferentiation of neurons (Ronan et al. 2013). Cotney et al.
in the in vivo study showed that the CHDS gene is strong-
ly associated with ASD (2015). This gene encodes the
chromodomain helicase DNA-binding protein that regu-
lates the expression of many other ASD risk genes in
the human midfetal cortex (Cotney et al. 2015).
Moreover, neuronal activity affects the post-translational
modification of synaptic molecules and gene transcription
that regulate synapse formation, maturation, and function.
Mutations in genes involved in the activity-dependent
pathways result in dysregulation of this network and
cause of ASD (Ebert and Greenberg 2013). Voineagu
et al. showed significantly lower expression of genes that
play an important role in synapse formation and function
in the autistic brain compared to the normal brain. The
authors believe that one of the molecular mechanisms un-
derlying ASD is the transcriptional and splicing dysregu-
lation (Voineagu et al. 2011). Moreover, alteration of the
proteins translation in the brain may lead to synaptic dys-
function and development of ASD (Gkogkas et al. 2013;
Santini et al. 2013).

The next-generation sequencing technology allows pre-
cise analysis of the patient’s whole exome or genome and
detects single nucleotide changes within one experiment.
Thus far, genetic studies identified more than 1000 genes
that contribute to ASD risk. De novo exonic mutations in
the genes expressed in the brain have been identified in
approximately 5-14% individuals with idiopathic ASD
(Sanders et al. 2012; Iossifov et al. 2012; Lim et al.
2013).

The first whole exome sequencing study on ASD patients
was reported in 2011 by O’Roak et al. The authors identified
11 de novo missense mutations in 20 trios, with idiopathic
ASD. Four of them, in FOXPI, GRIN2B, SCNIA, and
LAMCS3 genes, were classified as potentially pathogenic and
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probably were associated with ASD, ID, and epilepsy. The
FOXPI gene encodes a transcription factor necessary for
proper brain development. The GRIN2B gene encodes the
glutamate receptor which binds the glutamic acid, the main
neurotransmitter of the central nervous system. The SCNI/A
gene encodes a subunit of sodium channel, previously associ-
ated with epilepsy and indicated as the candidate gene for
ASDs while the LAMC3 gene is expressed in the cortex and
limbic system (O’Roak et al. 2011).

Tossifov et al. (2012) sequenced exomes of the 343 simplex
ASD families and found that gene-disrupting mutations ap-
pear twice as frequent in cases with ASD as in the cohort of
unaffected siblings. Moreover, they claimed that many of au-
tism susceptibility genes are linked with the fragile X protein.
This supported association between ASD and the synaptic
plasticity (Iossifov et al. 2012).

Further studies confirmed the contribution of de novo non-
synonymous mutations in the higher risk of ASD. Sanders
et al. (2012) identified such mutations in the genes expressed
in the brain in 14% of patients. The results of their study as
well as the studies of Neale et al. (2012) and Bernier et al.
(2014) showed the association between SCN2A, KATNAL?2,
and CHDS genes and autism spectrum disorders. The
KATNAL? gene plays an important role in the development
of the nervous system (Neale et al. 2012; Sanders et al. 2012;
Bernier et al. 2014). Moreover, the number of de novo muta-
tions was positively correlated with the paternal age (Neale
et al. 2012; O’Roak et al. 2012; Sanders et al. 2012).

In the next ASD study, Bi et al. (2012) identified mutations
in seven genes, ABCAI, ANK3, CLCN6, HTR3A, RIPK?,
SLIT3, and UNC13B, which play an important role in the
neurodevelopment and synaptic function. Furthermore, they
sequenced an additional 47 patients with ASD and found mis-
sense mutations in the ANK3 gene in four unrelated cases.
Previously, mutations in this gene were identified in individ-
uals with schizophrenia or bipolar disorder, but the authors
postulated that they also increase the risk for ASD (Bi et al.
2012).

Mutability depends on sequence and chromatin character-
istics and also the regions flanked by segmental duplications
may lead to a rise in recurrent mutations mediated by non-
allelic homologous recombination (Michaelson et al. 2012).
Michaelson et al. (2012) suggested that mutability is not the
same throughout the whole genome and high mutability is
characteristic for ASD genes.

Moreover, Turner et al. (2016) suggested that the small,
often multiple CNVs and mutations disrupting putative
regulatory elements may be one of the risk factors of
simplex autism. They performed whole genome sequenc-
ing in 53 simplex families and identified more de novo
and disruptive mutations and CNVs in the putative regu-
latory regions of genes that have been previously associ-
ated with ASD in probands compared to controls (Turner
et al. 2016).

The most commonly identified mutations in patients with
ASDs are listed in Table 2.

Table 2 Known genes associated

with ASD Gene Clinical features associated with mutation
CACNAIC Timothy syndrome features
CHDS8 Macrocephaly
CNTNAP2 Mild to moderate ID, epilepsy, speech abnormalities, cortical dysplasia
DYRKIA ID, microcephaly
FMRI ID, Fragile X syndrome
FOXP1 ID, language impairment
FOXpP2 Developmental verbal dyspraxia
GRIN2B ID, epileptic encephalopathy
MECP2 ID, Rett syndrome
NLGN4 ID
NRXNI ID, schizophrenia, mild facial dysmorphism
PTCHDI ID
PTEN Mild to moderate ID, macrocephaly, Cowden syndrome
RELN Epilepsy
SCN2A Epilepsy
SHANK?2 Mild to moderate ID
SHANK3 Moderate to severe ID, severely impaired speech, schizophrenia, mild dysmorphic features
SYNGAPI ID, epilepsy

ID intellectual disability
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Epigenetics

Epigenetic mechanisms modulate the chromatin conformation
and regulate the expression of many genes without alterations
in the DNA sequence (Schiele and Domschke 2017). Several
studies proved the role for epigenetic dysregulation in the
etiology of ASD. Mutations in genes encoding proteins impli-
cated in epigenetic mechanism were reported in patients with
ASD or ID. Duffney et al. (2018) reported a de novo mutation
in the HIST1HIFE gene encoding H1 histone linker protein in a
10-year-old boy with autism and intellectual disability. The
HI1 linker protein contributes to the organization of higher-
order chromatin structures and regulation of gene transcrip-
tion. The reported mutation cause lower protein expression
and lead to develop ASD, ID, and behavioral problems.
Subsequently, the authors reviewed databases of genes asso-
ciated with ASD, and stated that 42 out of 215 genes causing
ASD are directly involved in epigenetic modification of gene
expression. Those genes encoded proteins that modify DNA
or histones and regulate chromatin remodeling or the nucleo-
some assembly (Duftney et al. 2018).

One of the example of epigenetic regulation is DNA meth-
ylation. Numerous genome-scale studies revealed multiple al-
terations in DNA methylation in the brains of ASD individ-
uals (Ladd-Acosta et al. 2014; Ellis et al. 2017). The largest
study of meta-analysis of the peripheral blood samples in al-
most 800 autistic patients showed that 55 of analyzed CpG
sites were associated with ASD (Andrews et al. 2018).
Moreover, Berko et al. (2014) studied the ectodermal cell type
of 47 ASD patients born to mothers at least 35 years old and
defined various DNA methylation patterns compared to con-
trol individuals. This difference in DNA methylation was de-
tected for the genes expressed in the brain and encoding pro-
tein that interacts with those involved with the development of
ASD. The authors stated that epigenetic changes may be due
to aging of the gametes or may occur in early embryonic life
(Berko et al. 2014).

Furthermore, Atladéttir et al. (2012) suggested that epige-
netic mechanisms can activate immune responses during preg-
nancy and also increase susceptibility to ASD. The results of
this large population study implied that maternal influenza
infection was related with twofold increased prevalence of
having a child with ASD, prolonged period of fever during
pregnancy was associated with a threefold increased preva-
lence of autism in children, and use of various antibiotics are
risk factors for ASD (Atladottir et al. 2012). Moreover the
results of the study with a mouse model of maternal allergic
asthma (MAA) suggested that alterations in maternal immune
responses during pregnancy increase the risk of ASD in a
child. MAA in mice caused changes in social and repetitive
behaviors in the offspring. The researchers found differential-
ly methylated regions in fetal microglia enriched for genes
involved in immune signaling pathways and synaptic function
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as a result of MAA (Vogel Ciernia et al. 2017). These studies
suggest that maternal immune responses can cause epigenetic
changes and contribute to ASD development.

Recently, several studies explored the role of miRNA
(microRNAs) in the etiology of ASD and demonstrated the
alteration of the miRNA’s expression in ASD patients.
MicroRNA is a small, 18-22 nucleotides in length, noncoding
RNA molecule. Formation of these molecules occurs in sev-
eral steps. First of them is a transcription that leads to forma-
tion of a precursor form called pri-miRNA (primary miRNA).
Then, the first transcript is processed that leads to the genera-
tion of ~70 nucleotides long pre-miRNA. Both steps take
place in the cell nucleus. The pre-mi RNA is transported to
the cytoplasm where a number of processes lead to formation
of a mature, functional, single-stranded miRNA molecule.
These molecules control the expression of many genes
through regulation of different mRNA activities resulting in
inhibition of protein synthesis or mRNA degradation (Fregeac
et al. 2016). The effects of miRNA deficiency during mam-
malian development were shown in studies of mice. The lack
of Dicer ribonuclease, involved in pre-miRNA maturation,
causes decrease of multipotent stem cells and death early in
embryonic development (Bernstein et al. 2003).

About half of all known human miRNAs are expressed in
the brain. It is believed that about 50% of human genes are
regulated by these molecules and miRNAs control properly
every functional pathways involving in the cell differentiation,
proliferation, development, and apoptosis (Bernstein et al.
2003). Each miRNA can potentially regulate expression of
numerous genes and each gene can be regulated by different
miRNAs. There are different miRNA expression profiles in
particular cells that enable precise modification of expression
level of individual genes to the current needs of a certain cell.
The studies of the animal models showed that deregulation of
miRNA synthesis leads to the neurodevelopmental disorders
(Bernstein et al. 2003; Hébert and De Strooper 2007; Davis
et al. 2008; Kawase-Koga et al. 2009).

Recently, Kichukova et al. (2017) tested the expression
profile of 42 selected miRNAs in serum of 30 patients with
ASD. The results showed that relative expression levels of
three miRNAs were evidently higher and the other five
miRNAs were lower in ASD individuals compared to the
control group. Next, analysis of genes that are regulated by
these miRNAs showed that some of these genes are important
for the CNS development. Therefore, the authors postulated
that some of these miRNAs may play a role as biomarkers for
ASD. The expression level of one miRNA was the same as in
other post-mortem studies on brain tissue. The authors have
also drawn a conclusion that miRNA expression dysregula-
tion in the serum reflects abnormalities in tissues, and these
miRNAs can be treated as biomarkers. However, further stud-
ies are needed to confirm if these eight miRNAs can serve as
biomarkers for ASD (Kichukova et al. 2017).
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Genetic models of ASD

There are a few hypotheses which may explain the ASD
etiopathogenesis. Based on the results of the GWAS, aCGH,
and sequencing studies, we can conclude that there are com-
mon variants (CV) that increase the risk for disease develop-
ment, but they are not sufficient for the disorder, and rare
variants (RV) with moderate or large effect size (either
CNVs or rare SNVs), both de novo and parentally inherited.
The first proposed model is the rare variant-common disease
(RVCD) hypothesis which suggests that one rare genetic var-
iant with a significant risk causes ASD. This model is support-
ed by the presence of de novo mutations in ASD patients that
are not found in the control group, similarly in syndromic
forms of ASDs where disruption of a single gene causes the
disorder (Hatton et al. 2006; Khwaja and Sahin 2011).
However, most of these syndromes demonstrate incomplete
penetrance and variable expressivity for ASD. For example,
only 30% of patients with the FraX syndrome have coexisting
ASD, 10% do not show any autistic phenotype features, and
some have only some ASD features (lossifov et al. 2012;
Harris et al. 2008). This variable expressivity and incomplete
penetrance suggest that there is an additional factor (genetic,
epigenetic, or environmental) that modulates the presence of
ASD 1in individuals with the rare variants (Geschwind 2008).
Moreover, rare variants are found in ASD individuals, unaf-
fected relatives, and controls, for example maternally inherited
15q11q13 duplication, deletion of 22q13 and 2q37, CNV
17p11, and Xp22 (Vorstman et al. 2006). This makes it diffi-
cult to estimate which variants are pathogenic, which contrib-
ute to ASD, and which are unrelated to the clinical features.

An alternative hypothesis of ASD risk is the polygenic
model in which combinations of various genetic variants lead
to ASD. The first polygenic model the common variant—
common disease (CVCD) proposes that many common genet-
ic variants that occur in > 1% in the population collectively
contribute to ASD. The large-scale GWAS showed that most
of SNPs have a small effect. This implies that the importance
of CVs is limited and many common variants are needed for
ASD or another factor interacts with CVs and contributes to
the disorder. The evidence supporting this model is that some
relatives of ASD patients have autistic features, which sug-
gests that only part of the CVs is sufficient for the occurrence
of the endophenotype (Abrahams and Geschwind 2008).
Whereas, the evidence against this model is the fact that in
the GWAS studies only a small number of variants were found
in more than one group of ASD individuals.

The second and third polygenic models assume that ASD is
a result of rare and common variants combination. In the sec-
ond polygenic model, ASD is a result of occurrence of a single
RV among CVs. According to the third model, ASDs are
caused by a combination of rare and common variants.
These models are supported by existing rare variants inherited

from healthy parents (e.g., 16p11.2) and some de novo CNVs
are found both in patients and healthy people (Kumar et al.
2008; Bucan et al. 2009; Ben-David and Shifman 2012).
Moreover, both rare and common variants have been identi-
fied in genes involved in neuron and synapse formation and
development. Furthermore, some autistic features are present
in relatives with identified genetic variants. These facts sug-
gest that another factor contribute to ASD is required or some
of these variants do not involve in autistic disorders.

In a fourth polygenic model, one RV predisposes to the
disorder, while second RV causes the disorder or a greater
pathology, compared to patients with only one RV.
Therefore, this model is called “two hits model” (Berger
et al. 2011). The results of many studies showed many exam-
ples of this thesis. Gau et al. (2012) found two aberrations
(4q12q13 duplication, 4.5 Mb and 5q32 deletion, 1.8 Mb),
one inherited from the mother and second from the father, in
a boy with autism. None of these aberrations were in the
database of genomic variants. The authors postulated that
the presence of single CNVs is probably not enough to cause
the disorder. The occurrence of two RVs in a patient with ASD
suggests that the interactions between genes mapping within
these aberrations may lead to the disorder. The support of this
model is also the occurrence of rare variants inherited from
parents and RV de novo found in healthy controls (Gau et al.
2012). The greatest support is for the polygenic model in
which a combination of rare and common variants causes
ASDs.

Genetic diagnostic strategy

ASD is the heterogenous disorder and the genetic etiology is
recognized in only about 25-30% of patients. This ratio is
higher in ASD individuals with dysmorphic features, congen-
ital malformation, seizures, or micro/macrocephaly.

ASD can be associated with some monogenic syndromes
or metabolic disorders. Thus, the patient should have a med-
ical evaluation for the presence of the clinical features charac-
teristic for these diseases and molecular testing for mutations
in the genes associated with these disorders should be per-
formed. Among single-gene disorders for which ASD can be
part of the phenotype spectrum, due to the incidence among
ASD cases, mutations in three genes should be excluded. A
screening for fragile X syndrome is recommended for all male
patients even if they do not present any characteristic clinical
features for FXS. Female testing for mutations in FMRI
should be considered in case of X-linked pattern of inheritance
of neurodevelopmental disorders, clinical features of fragile X
syndrome, or premature ovarian failure in close relatives
(Schaefer et al. 2013; Griesi-Oliveira and Sertié 2017).
Moreover, all females with ASD and ID should be screened
for mutations in MECP2 which are associated with Rett
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syndrome (Schaefer et al. 2013; Griesi-Oliveira and Sertié
2017). Lastly, it is recommended to all individuals with
ASD and macrocephaly to search for a mutation in the
PTEN gene, which is responsible for harmatoma tumor syn-
dromes that lead to macrocephaly and increased risk for tu-
morigenesis (Schaefer et al. 2013; Griesi-Oliveira and Sertié
2017). Next, due to the heterogeneity of CNVs, mostly sub-
microscopic in size, aCGH is recommended as the method of
choice in cytogenetic diagnostics (Miller et al. 2010; Battaglia
et al. 2013; Schaefer et al. 2013). In case of detection of copy
number variant which is related to the phenotype of the pa-
tient, genetic counseling of the family is necessary. If the de-
tected aberration has not previously been associated with au-
tism spectrum disorders, the information about the function
and expression of the genes that are located within the region,
the size of the aberration, and its type (deletion/duplication)
should be considered during estimating its clinical signifi-
cance. In all cases, the origin of aberration should be deter-
mined in order to estimate the genetic risk in the family.
Karyotyping is recommended only when there is a suspicion
of aneuploidy.

In every case where aCGH analysis was normal, whole
exome or genome sequencing could be considered, especially
in patients with associated ID (Bourgeron 2015). NGS tech-
nologies are not a first-tier diagnostic test yet, because of the
difficulty of the result interpretation. However, this may
change due to an increasing number of NGS studies conduct-
ed on large cohorts of the autistic patients. The sequencing
data from these studies probably will help in the interpretation
of NGS results.

In each case, genetic counseling is necessary.

Conclusions

Although chromosomal microarrays and sequencing technol-
ogies have greatly improved our understanding of the genetic
etiology of ASD, there is still much more to discover. Despite
of'the identified hundreds of loci involved in ASD, the genetic
variants classified as etiological factors are identified only in
about 25-35% of the cases (Schaefer et al. 2013; Bourgeron
2015). Moreover, many genetic variants responsible for ASD
are associated with other neurodevelopmental disorders or
incomplete penetrance that makes it difficult to assess the
genetic risk. Further studies are needed for better understand-
ing of ASD etiology and also the different phenotypes among
affected patients. It is expected that increasing amount of
knowledge about etiopathogenesis of ASD and lower prices
of technologies such as NGS will help to develop more accu-
rate diagnostics and early detection of ASD. Possibly, it will
allow to implement medical treatment based on genetic find-
ings which now is not available for the majority of patients
with ASD (Levy et al. 2009). Future work should focus on
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search for new strategies of treatment for autistic disorders
based on the study of animal models with the same abnormal-
ities as occur in ASD patients.
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