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ABSTRACT

Volumetric-modulated arc therapy (VMAT) can be used to design hypofractionated radiotherapy treatment
plans for multiple brain metastases. The purpose of this study was to evaluate treatment outcomes of hypofrac-
tionated image-guided multifocal irradiation using VMAT (HFIGMI–VMAT) for brain metastases. From July
2012 to December 2016, 67 consecutive patients with 601 brain metastases were treated with HFIGMI–VMAT
at our institution. The prescribed dose was 50 Gy to a 95% volume of the planning target volume in 10 fractions.
Fifty-five of the 67 patients had non-small-cell lung cancer, and the remaining 12 had other types of cancer. The
median number of brain metastases was five, and the median maximum diameter was 1.2 cm. The median dur-
ation of follow-up was 12.0 months (range, 1.9–44.8 months), and the median survival time 18.7 months. Four
patients with six lesions had local recurrences. The local control rate in the 64 assessed patients was 98.4% and
95.3% at 6 and 12 months, respectively (three died before assessment). The local control rate for the 572
assessed lesions was 99.8% and 99.3% at 6 and 12 months, respectively. Thirty-nine patients developed distant
brain metastases, the distant brain control rate being 59.7% and 40.5% at 6 and 12 months, respectively. Acute
toxicities were generally mild (Grade 1–2). Three patients (4.5%) developed radiation necrosis requiring cortico-
steroid therapy. The HFIGMI–VMAT technique with flat dose delivery was well tolerated and achieved excel-
lent local control. This technique is a promising treatment option for patients with multiple and large brain
metastases.

Keywords: hypofractionated radiotherapy; volumetric-modulated arc therapy; brain metastases; linear
accelerator

INTRODUCTION
Brain metastases occur in 20–40% of patients with cancer [1], their
incidence having been increasing with developments in neuroima-
ging techniques and advances in systemic treatment regimens that
have improved survival and control of extracranial metastatic disease
[2–4]. As systemic control has improved, control of brain metasta-
ses has become more important. The prognosis of patients with
brain metastases is poor; the median duration of survival being 3–4
months [5].

The main treatment options for brain metastases are surgery,
stereotactic radiosurgery (SRS) and whole-brain radiotherapy
(WBRT) [6]. Although WBRT has traditionally been the mainstay
of treatment for multiple brain metastases, the dose administered by
WBRT is insufficient to achieve long-term tumor control, and the
subsequent prognosis is poor, median survival ranging from 3 to 7
months [7, 8]. SRS is a well-established means of treating brain
metastases. However, the indications for SRS are generally limited
by the number of lesions and tumor volumes [9, 10]. Volumetric-
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modulated arc therapy (VMAT) improves dose conformity and
decreases dose to the surrounding healthy tissue, allowing escalation
of the dose to the target volume [11, 12]. VMAT can deliver high-
dose radiation to multiple targets simultaneously and can thus be
used to design treatment plans for multiple brain metastases in a
single-fraction or fractionated manner [13].

Most published studies have investigated the use of VMAT as
WBRT with simultaneous integrated boost (SIB) or WBRT fol-
lowed by VMAT boost to metastatic lesions [14–17]. Several
groups have reported planning studies or clinical experience of
VMAT as single-fraction radiosurgery [18–20]; however, there are
few published studies that have addressed the clinical experience of
VMAT as hypofractionated radiotherapy [21]. In the present study,
we evaluated the efficacy and toxicity of hypofractionated image-
guided multifocal irradiation using VMAT (HFIGMI–VMAT) with
flat dose delivery and 3 mm planning target volume (PTV) margin
in patients with brain metastases.

MATERIALS AND METHODS
Patients

This retrospective study included 67 consecutive patients with brain
metastases (601 lesions) treated with HFIGMI–VMAT at our insti-
tution between July 2012 and December 2016. The eligibility cri-
teria were histological diagnosis of a primary solid tumor, single or
multiple brain metastases with a diameter of ≤3 cm, and total tumor
volume of ≤15 cm3, with no limit on the number of lesions.
Basically, in our institution HFIGMI–VMAT is recommended for
the treatment of brain metastases when there are four or more,
and/or the metastases are >1 cm in diameter. Patients who had had
previous radiation therapy were eligible, whereas those with small-
cell lung cancer or leptomeningeal metastases were excluded from
this study. Fifty-five of the 67 patients had non–small-cell lung can-
cer and the remaining twelve other types of cancer. The median
number of brain metastases per patient was five, and their median
maximum diameter was 1.2 cm. Twenty-four patients had previously
received cranial radiation treatment, nine of them having received
WBRT. The patient characteristics are summarized in Table 1. This
retrospective study was approved by the Institutional Review Board
of our institution (Approval No. 2401).

Treatment
All patients’ heads were immobilized with non-invasive thermoplas-
tic head masks before they underwent treatment with Novalis Tx
(Brainlab AG, Feldkirchen, Germany) or TrueBeam (Varian
Medical Systems, Palo Alto, CA, USA) with 6 MV X-rays. The dose
rate for these treatments was 600 MU/min. An ExacTrac patient
positioning system (Brainlab AG) was used as a first step in patient
positioning verification and correction with a 6D robotic couch,
after which cone-beam computed tomography (CBCT) was per-
formed for the first 3 days prior to treatment to reconfirm the target
position. CBCT was subsequently omitted if corrections on the
CBCT were not needed in the first 3 days. Diagnostic gadolinium-
enhanced T1-weighted MRI (1.4-mm slice thickness) and planning
CT images (2.5-mm slice thickness) were fused to delineate the tar-
gets and organ structure on iPlan software (Brainlab AG). The gross

tumor volume (GTV) was defined as the contrast-enhancing vol-
ume on CT and MRI images; the clinical target volume being iden-
tical to the GTV. The PTV was generated by adding a 3-mm
margin to the GTV. The contoured target and organ structures
were transferred to an Eclipse treatment-planning system (Varian
Medical Systems) for VMAT planning (RapidArc; Varian Medical
Systems). Single isocenter two-axial coplanar arcs of 360° were used
for VMAT treatment. The treatment beam-on time was ~3 min or
less in all cases.

The prescribed dose was 50 Gy to a 95% volume of the PTV
(D95) in 10 fractions with flat dose delivery (median D2% is
108.1%). The dose fractionation schedule was based on previously
reported doses of SRS, WBRT combined with SRS, and WBRT
with SIB for multiple brain metastases [10, 22, 23]. The biologically
effective dose (BED, α/β = 10 Gy) of 50 Gy in 10 fractions is close
to 23 Gy in one fraction SRS, 30 Gy in 10 fractions WBRT com-
bined with 15 Gy in one fraction SRS boost, or 50 Gy in 10 frac-
tions SIB. The prescribed dose was reduced by 10–20% for tumors
located in the brain stem and in patients who had previously
received WBRT. The dose constraints to the organs at risk were as
follows: brain stem <40 Gy, optic nerves and optic chiasm <35 Gy,
eyes <30 Gy, and lens <10 Gy. The dosimetric results are summar-
ized in Table 2.

Follow-up and statistical methods
After treatment, all patients were followed-up with 2–3-monthly
contrast-enhanced MRI scans and physician evaluation. Local recur-
rence was defined as a ≥20% enlargement in the size of treated
lesions on MRI. Distant failure was defined as identification of new
brain metastases. Neurological death was defined as progression of
brain metastases or uncertain cause of death. Treatment-related tox-
icity was evaluated according to the National Cancer Institute
Common Terminology Criteria for Adverse Events (CTCAE) v4.0
grading system. Local control and survival from the last date of
radiotherapy were calculated using the Kaplan–Meier method.
Comparisons of subgroups were performed using the log-rank test
for univariate analysis and the Cox proportional hazard model for
multivariate analysis. The following factors were analyzed for prog-
nostic significance in local control rate, distant brain control rate,
and overall survival: sex (male vs female), age (<65 years vs ≥65
years), Karnofsky Performance Status score (<70 vs ≥70), extracra-
nial metastases (absent vs present), primary tumor site (lung vs
others), number of brain lesions (≤four vs >four), total tumor vol-
ume (≤2 cm3 vs >2 cm3), previous WBRT (yes vs no), and tar-
geted therapy (yes vs no). Statistical analysis was performed using
EZR (Saitama Medical Center, Jichi Medical University, Saitama,
Japan) [24], and P < 0.05 was regarded as denoting statistical
significance.

RESULTS
Local control and survival

The median duration of follow-up was 12.0 months (range,
1.9–44.8 months). Three patients with a total of 29 lesions died
before the first follow-up MRI scan and were therefore excluded
from the local and distant control analysis. The median duration of
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imaging follow-up was 10.7 months (range, 0.6–43.2 months). Four
patients developed local recurrences. The local control rate for the
64 assessed patients was 98.4% and 95.3% at 6 and 12 months,
respectively (Fig. 1). According to univariate analysis, lung cancer,
no previous WBRT, and total tumor volume of ≤2 cm3 were asso-
ciated with better local control (P < 0.05). According to multivari-
ate analysis, there was no significant association in any subset. Six
lesions recurred locally; the local control rate for the 572 assessed
lesions was 99.8% and 99.3% at 6 and 12 months, respectively
(Fig. 2a). Figure 2b shows the local control rate according to tumor
diameter. The local control rates at 12 months were 100% for
tumors of diameter ≤2 cm and 83.3% for those of diameter >2 cm;
this difference is statistically significant (P < 0.0001).

Thirty-nine patients developed distant brain metastases. The
median time to distant brain failure was 8.9 months, the distant brain
control rate being 59.7% and 40.5% at 6 and 12 months, respectively
(Fig. 3). According to univariate and multivariate analyses, being
female and having few brain metastases (≤4) were significantly asso-
ciated with better distant brain control rates (P < 0.05).

Salvage treatment was administered to 32 patients, two of whom
had local disease only, two both local and distant, and the remaining
28 distant only. Three of the four patients with local recurrence
were retreated by surgical resection and the remaining one by
HFIGMI–VMAT. Thirty of the 39 patients who developed new
lesions were retreated with the following modalities: SRS in 6 cases,
repeat HFIGMI–VMAT in 14, SRS and HFIGMI–VMAT in 7, SRS
and WBRT in 1, and WBRT in 2. Thus, 27 of the 30 patients
(90%) who developed new lesions were retreated with focal therap-
ies (SRS and/or HFIGMI–VMAT).

Thirty-nine patients were dead and 28 alive at the time of ana-
lysis. The median survival time was 18.7 months and the overall sur-
vival (OS) rate at 12 months 63.7% (Fig. 4). Eleven patients (28%)
died of neurologic causes and 28 (72%) of systemic disease progres-
sion. According to univariate and multivariate analyses, being
female, few brain metastases (≤4), absence of extracranial metasta-
ses, and use of targeted therapy were associated with significantly
better OS (P < 0.05).

Toxicity
All patients completed the planned radiation therapy. The median
treatment duration was 14 days (range, 10–17 days). Acute toxicities

Table 1. Patient characteristics

Characteristics Data

Sex (n)

Male 36

Female 31

Age (years)

Median 68

Range 12–88

KPS score (n)

<70 15

≥70 52

Extracranial metastases (n)

Absent 23

Present 44

Primary tumor (n)

Lung 55

Breast 5

Other 7

Number of BM (n)

Median 5

Range 1–73

Maximum diameter of BM (cm)

Median 1.2

Range 0.4–3.0

Number and maximum diameter of BM (n)

≥4 and >1 cm 29

≥4 and ≤1 cm 18

<4 and >1 cm 16

<4 and ≤1 cm 4

Total volume of BM (cm3)

Median 1.0

Range 0.1–14.1

Previous radiotherapy (n)

WBRT 6

SRS 15

Continued

Table 1. Continued

Characteristics Data

WBRT+SRS 3

No previous radiotherapy 43

Targeted therapy (n)

No 37

Yes 30

KPS = Karnofsky performance status, BM = brain metastases, WBRT = whole
brain radiation therapy, SRS = stereotactic radiosurgery.
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were generally mild (Grade 1–2). One patient developed seizures
requiring anticonvulsant therapy (Grade 2), two motor weakness
requiring corticosteroid therapy (Grade 2), one dizziness requiring
corticosteroid therapy (Grade 2), and four headaches, one of whom
required corticosteroid therapy (Grade 2). Overall, acute Grade 2
toxicities occurred in five patients (7.5%). Late radiation necrosis
occurred in ten patients (14.9%), three (4.5%) of whom required
corticosteroid therapy (Grade 2). No Grade 3 or higher toxicities
occurred.

DISCUSSION
In the present study, we evaluated the treatment outcomes of
HFIGMI–VMAT for brain metastases. The treatment procedure

and dose fractionation were well tolerated and achieved excellent
local control. Being a linear accelerator (linac)-based radiotherapy
requiring only non-invasive head masks, HFIGMI–VMAT can be
delivered easily in clinics as an alternative to gamma knife (GK)-
SRS.

HFIGMI–VMAT has the radiobiological advantage of fraction-
ation, whereas GK-SRS is administered in one to three fractions
[25, 26]. Radiosurgical doses ranging from 15 to 24 Gy according to
tumor diameters have been widely administered as a single treat-
ment [9, 27]; however, tumor size correlates strongly with local
tumor control. Vogelbaum et al. reported the following results for
GK-SRS treatment using the RTOG 90–05 dosing scheme: 1-year
local control rate 85% for 20 mm or smaller (24 Gy), 49% for
21–30 mm (18 Gy), and 45% for 31–40 mm (15 Gy) tumors. Local
control rates were significantly lower for tumors >2 cm than for
those that were ≤2 cm [28]. Chang et al. reported that, after linac-
based SRS treatment, the 1-year local control rate was higher for
≤1 cm tumor diameter than for >1 cm (86% vs 56%) [29].
Hypofractionated radiotherapy is employed to maintain local tumor
control while minimizing the risk of toxicity to normal tissues [30];
notably, more fractions can be administered with HFIGMI–VMAT
than with GK or linac-based SRS. We acknowledge that the applic-
ability of a linear–quadratic (LQ) model for high doses per fraction
is controversial [31–33]; however, we used this model to calculate
the BED because it is simple and utilitarian. We selected the pre-
scribed dose of 50 Gy to achieve high local control rate for large
tumors and assumed that the prescribed dose of 50 Gy in 10 frac-
tions would provide a similar BED to 23 Gy in one fraction SRS or
30 Gy in 10 fractions WBRT combined with 15 Gy in one fraction
SRS boost for tumor control, while providing a lower BED for nor-
mal tissue toxicity. In this study, we achieved an excellent local con-
trol rate at 1 year, especially for ≤2 cm tumors (100%). The median
total volume and maximum diameter of brain metastases were
1.0 cm3 and 1.2 cm, and the majority of lesions were small, which
may have contributed to the high local control rate; however, we
achieved high local control rates even in tumors >2 cm (83.3%).
Additionally, the number of lesions had no significant influence on
local control. This study did not include tumors that were >3 cm
and therefore did not assess safety and efficacy of this treatment for
such large tumors; however, an additional possible indication for
HFIGMI–VMAT is such large tumors. Additional stereotactic
approaches (use of non-coplanar arcs and/or smaller PTV margins)
may be needed to expand the indications for treating tumors
>3 cm; further studies are needed to assess this potential indication.

Because the treatment time of linac-based SRS increases in par-
allel with the number of brain metastases, most studies of linac-
based SRS or stereotactic radiotherapy have reported results in
patients with five or fewer brain metastases [30, 34–36]. Use of sin-
gle isocenter VMAT techniques enables significantly shorter treat-
ment times in patients with multiple brain metastases. In the
current study, the treatment time was ~3 min or less of treatment
beam-on time in all cases, which is much shorter than for SRS or
intensity-modulated radiation therapy treatment [37]. Our results
show that the HFIGMI–VMAT technique enables treatment of
multiple brain metastases without the limits on number of lesions
associated with treatment with linac systems.

Table 2. Details of dosimetry

Min Max Median

PTV (% of prescription dose)

D2% 104.4 135.2 108.1

D98% 86.0 99.3 98.8

D50% 101.7 128.0 104.5

GTV (% of prescription dose)

D50% 101.8 133.8 105.9

Normal brain (Gy)

Dmean 1.0 32.9 10.4

Brain stem (Gy)

D2% 0.1 45.0 20.2

Dmean 0.0 28.7 8.7

Optic nerve (Gy)

D2% 0.1 33.6 7.2

Dmean 0.1 25.1 4.8

Optic chiasm (Gy)

D2% 0.1 34.7 9.4

Dmean 0.1 31.1 6.5

Eye (Gy)

D2% 0.0 23.2 6.0

Dmean 0.0 12.4 3.2

Lens (Gy)

D2% 0.0 10.2 3.6

Dmean 0.0 9.2 2.6

D2% = dose to 2% of the volume, D98% = dose to 98% of the volume, D50% =
dose to 50% of the volume, Dmean = mean dose of the volume.
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The risk of developing new brain metastases increases in parallel
with the number of brain metastases present at diagnosis [38, 39].
WBRT has traditionally been the standard treatment for multiple brain
metastases; however, the resultant acute toxicities may delay initiation
of systemic therapy, and this therapy is associated with an increased
risk of late neurocognitive decline [9, 40]. SRS may carry a lower risk
of neurocognitive decline; however, whether SRS is indicated in
patients with more than four brain metastases is controversial [9].
Several studies have reported the effectiveness of SRS treatment for
multiple brain metastases: Yamamoto et al. reported the results of a
multi-institutional trial in which patients with 1–10 brain metastases
were treated with SRS using GK. The OS did not differ between the
2–4 and 5–10 metastases groups [27]. In a retrospective study in
which patients with 5–15 brain metastases were treated with GK,
Salvetti et al. found that the number of lesions did not affect the OS
[41]. In the current study, the median number of brain metastases was
5. Although approximately half the patients had developed new brain
metastases by 9 months, 30 of the 39 patients who developed new
lesions were safely retreated with salvage radiotherapies, and 27 of 30
patients (90%) were retreated with focal therapies (SRS and/or
VMAT), enabling deferral of WBRT. The number of lesions was sig-
nificantly associated with OS in our series; however, the median sur-
vival time was 28.1 months in patients with ≤4 metastases and
14.7 months in patients with >4 metastases. These results are favorable
compared with those of previous studies of patients with multiple brain
metastases treated with WBRT or SRS [7, 37]. The favorable survival
may be attributable to recent advances in molecular targeted drugs and
improvement in intracranial control with radiation therapy. Several
studies have reported that the total tumor volume significantly impacts
overall survival [42–44]. The small size of the tumors in the current
cohort of patients (median of 1.0 cm3 for five metastases) may also
have contributed to the favorable survival outcomes.

Acute toxicities of the treatment were generally mild (Grade
1–2), and all patients completed the planned radiation therapy.
Delayed radiation necrosis was identified in 10 patients (14.9%), 3

of whom (4.5%) were symptomatic (Grade 2). No Grade 3 or high-
er toxicities occurred; the incidence of radiation necrosis was similar
to that reported for SRS [6]. In addition, this treatment was well
tolerated by all 9 patients who had previously received WBRT, sug-
gesting the potential role of this treatment as salvage therapy after
prior WBRT. In this study, we selected a 3 mm PTV margin to
allow for positional deviation arising from set-up and mechanical
and imaging errors in the setting of a single isocenter VMAT
approach for multiple lesions; however, most previous studies of
SRS have used smaller margins (0–2 mm). Kirkpatrick et al.
reported that radiation necrosis occurred more frequently in the
3 mm than in the 1 mm PTV margin group, whereas local recur-
rence rate did not differ significantly between these groups [45].
Use of a smaller PTV margin may further decrease the incidence of
radiation necrosis associated with HFIGMI–VMAT treatment.

Fig. 1. Local control achieved in the 64 assessed patients.

Fig. 2. (a) Local control of 572 treated lesions. (b) Local
control according to tumor diameter.
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Nichol et al. reported the results of a multi-institutional trial in
which patients with 1–10 brain metastases were treated with volu-
metric radiosurgery concurrently with WBRT. The incidence of
severe radiation necrosis (Grade 3–5) was 10% [14]. Although the
eligibility criteria (diameter ≤3 cm and total tumor volume
≤15 cm3) and prescribed dose (47.5 Gy in five fractions to metasta-
ses) were similar to those of our study, the number of fractions dif-
fered, and resultant differences in fraction size and flatness of dose
delivery likely affected the incidence of radiation necrosis. A longer
treatment duration is a disadvantage of our treatment schedule;
however, 10 fractions are safer and more feasible for the prescribed
dose of 50 Gy to minimize toxicity.

Neurocognitive decline is one of the most concerning late toxici-
ties of cranial radiation. Chang et al. reported the addition of
WBRT to SRS significantly increases neurocognitive decline [46].
In contrast, Aoyama et al. demonstrated that progression of brain
tumor has a greater impact on neurocognitive decline than WBRT
[47]. In the present study, half the patients had developed new
brain metastases by 9 months, most of whom were retreated safely
with focal therapies without WBRT. We did not assess neurocogni-
tive function and therefore could not draw any conclusions about
preservation of neurocognitive function with HFIGMI–VMAT
treatment; further studies focusing on neurocognitive function are
needed.

The limitations of this study are that it was a small single-
institution retrospective analysis with heterogeneous participants.
However, our results show that HFIGMI–VMAT has the potential
to treat multiple and large brain metastases. Further prospective
studies are needed to confirm these findings.

In conclusion, HFIGMI–VMAT with flat dose distribution and a
relatively larger PTV margin has the advantages of patient comfort,
fractionated treatment regimens, and short treatment time, even in
patients with multiple brain metastases. It achieves an excellent rate
of local control and the toxicities are tolerable. Thus, this technique
is a promising treatment alternative to GK-SRS in patients with
multiple and large brain metastases attending clinics with linac
systems.
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