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Abstract

Posterior fossa ependymoma comprise three distinct molecular variants, termed PF-EPN-A (PFA), 

PF-EPN-B (PFB) and PF-EPN-SE (subependymoma). Clinically they are very disparate and PFB 

tumors are currently being considered for a trial of radiation avoidance. However, to move 

forward, unraveling the heterogeneity within PFB would be highly desirable. To discern the 

molecular heterogeneity within PFB, we performed an integrated analysis consisting of DNA 

methylation profiling, copy number profiling, gene expression profiling and clinical correlation 

across a cohort of 212 primary posterior fossa PFB tumors. Unsupervised spectral clustering and t-

SNE analysis of genome wide methylation data revealed five distinct subtypes of PFB tumors, 

termed PFB1–5, with distinct demographics, copy number alterations, and gene expression 

profiles. All PFB subtypes were distinct from PFA and posterior fossa subependymomas. Of the 

five subtypes, PFB4 and PFB5 are more discrete, consisting of younger and older patients, 

respectively; with a strong female gender enrichment in PFB5 (age: p=0.011, gender: p=0.04). 

Broad copy number aberrations were common, however, many events such as chromosome 2 loss, 

5 gain, 17 loss were enriched in specific subtypes and 1q gain was enriched in PFB1. Late relapses 

were common across all five subtypes but deaths were uncommon and present in only two 

subtypes (PFB1 and PFB3). Unlike the case in PFA ependymoma, 1q gain was not a robust marker 

of poor progression free survival, however, chromosome 13q loss may represent a novel marker 

for risk stratification across the spectrum of PFB subtypes. Similar to PFA ependymoma, there 

exists significant intertumoral heterogeneity within PFB, with distinct molecular subtypes 

identified. Even when accounting for this heterogeneity, extent of resection remains the strongest 

predictor of poor outcome. However, this biological heterogeneity must be accounted for in future 

pre-clinical modeling and personalized therapies.
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Introduction

Genomics has significantly advanced our knowledge of the biology of posterior fossa 

ependymoma [9–11, 14, 20, 23, 24, 26]. Posterior fossa ependymoma comprise three 

distinct molecular subgroups, defined by gene expression and genome wide DNA 
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methylation, and they display highly disparate demographics, cytogenetics and outcomes 

[6,11,12,14–16, 26]. PFA (PF-EPN-A) ependymomas arise in younger patients, primarily 

infants and have generally a bland genome and a poor outcome. In contrast, PFB (PF-EPN-

B) ependymomas occur in older children and adults, harbor multiple broad cytogenetic 

aberrations and generally have a favorable outcome. The third molecular subgroup 

comprises mostly grade I subependymomas (PF-SE), which occur almost exclusively in 

adults only and have a good outcome as well [14]. Currently, the standard of care for all 

posterior fossa ependymoma in patients under 18 is maximal safe surgical resection 

followed by conformal radiation to the tumor bed, however in adults adjuvant postoperative 

radiation is variable resulting in a subset of patients who are treated with surgery only [19].

Recently we demonstrated that there are profound clinical differences and responses to 

therapy between PFA and PFB [14,15, 26]. PFA have a poor outcome overall, with an even 

worse outcome when sub-totally resected. PFB have an excellent outcome overall, where a 

significant proportion of patients can be cured with a gross total resection alone. Therefore, 

patients with PFB ependymoma, particularly children are excellent candidates for radiation 

sparing strategies, where carefully controlled studies are being contemplated of observation 

alone in the setting of gross total resection. Gain of 1q has been proposed as a marker of 

poor prognosis in PFA ependymoma, however its role in PFB is unclear [1, 4, 7, 8, 17, 25]. 

We have also recently shown that PFA ependymoma are highly heterogeneous entities with 

two major groups with multiple subtypes[13]. Moreover, PFB has been assumed to be a 

homogeneous group, however it is unknown if there exists molecular and/or clinical 

heterogeneity and additional substructure within PFB ependymoma. As such, unraveling this 

heterogeneity will be a crucial starting point to the development of personalized therapies 

within PFB. We assembled the largest cohort to date of clinically annotated PFB 

ependymomas profiled using genome-wide DNA methylation arrays to assess molecular 

heterogeneity within the PFB ependymoma subgroup.

Methods

Patient cohort

Two hundred and twelve posterior fossa ependymomas were obtained through the GENE 

consortium (Global Ependymoma Network of Excellence), St. Jude’s Children’s Research 

Hospital, the Collaborative Ependymoma Research Network, the Burdenko Neurosurgical 

Institute and the German Cancer Research Center. Both frozen and FFPE samples were 

collected from diagnosis. Samples were all collected in accordance with the Hospital for 

Sick Children Research Ethics Board and local institutional research ethics boards. All 

frozen samples were snap frozen and stored at −80°C. Formalin fixed paraffin embedded 

tissue was collected as scrolls or unstained slides. A subtotal resection was defined as more 

than 5mm postoperative residual on the post-operative MRI.

Genome wide DNA methylation profiling

Samples were analyzed on the Illumina Infinium HumanMethylation450 or the 

HumanMethylationEPIC beadchips at the PM-OICR Translational Genomics Laboratory 

(Toronto, Ontario) or the German Cancer Research Center (Heidelberg, Germany) according 
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to manufacturer’s instructions and as previously described.[14] All analysis was conducted 

in the R Statistical Environment (v3.4.1). Raw data files (.idat) generated by the Illumina 

iScan array scanner from both frozen and FFPE derived tissue were loaded and pre-

processed using the minfi package (v1.22.1). Illumina pre-processing was selected to mimic 

the normalization performed in Illumina Genome Studio. To account for possible batch 

effects due to divergent protocols for fresh frozen and FFPE material, a batch adjustment 

was performed. Batch effects were estimated by fitting a linear model to the log2 

transformed intensity values of the methylated and unmethylated channel. After removing 

the component due to the batch effect the residuals were backtransformed to intensity scale 

and methylation beta values were calculated as described in Illumina’s protocols. 

Subsequently, the following filtering criteria were applied: Removal of probes targeting the 

X and Y chromosomes, removal of probes containing a single nucleotide polymorphism 

(dbSNP132 Common) within five base pairs of and including the targeted CpG-site, and 

probes not mapping uniquely to the human reference genome (hg19) allowing for one 

mismatch. In total, 431069 probes were kept for analysis. PFB status was determined using 

the Heidelberg brain tumor classifier (https://www.molecularneuropathology.org/mnp) and 

unsupervised hierarchical clustering as previously described.[2,14]

Gene expression profiling

PFB ependymoma samples, for which gene expression profiles generated on the Affymetrix 

GeneChip Human Genome U133 Plus 2.0 Array (Affymetrix, Santa Clara, USA) at the 

Microarray Department of the University of Amsterdam, the Netherlands were processed as 

previously described (GSE64415) [13, 14]. Briefly, data was normalized using the MAS5.0 

algorithm and differentially expressed genes between the five subtypes were generated 

within the R2: Genomics Analysis and Visualization Platform comparing one (http://

r2.amc.nl). TMEV software was used to generate the heatmap displaying the top 10 most 

upregulated genes per subtype[21]. Differentially expressed genes (adj. p<0.05) when 

comparing one subtype versus others were used to performed pathway analysis with 

g:profiler[18].

Unsupervised t-SNE analysis

For unsupervised t-Distributed Stochastic Neighbor Embedding (t-SNE) analysis, we 

selected the 6749 most variably methylated probes across the dataset (s.d. > 0.25). Pairwise 

sample distances were calculated by using 1 minus the weighted Pearson correlation 

coefficient as the distance measure. Unweighted correlation coefficients provided similar 

results, and as such weighted probes were used to reduce the noise. Pairwise Pearson 

correlation was calculated using the wtd.cors function of the weights package v.0.85. We 

used the probe standard deviation subtracted by 0.25 as the weight, giving more variable 

probes greater influence. The resulting distance matrix was used to perform the t-SNE 

analysis (Rtsne package v.0.13). The following non-default parameters were used: theta = 0, 

is_distance = T, pca = F, max_iter = 2000. Clusters were annotated using the DBSCAN 

algorithm as implemented in the dbscan package v.1.1.1. The following non-default 

parameters were used: minPts =10, eps = 2.4. Subsequently, samples not assigned to any 

cluster were iteratively merged to their nearest cluster.
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Spectral clustering

The same weighted distance matrix used for unsupervised t-SNE analysis was used to 

perform spectral clustering. Spectral clustering implemented in the SNFtool package 

(v2.2.1) was run on the patient by patient similarity matrix to obtain groups corresponding to 

k=2 to 8.

Copy number inference from methylation arrays and identification of recurrent broad events.

Copy number segmentation was performed from genome wide methylation arrays using the 

conumee package (v0.99.4) in the R statistical environment (v3.3.3) as previously described 

[5, 22]. Broad copy number events were determined using visual inspection of copy number 

plots and significance of the frequency of each broad event was tested using the exact 

binomial test. Each broad event frequency was compared to the background frequency, 

which was determined from a robust regression of the observed frequencies with respect to 

gene content (i.e. number of RefSeq genes) across all chromosomes. This approach was 

motivated by GISTIC’s broad event analysis [3].

Statistical analysis

Progression-free survival and overall survival were analysed by the Kaplan-Meier method 

and p-values reported using the log-rank test. Associations between covariates and risk 

groups were tested by the Fishers exact test. Univariable and multivariable cox proportional 

hazard regression was used to estimate hazard ratios including 95% confidence intervals. All 

statistical analyses were performed in the R statistical environment (v3.4.1), using R 

packages survival (v2.41–3), and ggplot2 (v2.2.1).

Results

DNA methylation profiling identifies five distinct subtypes of PFB ependymoma

Genome-wide methylation profiling was available on 212 primary posterior fossa 

ependymomas (76 frozen and 136 formalin fixed paraffin embedded samples) previously 

assigned to the PFB subgroup using either the Illumina HumanMethylation450 (n=180) or 

HumanMethylationEPIC arrays (n=32) and the Heidelberg brain tumor classifier (https://

www.molecularneuropathology.org/mnp) [2].

In order to discern the extent of heterogeneity within the PFB subgroup, we applied 

unsupervised clustering using the most variably methylated probes with a standard deviation 

over 0.25. A distance matrix was constructed using 1 minus the weighted Pearson 

correlation and both t-SNE analysis and spectral clustering were applied to the resulting 

distance matrix (Figure 1A,1B). Using the t-SNE analysis performing 2000 iterations, five 

distinct clusters were identified which we term subtypes. Spectral clustering was also 

applied for k=2 to k=8, confirming the optimal clusters at k=5 ((Figure 1B, Supplemental 

Figure 1). The subtypes obtained by t-SNE and the spectral clustering were also largely 

identical when the t-SNE analysis is compared to spectral clustering at k=5 (Supplemental 

Figure 2A). No major differences in overall methylation levels at probes near the promoter 

were identified across the five subtypes (Supplemental Figure 2B). In four instances, paired 
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samples from diagnosis and relapse were available and we did not observe any switching of 

subtype at recurrence (1 PFB1, 2 PFB2, 1 PFB3).

To determine if any of the PFB subtypes were closer to PF-SE subependymoma, particularly 

the ones with older age, we clustered the 212 PFB’s with 34 posterior fossa 

subependymomas (PF-EPN-SP) and 220 PFA’s. The five PFB subtypes clustered together, 

without any overlap with PF-SE subependymomas or PFA’s suggesting the heterogeneity 

within PFB is distinct from the other two groups (Figure 1C).

Differential gene expression across PFB subtypes

Array-based gene expression analyses of the five PFB subtypes (n = 25) reveals the top 

upregulated genes per subtypes (Figure 1D), Differential expression analysis identifies in 

total 693 genes as significantly differentially expressed (adj. p < 0.05) between one versus 

the other four subtypes. Similar to the methylation based clustering, PFB4 and PFB5 had 

significantly more differentially expressed genes compared to PFB1, 2, and 3 which 

exhibited fewer differences. Subsets of these genes, which included transcription factors, 

developmental patterning pathways and potential drug targets, showed upregulated 

expression within the five subtypes. Gene-ranked pathway enrichment analysis of subtype 

specific genes indicated several general and specific developmental processes and 

developmental patterning pathways identified as deregulated processes, specifically within 

PFB4 and PFB5 (Supplemental Figure 3)[18].

Demographic differences across PFB subtypes

Annotation of demographics of the five subtypes reveals significant age differences between 

the five subtypes, specifically, an enrichment of younger patients in PFB4 (median 15 years, 

IQR 10.1–23.5 years) and enrichment of older patients in PFB5 (median 40.6, IQR 28.5–50 

years, Figure 2A p=0.011). PFB1, PFB2 and PFB3 had similar median age at diagnosis 

(PFB1 25.9 years, IQR 13.4–42 years; PFB2: median 26 years, IQR 17–41 years; PFB3: 

median 29.1 years, IQR 13.2–41 years, Figure 2A). Moreover, there are significant gender 

differences, wherein PFB2 and PFB4 have a high male bias whereas PFB3 and PFB5 have a 

high female patient bias (Figure 2B, p=0.04).

PFB subtype specific chromosomal aberrations

We generated genome-wide DNA copy number profiles, using the combined intensity of the 

methylated and unmethylated probes as previously described [5]. Many samples displayed 

aneuploidy without any recurrent amplifications or deletions, consistent with previous 

descriptions of PFB ependymoma [26]. Moreover, the overall patterns of broad copy number 

changes were similar to previous reports, including enrichment of 1q gain (12%), monosomy 

6 (61.3%), monosomy 10 (38.7%), monosomy 17 (33.5%), trisomy 5 (31.1%), trisomy 8 

(23.5%), trisomy 18 (51.9%) and 22q loss (48.1%) [14]. However, when we repeated this 

analysis across the PFB subtypes, we observed several subtype specific aberrations like 

monosomy 2 in PFB2 (PFB1 17/75, PFB2 18/36, PFB3 10/54, PFB4 4/30, PFB5 1/17, 

p=0.0014), monosomy 3 in PFB1 (PFB1 38/75, PFB2 5/36, PFB3 11/54, PFB4 4/30, PFB5 

2/17, p=3.8×10−5), monosomy 6 in PFB1,2,3 (PFB1 51/75, PFB2 26/36, PFB3 41/54, PFB4 

8/30, PFB5 4/17, p=1.2×10−6), monosomy 8 in PFB3 (PFB1 1/75, PFB2 5/36, PFB3 25/54, 
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PFB4 2/30, PFB5 1/17, p=1.3×10−11), gain of chromosome 11 in PFB4 (PFB1 17/75, PFB2 

13/36, PFB3 14/54, PFB4 21/30, PFB5 0/17, p=4.4×10−6), and enrichment of 1q gain (PFB1 

19/75, PFB2 5/36, PFB3 1/54, PFB4 0/30, PFB5 1/17, p=1.6×10−4) and monosomy 17 

(PFB1 44/75, PFB2 10/36, PFB3 9/54, PFB4 5/30, PFB5 3/17, p=1.6×10−6) within PFB1 

(Figure 3A–B). Copy number solutions for k=3 and 4 suggested that PFB1,2 and 3 were 

more similar groups overall but at k=5 certain broad events were further enriched, like 

monosomy 2 in PFB2, monosomy 8 in PFB3, monosomy 3 in PFB1 and gain of 1q in PFB1 

(Supplemental Figure 3). tSNE analysis and NMF clustering of broad copy number 

aberrations could not recapitulate any of the observed subtypes (Supplemental Figure 4).

Extent of surgical resection is the strongest predictor of progression free survival across 
PFB ependymoma

Survival across the five PFB groups was determined using a Kaplan-Meier survival analysis, 

and no significant difference in overall or progression free survival was observed between 

the five subtypes (Supplemental Figure 5A–B). Progression free survival was available on 

137 cases, and progression events were evenly distributed across the five subtypes. Late 

relapses were common in this cohort, whereby 13 of the 36 relapses occurred after five years 

and five relapses even after 10 years, highlighting the importance of long-term follow-up in 

this group. Late relapses were evenly distributed across the five subtypes. Sixteen deaths 

were observed in the cohort, nine events in PFB1 and five events in PFB3, with one death in 

each of PFB2 and PFB4, and no deaths observed in PFB5.

The rates of incomplete resection and upfront adjuvant radiation were not significantly 

different across the five subtypes (Supplemental Figure 6C–D). Consistent with our previous 

observations, in this cohort overall, a subtotal resection portended to a worse progression 

free survival in a univariable analysis (STR: HR 3.01 95% CI 1.51–5.98 p=1.7×10−3). 

Interestingly in this cohort, no upfront radiation and 1q gain were not significant predictors 

of poor outcome in a univariable analysis, although both have high hazard ratio’s suggesting 

they may have a trend to a worse outcome (No Upfront Radiation: HR 1.76 95% CI 0.83–

3.75 p=0.15;1q gain: 1.84 95% CI 0.76–4.48 p=0.18) (Supplemental Figure).

In order to discern if other copy number abnormalities confer any prognostic relevance, an 

exploratory univariable analysis was undertaken whereby survival was assessed across all 

copy number aberrations with at least a 10% incidence. Surprisingly, loss of 13q was 

significant in a univariable analysis (Figure 4, log-rank p=0.01); and a univariable analysis 

of 13q loss compared to both balanced 13q and 13q gain confirmed a significant effect size 

(HR 2.66, 95% CI 1.262 – 5.591, p=0.01). A multivariable analysis was then undertaken 

incorporating 13q and extent of resection, and the prognostic value of 13q loss remains 

significant (HR 2.73, 95% CI 1.18–5.32 p=0.017). To further determine the relationship 

between 13q loss and extent of resection can potentially predict progression free survival, a 

kaplan-meier analysis was performed comparing 13q balanced/gain versus 13q loss stratified 

by extent of resection, which suggests that subtotal resected 13q loss tumors may represent a 

novel high-risk group of PFB ependymoma. Loss of 13q was not significant in predicting 

overall survival (HR 0.92, 95% CI 0.20–4.20, p=0.92).
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In order to determine if extent of surgical resection and chromosome 13q loss remained 

prognostic when correcting for PFB subtypes, age, gender,1q gain and upfront radiation, a 

multivariable analysis of progression free survival was performed (Table 1). Both an 

incomplete resection and 13q loss remained significant, when correcting for co-variants. 

Interestingly, upfront radiation and 1q gain were marginally significant in the multivariable 

model, however, a significant interaction factor could not be discerned between a subtotal 

resection, upfront radiation and 1q gain. Only an incomplete resection was a risk factor for 

worse overall survival (Table 1). Overall outcome was excellent across the whole cohort 

with only 16 deaths across 142 patients, and none of the variables above were predictive of 

death, although longer followup is likely required.

Discussion

Across the largest cohort of PFB ependymoma assembled to date, we show that PFB is 

comprised of five distinct molecular subtypes. These five subtypes display distinct 

demographics and copy number profiles suggesting that there exists significant molecular 

heterogeneity within PFB ependymoma. We also show that none of the five subtypes of PFB 

ependymoma overlap with either subependymoma or any of the PFA ependymoma subtypes, 

further strengthening the existence of three major molecular subgroups of posterior fossa 

ependymoma

PFB ependymoma has been considered for de-escalation of therapy due to their excellent 

overall survival [12]. Previously, we have shown that 50% of gross totally resected PFB 

ependymoma can be cured with surgery alone, suggesting that this group could potentially 

be spared the long-term side effects of radiation and/or chemotherapy [15]. Our current data 

suggests that even when correcting for heterogeneity within PFB ependymoma, this group 

can still benefit from de-escalation of therapy. However, the observation that late relapses are 

common in PFB highlights that long-term follow-up is required for any eventual trial of de-

escalation of therapy. Overall survival in the cohort was excellent suggesting successful 

salvage is possible, however, the observation that deaths were enriched in PFB1 and 3 

requires further evaluation in future cohorts.

Several studies over the past 15 years have suggested 1q gain to be a marker of poor 

prognosis across all ependymomas as a whole [7, 8]. However, when 1q is evaluated in a 

subgroup specific manner, it is only prognostic for progression-free and overall survival in 

PFA, with no prognostic relevance in the RELA subgroup of supratentorial ependymoma 

[14]. Indeed, currently 1q gained PFA are being prioritized urgently for new and novel 

upfront approaches. Our previous work suggested that 1q gain was prognostic for 

progression-free survival but not overall survival within PFB [14]. Our current results in a 

much larger cohort suggest that there may be only limited utility to 1q gain as a prognostic 

marker specifically for selection of patients who would benefit from radiation sparing 

strategies, and this requires further evaluation in prospective cohorts. However, the current 

results are consistent with our previous observations that the overall survival is not 

significantly different in PFB patients harbouring 1q gained tumors. The relatively high 

hazard ratio for 1q gain suggests that its role as a prognostic marker may warrant further 

evaluation. However, for the next generation of clinical trials within posterior fossa 
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ependymoma, 1q should be used for stratification only within PFA, and highlights the 

importance of molecularly informed studies.

We show for the first time that identification of chromosome 13q loss may represent a more 

reliable prognostic marker across PFB ependymoma than 1q gain. Indeed, when stratifying 

chromosome 13q loss by extent of resection, gross totally resected PFB ependymoma with 

13q loss appear to still have a poor outcome. The absence of other large cohorts of PFB 

ependymoma preclude its independent validation, however it does warrant further study 

particularly in the context of ongoing and upcoming prospective cooperative group studies.

Most importantly however, the identification of multiple subtypes of PFB, analogous to 

recent work across PFA ependymoma, show clearly that there exists significant biological 

heterogeneity within this group [13]. The current cohort is significantly limited by a lack of 

sufficient gene expression data, but the available data support the heterogeneity within PFB 

as determined by methylation profiling. Prospective collection of frozen tissue particularly 

in adults with posterior fossa ependymoma will be crucial to determine which specific 

biological processes underlie the observed subtypes. As such, our identification of five 

subtypes provides strong support for the prospective collection of tissue in this group for 

further next generation integrated analysis. Moreover, the observation that late relapses and 

deaths are not infrequent in this group highlight a need to identify and validate actionable 

pathways. Indeed, our identification of multiple subtypes of PFB has profound implications 

for future targeted therapies, as any “PFB” specific therapies may be restricted to specific 

subtypes. This is especially important in the context of the observed subtype specific copy 

number aberrations which suggest that PFB tumors do not emerge from a single driving 

event. As of today, zero recurrent mutations have been found in PFB ependymoma and a 

clear driver for these tumors is still lacking [10]. By focusing on specific PFB subtypes and 

by making use of additional molecular data like large gene expression profiling and more 

comprehensive next-generation-sequencing enriching for each subtype, future studies may 

be able to elucidate the underlying events that ultimately lead to the development of these 

tumors [10].

Further delineating the biology and prognostic markers of PFB ependymoma will require 

extensive collaboration across adult and pediatric centres, as currently adult ependymoma is 

an often-neglected entity, with a paucity of frozen tissue available. However, future basic 

science and translational science efforts on PFB should account for the heterogeneity within 

PFB ependymoma in the development of more targeted therapeutics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Clustering of PFB reveals five distinct subtypes. A) t-SNE plot showing the relative 

distribution of the five subtypes. B) Heatmap obtained from spectral clustering (SpC) where 

by yellow represents more similar samples and red represents disparate ones. Color bars at 

the top indicate the t-SNE cluster at k=5 and the spectral clustering clusters (SpC) at k=5 C) 

t-SNE plot showing PFB clustered concomitantly with PF-SE and PFA. D) Heatmap 

representing the expression levels of the ten most differentially expressed genes per subtype. 
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Each column represents one sample, and each lane represents one gene. Gene expression 

levels are represented by a color scale as indicated.
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Figure 2: 
Clinical characteristics across PFB subtypes. A) Boxplot of age at diagnosis across PFB 

subtypes. B) Frequency of male and female gender within the five subtypes. P-values for age 

determined using the Kruskal Wallis test and frequency of gender using the Fisher Exact 

Test.
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Figure 3: 
Arm-level cytogenetic events across PFB subtypes. A) Frequency and significance of arm-

level gains and losses across the five PFB subtypes. Darker bars show significant arm level 

events (q-value≤ 0.1, chi-squared test). B) Frequency and significance of whole chromosome 

gain and losses across the five PFB subtypes. Darker bars show significant arm level events 

(q-value≤ 0.1, chi-squared test).
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Figure 4: 
Progression Free Survival stratified by A)1q gain and B)13q status. p-values determined 

using the log-rank test.
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Table 1:

Multivariable cox proportional hazards model of survival across PFB ependymoma

HR 95% CI p-value

Progression Free Survival

Age 0.98 0.96–1.01 0.24

Male Gender 0.70 0.33–1.48 0.35

Non-GTR 4.48 1.93–9.63 3.8 × 10−4

Upfront Radiation 0.36 0.15–0.85 0.020

Subtype

 PFB2 vs PFB1 0.78 0.25–2.27 0.62

 PFB3 vs PFB1 0.64 0.26–1.86 0.48

 PFB4 vs PFB1 0.56 0.13–2.12 0.37

 PFB5 vs PFB1 0.84 0.14–4.12 0.75

1q gain 2.73 1.01–7.37 0.046

13q loss 3.88 1.54–9.80 0.0041

GTR-Gross Total Resection
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