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ABSTRACT

Recently, the concept of radiomics has emerged from radiation oncology. It is a novel approach for solving the
issues of precision medicine and how it can be performed, based on multimodality medical images that are non-
invasive, fast and low in cost. Radiomics is the comprehensive analysis of massive numbers of medical images in
order to extract a large number of phenotypic features (radiomic biomarkers) reflecting cancer traits, and it
explores the associations between the features and patients’ prognoses in order to improve decision-making in
precision medicine. Individual patients can be stratified into subtypes based on radiomic biomarkers that contain
information about cancer traits that determine the patient’s prognosis. Machine-learning algorithms of AI are
boosting the powers of radiomics for prediction of prognoses or factors associated with treatment strategies,
such as survival time, recurrence, adverse events, and subtypes. Therefore, radiomic approaches, in combination
with AI, may potentially enable practical use of precision medicine in radiation therapy by predicting outcomes
and toxicity for individual patients.

Keywords: radiomics; artificial intelligence; precision medicine; radiation therapy; medical images; cancer traits

INTRODUCTION
Artificial intelligence (AI) is based on computational algorithms or
systems that can accurately perform high inference from a huge
amount of knowledge data [1]. AI was named by John McCarthy
et al. at a workshop at Dartmouth College in 1956, but the first and
second booms of AI did not instill it either into daily life or into
medicine. The current AI boom is the third wave since 2000.
Hinton’s group made a breakthrough that almost halved the error
rate for object recognition, using a convolutional neural network
(CNN) or deep learning (DL), which is an advanced machine-
learning technology [2], at the ImageNet Large Scale Visual
Recognition Competition 2012 [3]. This event promoted the rapid
adoption of DL by the computer vision community. DL architec-
tures are composed of a cascade of multiple (deep) layers of non-
linear processing units for learning datasets of input and output
images and for extracting image features [3]. Since DL has a greater

ability to recognize objects such as verbal and visual object patterns
than conventional methods have, the applications of DL have been
explored for segmentation of target regions in radiation therapy [4–7].

At around the same time as the third large wave of AI (after
2012), the idea of radiomics emerged from radiation oncology [8, 9]
in the form of a novel approach for solving the issues of precision
medicine, and how it can be performed based on multimodality
medical images in a non-invasive (without biopsy), fast (fast scan-
ning) and low-cost way (no additional examination cost). Radiomics
is a new word derived from a combination of ‘radio’, which means
radiological images (medical images in a broad sense), and ‘omics’
[10]. The omics are a number of fields of study (genomics, tran-
scriptomics, proteomics and metabolomics) that improve our under-
standing of tumor biology and clinical management of cancer by
comprehensively analyzing the massive amount of information
become available on the genome, transcriptome, proteome and
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metabolome [11]. Precision medicine is a treatment strategy for
making decisions about a molecularly targeted agent according to
genetic mutations, rather than affected organs. Radiomics is a field
that comprehensively analyzes massive numbers of medical images
in order to extract a large number of phenotypic features (radiomic
biomarkers) reflecting cancer traits, and explores the associations
between the features and patients’ prognoses to improve decision-
making in precision medicine [12]. Phenotypic features in medical
images, which are routinely acquired in clinical practice, can result
from the expression of the genotype (the organism’s genetic codes).
The medical images are thought to include the internal information
(e.g. anatomical, physiological and pathological information) in
patients’ specific regions. Radiomics is considered a ‘specialized AI’
for predicting patient prognoses based on medical images. This
review paper considers the following issues:

(1) Why is radiomics needed in precision medicine?
(2) The potential of radiomics for avoiding undesirable

complications caused by biopsy
(3) The overall procedure of radiomic analysis
(4) What radiomic features reflect
(5) What mathematical models of image features represent
(6) Stratification of individual patients into subtypes using

radiomic biomarkers
(7) Radiomcs with AI (machine learning)
(8) Perspectives of radiomics in radiation therapy.

WHY IS RADIOMICS NEEDED IN PRECISION
MEDICINE?

Figure 1 shows two computed tomography (CT) images showing
the characteristics of two different tumors of lung cancer patients

who received radiation therapy. They appear to differ in appearance
in terms of intensity distribution and contour shapes from our sub-
jective points of view, but they have similar histology and patient
age. In fact, the two cancer patients had quite different survival
times: 3.72 years for the homogeneous cancer (left) and 0.65 years
for the inhomogeneous cancer (right), i.e. the patient on the left
survived around five times as long as the one on the right. They
could belong to different subtypes, from histological and genetic
points of view. If the physician of the patient on the right could
have predicted the survival time or prognosis prior to the treatment,
different strategies might have been chosen. The idea that appropri-
ate treatment strategies are selected according to subtypes is called
‘precision medicine’ [12]. In precision medicine, the subtypes of
individual patients need to be identified; generally this is done using
‘wet’ biomarkers [13], i.e. biospecimen-derived biomarkers [14],
such as genomic information derived from a part of a tumor
obtained in a biopsy [12]. The Food and Drug Administration
(FDA) in the USA defines a biomarker as a defined characteristic
that is measured as an indicator of normal biological processes,
pathogenic processes, or responses to an exposure or intervention,
including therapeutic interventions [15]. Molecular, genomic, histo-
logic, medical imaging, and physiologic characteristics can be con-
sidered as examples of biomarkers [16–18]. We now need to
determine which biomarkers are more appropriate for the stratifica-
tion of patients into subtypes that have different prognoses.
Measurement of the biomarkers (other than medical imaging bio-
markers) could require invasive biopsy or sampling of biospecimens,
additional costs, and long examination tests. Furthermore, the bio-
marker information is limited if the biospecimens are taken from a
part of an entire tumor using a single biopsy, because Gerlinger
et al. [19] reported that gene-expression signatures of both good
and poor prognoses were detected in different locations of the same
tumor. Figure 2 describes gene-expression heterogeneity within one
tumor, and trait heterogeneity within one person. The imaginary
codes G1 to G3 and B1 to B3 represent gene-expression signatures
of good and poor prognoses within the one malignant tumor,
respectively, in Fig. 2a. A single biopsy of such a heterogeneous
tumor could create a misleading estimation of prognosis, based on
its genomic information. This situation is similar to that of trait

Fig. 1. Two computed tomography (CT) images with the
characteristics of two different tumors of lung cancer
patients who each received radiation therapy. SCC,
squamous cell carcinoma.

Fig. 2. A gene-expression heterogeneity in the same tumor,
and trait heterogeneity in the same person.
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heterogeneity in a person, as shown in Fig. 2b. If you liked a part of
your partner, e.g. the positive side (good-looking, friendly, smart)
(overestimation) before you lived together, you might be disap-
pointed with the negative side (lazy, weird habits, dishonest) after
you lived together.

The issues raised above are drawbacks of precision medicine.
Aerts et al. [9] showed the prognostic powers of image features
(statistical features and texture features) that have been derived
solely from medical (CT) images of lung cancer patients treated
with radiation therapy or radiochemotherapy, and the correlations
of the image features with gene mutations. Their approach, based
on medical images, could overcome the drawbacks of precision
medicine, because medical images, which are acquired in a non-
invasive, fast, and low-cost way, could obtain the entire information
about cancer traits, such as intratumor heterogeneity. The signatures
consisting of significant image features associated with patients’
prognoses can be considered ‘dry’ (imaging) biomarkers, and can
extensively characterize cancer traits. Many imaging biomarkers
based on radiomics have been explored by evaluating several end
points to indicate the feasibility of radiomics to estimate overall sur-
vival and disease-free survival in radiation therapy [20].

POTENTIAL OF RADIOMICS FOR AVOIDING
UNDESIRABLE COMPLICATIONS CAUSED BY

BIOPSY
Radiomics can be utilized to avoid undesirable complications caused
by biopsy. Regarding brain tumors, craniotomy biopsy or stereotac-
tic biopsy in brain tumors may cause some complications, such as
intracerebral haematoma and hemiparesis, depending on tumor
locations [21]. Some patients may refuse a needle biopsy to sample
tissues from a suspected lung tumor due to concerns about a
pneumothorax [22]. In these cases, physicians may decide the treat-
ment policies for patients by reference to the radiomics results with-
out the biopsy. The European Randomized study of Screening for
Prostate Cancer (ERSPC) reported that prostate-specific antigen
(PSA) screening decreased prostate cancer mortality, but that it
increased substantial unnecessary biopsies, which resulted in
undesirable complications such as fever, haematuria and haematos-
permia [23, 24]. In addition, according to Fukugai’s study [25],
when using the original biopsy tumor grade rendered by nine

different pathologists, the biopsy and prostatectomy results showed
weaker agreement. Therefore, the information from radiomics can
assist pathologists and radiologists by increasing the accuracy of
biopsies or reducing unnecessary biopsies.

OVERALL PROCEDURE FOR RADIOMIC
ANALYSIS

Figure 3 illustrates an overall procedure of radiomic analysis for dis-
covering prognostic signatures that can predict patients’ prognoses.
The prognostic signature is a vector including significant features as
elements. This procedure, shown in Fig. 3, is similar to what Aerts
et al. [9] employed. First, a database including a large number of
medical images [such as CT, magnetic resonance (MR) and posi-
tron emission tomography (PET) images for specific cancer patients
who have received the same treatment] is prepared according to the
requirements of radiomic analysis. Second, a large number of image
features (e.g. >400), including texture features, are extracted from
medical images after manual, semi- or automated segmentation.
Third, radiomic features are selected based on their stability
(demonstrated e.g. by test–retest [9]) as well as their contributions
to the prognoses (e.g. the Coxnet algorithm [26]). Fourth, the
patients are stratified into several subtypes of patients by using simple
thresholding methods or clustering methods [2, 10]. In general, the
threshold values are the medians of image features. Finally, the out-
comes of the patients are predicted by performing survival analyses,
in which significant features reflecting the prognoses are chosen as
signatures. If there are statistically significant differences between the
survival curves of two patient subtypes stratified by a radiomic feature,
as shown in Fig. 3, the two patient subtypes could have different
responses to a same-treatment approach. Therefore, the radiomic fea-
tures may be associated with patients’ survival times.

WHAT RADIOMIC FEATURES REFLECT
Figure 4 shows radiomic assumptions about associations between
prognoses and image features. Genotypes with mutations could
determine cancer traits that are associated with the prognoses of
patients. On the pathway on the right in Fig. 4, the genotypes are
believed to be encoded to the phenotypes expressed in medical
images through biological processes. The image features may thus
be derived by ‘decoding’ the phenotypes, i.e. medical images [9].

Fig. 3. An overall procedure of radiomic analysis for discovering prognostic signatures that can predict patients’ prognoses.
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‘Decoding’ medical images (phenotypes) refers to the computa-
tional extraction of image features from medical images using image
processing and analysis techniques. Therefore, encoding followed by
decoding means that the genotypes having associations with the
cancer prognoses might be expressed by the image features, which
are denoted as ‘radiomic features’. The image features could reflect
cancer traits and prognoses. Furthermore, the authors believe that
appropriate mathematical image features can model cancer hall-
marks, which include six traits, i.e. sustaining proliferative signaling,
evading growth suppressors, resisting cell death, enabling replicative
immortality, inducing angiogenesis, and activating invasion and metastasis
[27]. Possible associations between radiomic features and cancer hall-
marks are introduced in Section ‘STRATIFICATION OF INDIVIDUAL
PATIENTS INTO SUBTYPES USING RADIOMIC BIOMARKERS’.

WHAT MATHEMATICAL MODELS OF IMAGE
FEATURES REPRESENT

In general, the aim of image feature mathematical models is to char-
acterize objects (lesions or anatomical structures in radiomics) that
can be recognized in segmented regions, and whose image features
are similar to those of objects in the same category, but different or
as distinguishable as possible from those of objects in different cat-
egories [28]. Objective and quantitative image features would be
expected to characterize abnormal lesions or malignant tumors, pos-
sibly reflecting the cancer hallmarks in radiomics.

Currently, there are three major types of mathematical feature
models, i.e. shape, statistical, and texture features, that are utilized in
the radiomics field. Shape features are surface area, surface-area-to-
volume ratio, sphericity, spherical disproportion, compactness, and
so on [29]. Statistical features obtained from a gray-level histogram
represent overall heterogeneity without spatial information in terms
of the gray levels within a tumor. Texture features derived from a
gray-level co-occurrence matrix (GLCM) [30], gray-level run-length
matrix (GLRLM) [31], neighborhood gray-tone difference matrix
(NGTDM) [32] and gray-level size zone matrix (GLSZM) [33]
represent the local spatial inhomogeneity in terms of gray levels
within a tumor. The GLSZM features were employed for character-
izing the inhomogeneity of cell nuclei [33].

To obtain the multiresolutional image features, including statis-
tical and texture features, the wavelet transform has been applied
for multiresolutionally decomposing multiscale local intensity
variations (intratumor inhomogeneity) in an image into several

low- and high-frequency components [34]. The multiresolutional
decomposition was performed by using a ‘wavelet analysis filter
bank’ approach [35] based on a 2D or 3D fast discrete wavelet
transformation (fDWT) algorithm.

Figure 5 shows CT value histograms of homogeneous and
inhomogeneous tumors (Fig. 1) for calculating statistical features.
The homogeneous and inhomogeneous tumors have narrow and
broad CT value histograms, respectively. The broad histogram with
the wide range of CT values indicates tissue inhomogeneity. The
statistical features derived from the gray-level histograms are energy,
entropy, kurtosis, maximum, mean, mean absolute difference,
median, minimum, range, root mean square, skewness, standard
deviation, uniformity, and variance, etc. [36].

Figure 6 shows GLCMs of homogeneous and inhomogeneous
tumors (Fig. 1), which quantify the frequency of all possible combi-
nations of gray-scale values within neighboring voxels. The GLCMs
are used for characterization of local tumor inhomogeneity by calcu-
lating many features, e.g. autocorrelation, contrast, correlation, clus-
ter prominence, cluster shade, dissimilarity, energy, entropy,
homogeneity, maximum probability, sum of squares variance, sum
average, sum variance, sum entropy, difference variance, difference
entropy, etc. [36]. Glioblastoma (GBM) cases have been classified
by using GLCM, which characterized the GBM phenotypes [37].

STRATIFICATION OF INDIVIDUAL PATIENTS
INTO SUBTYPES USING RADIOMIC

BIOMARKERS
In precision medicine with radiomics, individual patients should be
stratified into subtypes using the radiomic biomarkers that contain
information on cancer traits (mutation, angiogenesis, metastasis,
immune escape) and determine patients’ prognoses (survival time,
recurrence, toxicity), according to the various treatment strategies.
Liu et al. [38] explored the association between CT-based image
features and epidermal growth factor receptor (EGFR) mutation
statuses with surgically resected peripheral lung adenocarcinomas.
The highest area under the curve (AUC) of 0.709 was achieved in
the prediction of the EGFR mutation using a logistic regression
model for the combination of clinical factors and image features.
The activation of EGFR mutations can be detected by use of image
features for the stratification of patients in terms of their responses
to tyrosine kinase inhibitors (TKIs) therapy for lung adenocarcin-
omas. Bak et al. [29] attempted to identify predictive imaging

Fig. 4. Radiomics assumptions about associations between prognoses and image features.
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biomarkers that supported genomic alterations and clinical out-
comes in patients with lung squamous cell carcinoma (SCC) using
a radiomics approach. Mutational profiles for core signaling path-
ways of lung SCC were stratified into five subtypes: redox stress,
apoptosis, proliferation, differentiation, and chromatin remodelers.
The range of the gray-level histogram and the right lung volume
were significantly associated with alternation of the apoptosis and
proliferation pathways, respectively (P < 0.05).

Wang et al. [39] demonstrated that image features (morpho-
logical, gray-level, and statistical texture measures) of breast tumors
and their surrounding parenchyma on dynamic contrast enhance-
ment (DCE)-MRI could distinguish triple-negative breast cancers
from other subtypes with higher accuracy (AUC of 0.878) than
when considering the characteristics of the tumor alone, because
triple-negative breast cancer would have responses to neither hor-
monal therapy nor anti-HER2 therapy. Ma et al. [40] investigated
whether image features extracted from digital mammography images

were associated with molecular subtypes of breast cancer. They
showed the AUCs of 0.865 for triple-negative vs non-triple-negative,
0.784 for HER2-enriched vs non-HER2-enriched, and 0.752 for
luminal vs non-luminal subtypes.

Yin et al. [41] sought to determine the associations between
angiogenesis in renal cell carcinoma and imaging features from
PET/MRI. Their study reported significant correlations between
radiomic features and tumor microvascular density (MVD) (angio-
genesis), and also demonstrated that spatiotemporal features
extracted from DCE-MRI had higher correlations with MVD than
the textural features extracted from Dixon sequences and 18F-fluoro-
2-deoxdeoxyglucose PET (18F-FDG PET). Furthermore, PET/
MRI, which took advantages of the combined metabolic and mor-
phological information (radiomic features), had higher correlation
with MVD than utilizing PET or MRI alone.

Yang et al. [42] developed and validated a radiomics-based
nomogram to predict lymph node metastasis (LNM) in solid lung

Fig. 5. CT value (Hounsfield Unit) histograms of the homogeneous and inhomogeneous tumors (Fig. 1) for calculating
statistical features.

Fig. 6. GLCMs of the homogeneous and inhomogeneous tumors (Fig. 1), which quantify the frequency of all possible
combinations of grayscale values within neighboring voxels.
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adenocarcinoma, because LNM of lung cancer was one of the sig-
nificant factors that were relevant to survival and recurrence. In a
validation cohort (n = 53), the AUC of the performance of LNM
differentiation was 0.856. Shen et al. [43] constructed a radiomic
nomogram for prediction of pre-operation LNM in esophageal can-
cer. The AUC was 0.771 in a validation cohort (n = 57).

Chen et al. [44] investigated the relationship between pro-
grammed cell death ligand 1 (PD-L1) expression and immunohisto-
chemical (IHC) biomarkers or textural features of 18F-FDG PET in
patients with head and neck cancer. The p16 (surrogate marker for
human papillomavirus (HPV) involvement) and Ki-67 (proliferative
marker) staining percentages detected using IHC and several 18F-
FDG PET/CT–derived textural features can provide supplemental
information to determine tumor PD-L1 expression. Subtypes with
tumors with a higher PD-L1 expression may benefit from check-
point inhibitors.

Cunliffe et al. [45] examined the correlation between the
radiologist-defined severity of normal tissue damage following radi-
ation therapy for lung cancer treatment and a set of CT-based tex-
ture features. Nineteen features that characterized the severity of
radiologic changes from pre-therapy scans were identified.
Furthermore, the same group assessed the relationship between
radiation dose and changes in a set of mathematical gray-level– and
texture-based features and the ability of image features to identify
patients who would develop radiation pneumonitis (RP) [46]. This
study demonstrated that radiomic features could discriminate
between patient subtypes with and without RP.

RADIOMCS WITH MACHINE LEARNING
A number of machine-learning algorithms [2] of AI technologies
have been applied in radiomics for prediction or estimation of what
will be associated with treatment strategies such as survival time,
recurrence, adverse events, and tumor subtypes [47]. The uses of
the machine learning, including feature selection methods, are com-
prehensive in many studies as described in this section, and the
most appropriate machine-learning algorithms and feature selection
methods are still unknown as we are yet to discover the combina-
tions of significant features with the most prognostic powers.

Leger et al. [48] carried out a comparative study using 12
machine-learning algorithms combined with 11 feature selection
methods, and the algorithm performances were assessed to predict
loco-regional tumor control and overall survival for patients with
head and neck squamous cell carcinoma in a multicenter cohort
(n = 213). They found several combinations of machine-learning
algorithms and feature selection methods that achieved similar
results, e.g. random forest using maximally selected rank statistics
had a concordance index of 0.71, and a Coxnet method with least
absolute shrinkage and selection operator (LASSO) and elastic-net
regularization based on boosting trees (BT) had a concordance
index of 0.70 in combination with Spearman feature selection.
Using the best performing models, patients were stratified into
groups of low and high risk of recurrence. Parmar et al. [49] investi-
gated 12 machine-learning approaches with 14 feature selection
methods for radiomics-based prediction of 2-year survival of lung
cancer patients treated with radical radiotherapy alone or with

chemoradiation therapy. They identified that a Wilcoxon test–based
feature selection method (stability = 0.84 ± 0.05, AUC = 0.65 ±
0.02) and a classification random forest method (relative standard
deviation = 3.52%, AUC = 0.66 ± 0.03) had the greatest prognostic
performances with relatively higher stability against data perturb-
ation. Abdollahi et al. [50] proposed a radiomic analysis approach
based on nine machine-learning tools and LASSO [2] for helping in
the prediction of hearing loss induced by chemoradiation (cisplatin)
therapy for head and neck cancer patients. The LASSO-penalized
logistic modeling produced 10 predictive features with the highest
performance, as indicated by an AUC of 0.885, for prediction of
hearing loss. Shiradkar et al. [51] attempted to identify a radiomic
signature derived from pretreatment biparametric MRI (bpMRI)
that was predictive of prostate cancer biochemical recurrence after
radical prostatectomy/radiotherapy/hormone therapy. The predic-
tion accuracy using a machine learning of support vector machines
(SVMs) with a feature selection of joint mutual information (JMI)
was 0.84 in AUC. Gabryś et al. [52] investigated whether the
machine-learning algorithms [2] (i.e. logistic regression with L1
penalty, logistic regression with L2 penalty, logistic regression with
elastic net penalty, k-nearest neighbors, SVM, extra-trees, and
gradient tree boosting) with dosiomic, radiomic, and demo-
graphic (age and sex) features allowed for xerostomia risk assess-
ment in intensity-modulated radiation therapy (IMRT) for head
and neck cancer (hypopharynx/larynx/nasopharynx/oropharynx/
other). SVMs and extra-trees were the better performing classi-
fiers compared with the others, whereas the algorithms based on
logistic regression were the more appropriate choice for feature
selection. Haga et al. [53] evaluated the potential application of
radiomics for predicting the histology of early-stage non-small-cell
lung cancer (NSCLC) patients, who underwent stereotactic body
radiotherapy, by analyzing interobserver variability in tumor delinea-
tion. The average AUC for stratification of adenocarcinoma and
squamous cell carcinoma subtypes was 0.725 using a naive Bayes
model of machine learning.

PERSPECTIVES OF RADIOMICS IN RADIATION
THERAPY

Radiomics was able to predict patients’ prognoses based on extensive
information about the tumors in a non-invasive, fast, and low-cost
way, by stratifying patients into several subtypes such as EGFR and
non-EGFR patients, using several imaging biomarkers. AI could be
the key to successful radiomics for discovering biomarkers and deter-
mining patient stratification. We need to develop mathematical
image-feature models of biomarkers to characterize cancer phenotypes
or hallmarks and to select appropriate paths [54] in decision-making at
each radiation treatment step (diagnosis, treatment planning, treatment
execution, and follow-up). AI, including machine learning, may boost
the prognostic powers of radiomics. Since many types of machine-
learning software are open-sourced and easy-to-use for radiation oncol-
ogy staff, this third boom in AI could be the practical phase of AI use in
radiation oncology. Radiomic approaches may have one practical appli-
cation in precision medicine by predicting outcomes and toxicity for
individual patients in radiation therapy.
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