

Japanese structure survey of radiation oncology in 2010

Hodaka Numasaki^{1,*}, Teruki Teshima², Tetsuo Nishimura³, Keizo Akuta⁴, Yutaka Ando⁵, Hiroshi Ikeda⁶, Norihiko Kamikonya⁷, Masahiko Koizumi⁸, Tomonari Sasaki⁹, Kenji Sekiguchi¹⁰, Masao Tago¹¹, Atsuro Terahara¹², Katsumasa Nakamura¹³, Masamichi Nishio¹⁴, Masao Murakami¹⁵, Yoshimasa Mori¹⁶, Kazuhiko Ogawa¹⁷, and the Japanese Society for Radiation Oncology Database Committee

¹Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita-shi, Osaka 565-0871, Japan ²Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka-shi, Osaka, 541-8567, Japan ³Division of Radiation Oncology, Shizuoka Cancer Center Hospital, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan ⁴Department of Radiology, Japanese Red Cross Otsu Hospital, 1-1-35 Nagara, Otsu-shi, Siga, 520-0000, Japan

⁵Department of Radiation Oncology, Saitama Medical Center, 4-9-3 Kitaurawa, Urawa-ku, Saitama-shi, Saitama, 330-0074, Japan

⁶Department of Radiation Oncology, Sakai City Medical Center, 1-1-1 Ebaraji-cho, Nishi-ku, Sakai-shi, Osaka, 593-8304, Japan

⁷Department of Radiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya-shi, Hyogo, 663-8501, Japan

⁸Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan

⁹Division of Medical Quantum Science, Department of Health Sciences, Kyushu University Faculty of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka, 812-8582, Japan

¹⁰Sonoda-kai Radiation Oncology Clinic, 3-4-19 Hokima, Adachi-ku, Tokyo, 121-0064, Japan

¹¹Department of Radiology, Teikyo University Mizonokuchi Hospital, 5-1-1 Futako, Takatsu, Kawasaki-shi, Kanagawa, 213-8507, Japan

¹²Department of Radiology, Toho University Omori Medical Center, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan

¹³Department of Radiation Oncology, Hamamatsu University Hospital, 1-20-1 Handayama, Higashi-ku, Hamamatsu-shi, Shizuoka, 431-3192, Japan

¹⁴Hokkaido Cancer Center, 2-3-54 Kikusui 4jyo, Shiraishi-ku, Sapporo-shi, Hokkaido, 003-0804, Japan

¹⁵Southern TOHOKU Proton Therapy Center, 172-7 Yatsuyamada, Koriyama-shi, Fukushima, 963-8563, Japan

¹⁶Department of Radiology and Radiation Oncology, Aichi Medical University, 1-1 Yazakokarimata, Nagakute-shi, Aichi, 480-1195, Japan

¹⁷Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan

*Corresponding author. Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita-shi, Osaka 565-0871, Japan. Tel/Fax: +81-66-879-2575; Email: numasaki@sahs.med.osaka-u.ac.jp

(Received 16 April 2018; editorial decision 24 April 2018)

ABSTRACT

We evaluated the evolving structure of radiation oncology in Japan in terms of equipment, personnel, patient load, and geographic distribution to identify and overcome any existing limitations. From March 2011 to June 2013, the Japanese Society for Radiation Oncology conducted a questionnaire based on the Japanese national structure survey of radiation oncology in 2010. Data were analyzed based on the institutional stratification by the annual number of new patients treated with radiotherapy per institution. The estimated annual numbers of new and total (new plus repeat) patients treated with radiation were 211 000 and 251 000, respectively. Additionally, the estimated cancer incidence was 805 236 cases, with ~26.2% of all newly diagnosed patients being treated with radiation. The types and numbers of treatment devices actually used included linear accelerator (LINAC; n = 829), telecobalt (n = 9), Gamma Knife (n = 46), ⁶⁰Co remote afterloading system (RALS; n = 28), and ¹⁹²Ir RALS (n = 131). The LINAC system used dual-energy functions in 586 units, threedimensional conformal radiotherapy functions in 663, and intensity-modulated radiotherapy (IMRT) functions in 337. There were 564 JASTRO-certified radiation oncologists, 959.2 full-time equivalent (FTE) radiation oncologists, 1841.3 FTE radiotherapy technologists, 131.3 FTE medical physicists, 121.5 FTE radiotherapy quality managers, and 649.6 FTE nurses. The frequency of IMRT use significantly increased during this year. To conclude, although there was a shortage of personnel in 2010, the Japanese structure of radiation oncology has clearly improved in terms of equipment and utility. **Keywords:** structure survey; radiotherapy institution; radiotherapy personnel; radiotherapy equipment

•

[©] The Author(s) 2018. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/ by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial reuse, please contact journals.permissions@oup.com

PREFACE

We greatly appreciate the substantial contributions of the many radiation oncologists (ROs), radiation technologists, and other staff to the national structure survey of radiation oncology. Despite some delays, the updated Japanese national structure survey data for radiation oncology in 2010 is now available.

Since 1991, the Japanese Society for Radiation Oncology (JASTRO) has conducted national structure surveys every 2 years [1–24]. From March 2011 to June 2013, the Japanese Society for Radiation Oncology conducted a questionnaire based on the Japanese national structure survey of radiation oncology in 2010, which included the number of treatment systems by type, number of personnel by category, and number of patients by type, site, and treatment modality. To measure variables over a longer time period, data for the year 2010 were also considered. In total, 705 of 780 active institutions attempted the survey; the response rate was 90.4%.

The current report analyzes these institutional structure data (equipment, personnel, patient load, and geographic distribution) based on institutional stratification according to the annual number of new patients treated with radiotherapy at each institution. The clinical working hours of each staff member performing radiotherapy were derived from full-time equivalent (FTE; 40 h per week for radiation oncology work only) data. The Japanese Blue Book Guidelines (JBBG) [25, 26] were used for comparison with the results of this study. These guidelines pertain to the structure of radiation oncology in Japan based on the Patterns of Care Study (PCS) [27, 28] data. The standard guidelines were set at 250-300 (warning level, 400) for annual patient load per external beam machine, at 200 (warning level, 300) for annual patient load per FTE RO, and at 120 (warning level, 200) for annual patient load per FTE radiotherapy technologist. Furthermore, we analyzed data from the designated cancer care hospitals accredited by the Ministry of Health, Labor, and Welfare. As at 1 August 2013, Japan had 397 designated cancer care hospitals [29]. Twenty-three institutions did not return the survey; therefore, the structure data for 374 designated cancer care hospitals were analyzed and compared with the data for all radiotherapy hospitals. The analysis was conducted in two groups: institutions with <1.0 FTE RO and those with \geq 1.0 FTE RO.

Here, preliminary results have been presented as tables and figures (Tables 1-18 and Figs 1-6). We have briefly summarized the Japanese national structure survey of radiation oncology for 2010. In total, 780 radiotherapy institutions were surveyed, and the estimated number of new patients was ~211 000; the estimated total number of patients (new plus repeat) was 251 000. In 2010, based on Japanese cancer registries, the cancer incidence was estimated at 805 236 cases [30], with ~26.2% (211 000 of 805 236) of all newly diagnosed patients being treated with radiation. Overall, 829 linear accelerators (LINACs), 9 telecobalt units, 46 Gamma Knife, 28 ⁶⁰Co remote afterloading systems (RALS) and 131 ¹⁹²Ir RALS were actually used. The LINAC system used dual-energy functions in 586 units, three-dimensional conformal radiotherapy functions in 663, and intensity-modulated radiotherapy (IMRT) functions in 337. There were 564 JASTRO-certified ROs, 959.2 FTE ROs, 1841.3 FTE radiotherapy technologists, 131.3 FTE medical physicists, 121.5 FTE radiotherapy quality managers, and 649.6 FTE nurses. Approximately 50.0% of all radiotherapy institutions had >200 new radiotherapy patients per year, whereas 31.6% of the institutions had >300. Additionally, 47.5% of all radiotherapy institutions had <1.0 FTE ROs. We expect that this updated national structure survey of radiation oncology for 2010 will aid the continuous improvement of all aspects of radiation oncology in Japan.

CONFLICT OF INTEREST

The authors state that there are no conflicts of interest.

FUNDING

This study was supported by the JASTRO and Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science [JSPS KAKENHI Grant No. JP16K45678].

Table 1. Categories of radiotherapy institution

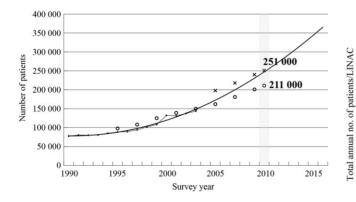
Institution category

U: university hospital

- G: cancer center (including national cancer center)
- N: national hospital organization (excluding national cancer center)
- P: public hospital (excluding national cancer center), red cross hospital, saiseikai hospital, company hospital, public corporation hospital, national health insurance hospital
- O: social insurance hospital, mutual insurance hospital, industrial accident hospital, association hospital, Japan agricultural cooperatives hospital
- H: medical corporation hospital, medical association hospital, private hospital, other hospitals

Scale category (annual number of new patients)	Institution category							Institution ratio [%]	
	U	G	Ν	Р	0	Н			
A (1–99)	5	2	14	44	35	23	123	17.6	
B (100–199)	11	1	27	80	70	38	227	32.4	
C (200–299)	14	3	12	41	36	23	129	18.4	
D (300–399)	14	5	7	20	25	15	86	12.3	
E (400–499)	16	1	1	10	8	9	45	6.4	
F (500–)	51	17	2	7	5	13	95	13.6	
Total	111	29	63	202	179	121	705	100.0	
Institution ratio [%]	15.7	4.1	8.9	28.7	25.4	17.2	100.0		

Table 2. Number of radiotherapy institutions by scale classification and institution category


Table 3. Annual number of new patients by scale classification and institution category

Scale category (number of institutions)	Institution	a category (n	Total (705)	Average				
	U (111)	G (29)	N (63)	P (202)	O (179)	H (121)		
A (123)	162	101	750	2677	2498	1475	7663	62.3
B (227)	1573	106	4138	12 067	10 050	5693	33 627	148.1
C (129)	3601	831	2734	10 009	8679	5527	31 381	243.3
D (86)	4774	1656	2318	6700	8521	5012	28 981	337.0
E (45)	7134	476	433	4266	3377	4114	19 800	440.0
F (95)	36 908	14 665	1290	4054	3245	8708	68 870	724.9
Total (705)	54 152	17 835	11 663	39 773	36 370	30 529	190 322	270.0
Average	492.3	615.0	185.1	196.9	203.2	252.3	270.0	

Table 4. Annual number of total (new plus repeat) patients by scale classification and institution category

Scale category (number of institutions)	Institution	n category (n	Total (705)	Average				
	U (111)	G (29)	N (63)	P (202)	O (179)	H (121)		
A (123)	178	110	949	3042	2871	1747	8897	72.3
B (227)	1713	147	4809	13 784	11 366	7188	39 007	171.8
C (129)	4288	1096	3111	12 118	9991	6408	37 012	286.9
D (86)	5496	2050	2588	7853	10 327	6443	34 757	404.2
E (45)	8498	583	490	5188	4214	5293	24 266	539.2
F (95)	44 624	17 686	1678	4653	3609	10 662	82 912	872.8
Total (705)	64 797	21 672	13 625	46 638	42 378	37 741	226 851	321.8
Average	583.8	747.3	216.3	230.9	236.7	311.9	321.8	

Treatment devices and their functions	Scale cate		Total (705)					
	A (123)	B (227)	C (129)	D (86)	E (45)	F (95)		
LINAC	117	213	132	101	69	197	829	
with dual-energy function	63	149	105	83	54	152	606	
with 3DCRT function (MLC width ≤ 1.0 cm)	83	167	109	93	65	184	701	
with IMRT function	17	51	54	66	40	147	375	
with cone-beam CT or CT on rail	15	42	37	41	33	71	239	
with treatment position verification system (X-ray perspective image)	14	42	44	39	33	74	246	
with treatment position verification system (other than those above)	19	49	30	31	17	68	214	
Annual no. patients/LINAC	76.0	183.1	280.4	344.1	351.7	420.9	273.6	
CyberKnife*	3	5	1	2	2	4	17	
Novalis*	1	2	4	5	4	9	25	
Tomotherapy®	3	2	1	4	2	3	15	
Particle	0	0	0	0	0	7	7	
Microtoron	0	5	1	0	2	5	13	
Telecobalt (actual use)	3 (3)	4 (3)	1 (0)	2 (1)	0 (0)	2 (2)	12 (9)	
Gamma knife®	3	11	10	7	6	9	46	
Other accelerator	0	0	3	1	0	3	7	
Other external irradiation device	0	1	2	0	0	4	7	
New type ⁶⁰ Co RALS (in actual use)	0 (0)	3 (3)	4 (3)	3 (3)	2 (2)	6 (6)	18 (17)	
Old type ⁶⁰ Co RALS (in actual use)	2 (0)	7 (2)	4 (3)	4 (3)	3 (2)	1 (1)	19 (11)	
¹⁹² Ir RALS (in actual use)	0(1)	8 (6)	21 (18)	20 (20)	17 (17)	70 (70)	136 (131)	
¹³⁷ Cs RALS (in actual use)	0 (0)	0 (0)	0 (0)	1 (1)	0 (0)	0 (0)	1 (1)	

1100 1000 -2010 (n = 668)900 2009 (*n* = 663) 800 700 600 Blue Book 500 Guidelines 400 300 Standard level 200 100 0 Q1 Q2 Q3 Q4 Institutions

Fig. 1. Estimate of increase in demand for radiotherapy in Japan, based on statistical correction of annual change in the number of new patients per year at Patterns of Care Study survey facilities [25]. Crosses and circles denote the estimated numbers of total (new plus repeat) and new patients, respectively, from the results in the structure surveys by the JASTRO.

Fig. 2. Distribution of annual total (new plus repeat) patient load per LINAC in radiotherapy institutions. Horizontal axis represents institutions arranged in order of increasing total annual number of patients per LINAC within the institution. Q1: 0-25%, Q2: 26-50%, Q3: 51-75%, Q4: 76-100%.

Table 6. Numbers of treatment-planning equipment and acces	sories by scale classification
--	--------------------------------

Treatment-planning equipment and accessories	Scale categ	Total (705)					
	A (123)	B (227)	C (129)	D (86)	E (45)	F (95)	
X-ray simulator	58	105	54	40	21	70	348
CT simulator	91	189	117	86	46	104	633
RTP computer (2 or more)	128 (13)	262 (34)	192 (38)	192 (46)	144 (29)	463 (86)	1 381 (246)
X-ray CT (2 or more)	219 (79)	491 (172)	357 (113)	275 (80)	172 (44)	456 (89)	1 970 (577)
for RT only	40	105	84	66	35	95	425
MRI (2 or more)	153 (34)	321 (89)	227 (87)	173 (69)	107 (41)	271 (80)	1 252 (400)
for RT only	1	2	6	3	1	3	16
Computer use for RT recording	96	186	109	76	40	86	593
Water phantom (2 or more)	119 (17)	236 (41)	165 (41)	111 (29)	65 (17)	174 (44)	870 (189)
Film densitometer (2 or more)	38 (1)	89 (1)	63 (2)	63 (4)	34 (2)	98 (14)	385 (24)
Dosimeter (3 or more)	311 (56)	690 (130)	482 (80)	358 (59)	203 (33)	564 (78)	2 608 (436)

The numbers in parentheses indicate the number of institutions. CT = computed tomography, RTP = radiotherapy planning, MRI = magnetic resonance imaging, RT = radiotherapy.

Table 7. Numbers of personnel and annual patients by scale classification

	Scale categ	Scale category (number of institutions)						
	A (123)	B (227)	C (129)	D (86)	E (45)	F (95)		
Scale (annual no. of new patients)	≤99	100–199	200–299	300-399	400–499	500≤		
Institution ratio [%]	17.4%	32.2%	18.3%	12.2%	6.4%	13.5%	100%	
New patients	7663	33 627	31 381	28 981	19 800	68 870	190 322	
New patients/institution	62.3	148.1	243.3	337.0	440.0	724.9	270.0	
Total patients	8897	39 007	37 012	34 757	24 266	82 912	226 851	
Total patients/institution	72.3	171.8	286.9	404.2	539.2	872.8	321.8	
Beds	39 816	94 885	61 173	48 128	29 179	71 577	344 758	
Institutions with RT beds (%)	18 (14.6)	45 (19.8)	38 (29.5)	40 (46.5)	21 (46.7)	68 (71.6)	230 (32.6)	
RT beds	85.0	183.0	204.0	259.5	191.0	982.4	1 904.9	
RT beds/total beds [%]	0.2%	0.2%	0.3%	0.5%	0.7%	1.4%	0.6%	
RT beds/institution	0.7	0.8	1.6	3.0	4.2	10.3	2.7	
RT beds/institution with RT beds	4.7	4.1	5.4	6.5	9.1	14.4	8.3	
JRS-certified institutions (%)	13 (10.6)	40 (17.6)	57 (44.2)	55 (64)	36 (80)	79 (83.2)	280 (39.7)	
JRS-cooperation institutions (%)	28 (22.8)	94 (41.4)	33 (25.6)	21 (24.4)	8 (17.8)	10 (10.5)	194 (27.5)	
JASTRO-certified institutions (%)	2 (1.6)	37 (16.3)	60 (46.5)	57 (66.3)	35 (77.8)	84 (88.4)	275 (39)	

Table 7. Continued

	Scale categ	ory (number o	of institutions))			Total (705)
	A (123)	B (227)	C (129)	D (86)	E (45)	F (95)	
JRS membership (full-time)	69	167	139	136	103	441	1 055
JRS-certified ROs (full-time)	57	149	125	122	79	335	867
JASTRO membership (full-time)	37	127	131	120	95	440	950
JASTRO-certified ROs (full-time)	13	67	82	82	56	264	564
Institutions with full-time RO (%)	56 (45.5)	147 (64.8)	109 (84.5)	83 (96.5)	44 (97.8)	93 (97.9)	532 (75.5)
ROs (full-time)	85	180	150	146	110	452	1 123
ROs (full-time)/institution	0.7	0.8	1.2	1.7	2.4	4.8	1.6
FTE RO (full-time)	34.3	121.1	120.6	117.5	85.7	373.0	852.1
FTE RO (full-time)/institution	0.28	0.53	0.93	1.37	1.90	3.93	1.21
ROs (part-time)	107	179	93	45	35	120	579
ROs (part-time)/institution	0.87	0.79	0.72	0.52	0.78	1.26	0.82
FTE RO (part-time)	16.6	30.0	16.5	7.6	7.4	29.1	107.1
FTE RO (part-time)/institution	0.1	0.1	0.1	0.1	0.2	0.3	0.2
FTE RO (full-time plus parttime)	50.9	151.1	137.0	125.1	93.1	402.1	959.2
FTE RO (full-time plus part-time)/institution	0.41	0.67	1.06	1.45	2.07	4.23	1.36
Radiologists (full-time)	174.9	381.5	377.4	298.0	299.0	865.0	2 395.8
Radiologists (parttime)	132.7	380.4	203.7	117.2	76.0	184.0	1 094.0
RTTs (full-time) ^a	346	754	479	387	229	703	2 898
FTE RTT	155.7	416.8	282.5	253.9	175.2	557.2	1 841.3
Medical physicists (full-time) ^a	22	69	64	54	36	113	358
FTE medical physicist	6.5	21.4	21.2	21.5	12.5	48.3	131.3
RT quality manager (full-time) ^a	29	105	87	62	49	117	449
FTE RT quality manager	6.7	23.5	25.8	16.3	13.5	35.8	121.5
Dosimetrists (full-time) ^a	12	17	20	18	14	51	132
FTE dosimetrist	2.2	3.4	4.1	3.6	2.7	9.5	25.4
Craftworkers (full-time) ^a	35	63	32	26	12	52	220
FTE craftworker	6.8	11.6	6.3	5.0	1.4	5.7	36.7
Nurses (full-time)	100	282	220	156	125	269	1 152
FTE nurses	44.76	132.3	114.5	86.1	59.4	212.5	649.6
Nursing assistants	5.2	11.2	6.35	9.6	12.4	20.3	65.1
Clerks	29.85	54.3	53.55	59.4	39.5	121.75	358.4

^aOverlap is included in the total number of each staff (radiotherapy technologist, medical physicist, and radiotherapy quality manager). RT = radiotherapy, JRS = Japan Radiological Society, RO = radiation oncologist, JASTRO = Japanese Society for Radiation Oncology, FTE = full-time equivalent, RTT = radiotherapy technologist.

Table 8. Population size and numbers of patients, institutions, and patient load according to prefecture
--

Prefecture	Population ($\times 10^3$)	Institutions	New patients	New patients/institution	Total patients	Total patients/institution
Hokkaido	5 506	30	9 520	317.3	12 200	406.7
Aomori	1 373	9	2 049	227.7	2 281	253.4
Iwate	1 330	8	1 684	210.5	1 868	233.5
Miyagi	2 348	11	4 123	374.8	5 758	523.5
Akita	1 086	10	1 787	178.7	2 167	216.7
Yamagata	1 169	6	1 308	218.0	1 570	261.7
Fukushima	2 029	10	3 071	307.1	3 524	352.4
Ibaraki	2 970	15	3 638	242.5	4 444	296.3
Tochigi	2 008	8	2 751	343.9	3 534	441.8
Gunma	2 008	13	3 769	289.9	4 271	328.5
Saitama	7 195	20	7 070	353.5	8 990	449.5
Chiba	6 216	23	7 398	321.7	9 034	392.8
Tokyo	13 159	67	23 116	345.0	27 951	417.2
Kanagawa	9 048	39	12 597	323.0	14 331	367.5
Niigata	2 374	15	3 930	262.0	4 410	294.0
Toyama	1 093	8	1 542	192.8	1 761	220.1
Ishikawa	1 170	7	1 994	284.9	2 386	340.9
Fukui	806	6	1 250	208.3	1 487	247.8
Yamanashi	863	4	1 140	285.0	1 338	334.5
Nagano	2 152	15	3 331	222.1	3 940	262.7
Gifu	2 081	12	3 245	270.4	4 244	353.7
Shizuoka	3 765	23	6 019	261.7	7 569	329.1
Aichi	7 411	37	10 113	273.3	12 088	326.7
Mie	1 855	12	1 853	154.4	2 1 1 6	176.3
Shiga	1 411	10	1 832	183.2	2 238	223.8
Kyoto	2 636	13	4 0 3 2	310.2	4 710	362.3
Osaka	8 865	51	13 528	265.3	15 835	310.5
Hyogo	5 588	32	8 096	253.0	9 294	290.4
Nara	1 401	8	2 200	275.0	2 499	312.4
Wakayama	1 002	10	1 717	171.7	2 063	206.3
Tottori	589	7	968	138.3	1 149	164.1
Shimane	717	5	986	197.2	1 099	219.8
Okayama	1 945	11	2 772	252.0	3 271	297.4

Table	8.	Continued
1 avic	υ.	Commucu

Prefecture	Population (×10 ³)	Institutions	New patients	New patients/institution	Total patients	Total patients/institution
Hiroshima	2 861	20	5 128	256.4	6 220	311.0
Yamaguchi	1 451	14	1 991	142.2	2 247	160.5
Tokushima	785	5	1 436	287.2	1 664	332.8
Kagawa	996	6	1 194	199.0	1 266	211.0
Ehime	1 431	11	2 277	207.0	2 631	239.2
Kochi	764	6	1 220	203.3	1 379	229.8
Fukuoka	5 072	26	8 585	330.2	9 903	380.9
Saga	850	4	901	225.3	1 017	254.3
Nagasaki	1 427	8	2 343	292.9	2 726	340.8
Kumamoto	1 817	13	3 209	246.8	3 717	285.9
Oita	1 197	11	1 616	146.9	1 913	173.9
Miyazaki	1 135	7	1 520	217.1	1 832	261.7
Kagoshima	1 706	12	2 671	222.6	2 888	240.7
Okinawa	1 393	7	1 802	257.4	2 028	289.7
Total	128 057	705	190 322	270.0	226 851	321.8

Table 9. Population size and numbers of	f patients, radiation oncologists,	s, and patient load according to prefecture
---	------------------------------------	---

Prefecture	Population $(\times 10^3)$	Total patients	JASTRO-certified RO	FTE RO	Total patients/FTE RO
Hokkaido	5 506	12 200	32	51.1	238.7
Aomori	1 373	2 281	7	9.0	253.4
Iwate	1 330	1 868	5	8.0	233.5
Miyagi	2 348	5 758	11	17.9	321.7
Akita	1 086	2 167	2	8.4	258.0
Yamagata	1 169	1 570	5	8.6	182.6
Fukushima	2 029	3 524	5	14.8	238.1
Ibaraki	2 970	4 444	8	15.1	294.3
Tochigi	2 008	3 534	8	14.8	238.8
Gunma	2 008	4 271	21	29.9	142.8
Saitama	7 195	8 990	18	27.0	333.0
Chiba	6 216	9 034	29	48.6	185.8
Tokyo	13 159	27 951	76	119.0	235.0
Kanagawa	9 048	14 331	35	53.0	270.4
Niigata	2 374	4 410	8	16.6	265.7

Table 9. Continued

Prefecture	Population ($\times 10^3$)	Total patients	JASTRO-certified RO	FTE RO	Total patients/FTE RO
Toyama	1 093	1 761	5	7.0	251.6
Ishikawa	1 170	2 386	4	6.7	356.1
Fukui	806	1 487	5	8.2	181.3
Yamanashi	863	1 338	6	7.3	183.3
Nagano	2 152	3 940	6	11.2	353.4
Gifu	2 081	4 244	5	9.1	466.4
Shizuoka	3 765	7 569	18	26.4	286.7
Aichi	7 411	12 088	21	49.8	242.7
Mie	1 855	2 116	4	9.8	215.9
Shiga	1 411	2 238	7	11.0	203.5
Kyoto	2 636	4 710	18	26.3	179.1
Osaka	8 865	15 835	44	77.2	205.2
Hyogo	5 588	9 294	27	43.7	212.9
Nara	1 401	2 499	8	12.4	201.5
Wakayama	1 002	2 063	4	10.0	206.3
Tottori	589	1 149	1	4.3	267.2
Shimane	717	1 099	6	8.3	132.4
Okayama	1 945	3 271	8	17.9	182.7
Hiroshima	2 861	6 220	21	26.2	237.9
Yamaguchi	1 451	2 247	4	10.8	208.1
Tokushima	785	1 664	4	8.2	202.9
Kagawa	996	1 266	3	6.5	194.8
Ehime	1 431	2 631	8	13.3	197.8
Kochi	764	1 379	4	3.9	353.6
Fukuoka	5 072	9 903	24	41.8	236.9
Saga	850	1 017	3	4.8	211.9
Nagasaki	1 427	2 726	4	8.1	336.5
Kumamoto	1 817	3 717	5	15.4	241.4
Oita	1 197	1 913	3	9.6	199.3
Miyazaki	1 135	1 832	4	6.2	295.5
Kagoshima	1 706	2 888	5	10.7	269.9
Okinawa	1 393	2 028	5	5.5	368.7
Total	128 054	226 851	564	959.2	236.5

 $JASTRO = Japanese \ Society \ for \ Radiation \ Oncology, \ RO = radiation \ oncologist, \ FTE = full-time \ equivalent.$

Table 10. Population size and numbers of patients	s, staffs, and patient load according to prefecture
---	---

Prefecture	Total patients	FTE RTT	Total patients/FTE RTT	FTE MP	FTE RTQM
Hokkaido	12 200	72.3	168.7	6.8	7.1
Aomori	2 281	22.1	103.2	2.6	1.6
Iwate	1 868	18.7	99.9	0.1	0.4
Miyagi	5 758	31.5	182.8	0.1	1.8
Akita	2 167	19.9	108.9	0.5	1.3
Yamagata	1 570	13.2	118.9	0.9	1.4
Fukushima	3 524	30.8	114.4	2.9	1.3
Ibaraki	4 444	42.2	105.3	1.1	1.5
Tochigi	3 534	25.9	136.4	1.6	3.1
Gunma	4 271	38.9	109.8	3.5	3.0
Saitama	8 990	50.3	178.7	2.2	4.2
Chiba	9 034	74.2	121.8	4.4	3.0
Tokyo	27 951	228.4	122.4	14.3	9.0
Kanagawa	14 331	125.3	114.4	6.9	8.3
Niigata	4 410	47.7	92.5	2.1	0.7
Toyama	1 761	21.8	80.8	0.8	1.4
Ishikawa	2 386	19.2	124.3	2.9	1.8
Fukui	1 487	15.7	94.7	1.6	0.9
Yamanashi	1 338	7.0	191.1	0.1	0.6
Nagano	3 940	31.1	126.7	2.2	1.6
Gifu	4 244	27.2	156.0	2.1	1.7
Shizuoka	7 569	71.4	106.0	5.5	4.2
Aichi	12 088	100.3	120.5	6.2	4.6
Mie	2 116	25.0	84.6	1.0	1.4
Shiga	2 238	24.3	92.1	2.1	2.0
Kyoto	4710	33.3	141.4	5.7	4.7
Osaka	15 835	141.7	111.8	19.7	13.5
Hyogo	9 294	82.2	113.1	6.1	4.7
Nara	2 499	22.9	109.1	0.9	2.2
Wakayama	2 063	17.2	119.9	0.0	0.4
Tottori	1 149	12.3	93.4	0.3	2.1
Shimane	1 099	11.9	92.4	0.3	1.3
Okayama	3 271	30.4	107.6	1.7	2.9

Prefecture	Total patients	FTE RTT	Total patients/FTE RTT	FTE MP	FTE RTQM
Hiroshima	6 220	43.9	141.7	2.6	3.0
Yamaguchi	2 247	22.0	102.1	0.8	1.6
Tokushima	1 664	12.3	135.3	0.0	2.0
Kagawa	1 266	10.6	119.4	0.8	0.2
Ehime	2 631	21.2	124.1	2.6	2.3
Kochi	1 379	10.0	137.9	1.6	0.7
Fukuoka	9 903	67.1	147.6	4.2	5.1
Saga	1 017	7.6	133.8	0.0	0.5
Nagasaki	2 726	15.6	174.7	2.6	1.5
Kumamoto	3 717	28.0	132.8	2.5	2.4
Oita	1 913	21.1	90.7	1.9	1.3
Miyazaki	1 832	14.4	127.2	1.1	0.9
Kagoshima	2 888	20.1	143.7	1.0	0.0
Okinawa	2 028	11.1	182.7	0.6	0.4
Total	226 851	1841.3	123.2	131.3	121.5

FTE = full-time equivalent, RTT = radiotherapy technologist, MP = medical physicist, RTQM = radiotherapy quality manager, NS = nurse.

Specific therapy	2010							2009
	A (123)	B (227)	C (129)	D (86)	E (45)	F (95)	Total (705)	Total (700)
Intracavitary radiotherapy								
Treatment institutions	0	10	23	25	21	73	152	151
Patients	0	107	335	393	329	2 081	3 245	3 1 3 9
Interstitial radiotherapy								
Treatment institutions	1	8	17	18	12	59	115	109
Patients	41	66	319	550	305	2913	4 194	4 070
Radioactive iodine therapy f	for prostate							
Treatment institutions	1	4	16	17	11	52	101	96
Patients	41	44	312	485	215	2 018	3 1 1 5	3 080
Radioactive iodine therapy f	for hyperthyrc	oidism						
Treatment institutions	0	5	11	7	11	25	59	97
Patients	0	62	427	100	377	1 1 1 4	2 080	4 478

TT 1 1 1 1 1 1 C		1 11 1	1 1 1 1 1
Table 11. Numbers of institutions and	patients receiving specia	il radiotherapy by	v scale classification

Table 11. Continue	d
--------------------	---

Specific therapy	2010							2009
	A (123)	B (227)	C (129)	D (86)	E (45)	F (95)	Total (705)	Total (700
Total body radiotherapy								
Treatment institutions	9	20	25	31	28	73	186	180
Patients	57	148	254	171	294	1 013	1 937	1 790
Intraoperative radiotherapy								
Treatment institutions	1	1	2	5	5	10	24	28
Patients	2	1	5	18	25	110	161	173
Stereotactic brain radiothera	ару							
Treatment institutions	12	40	37	42	28	52	211	202
Patients	511	2 364	2 108	2 629	2 214	3 974	13 800	13 855
Stereotactic body radiothera	ару							
Treatment institutions	5	29	35	45	22	67	203	165
Patients	120	205	482	603	307	1 819	3 536	2 537
IMRT								
Treatment institutions	4	13	17	25	14	63	136	101
Patients	165	503	780	1 049	646	3 2 1 3	6 356	4 296
Thermoradiotherapy								
Treatment institutions	1	2	7	2	3	5	20	20
Patients	9	6	38	11	184	111	359	391
Sr-90 radiotherapy for ptery	<i>r</i> gia							
Treatment institutions	0	0	2	2	0	1	5	11
Patients	0	0	8	14	0	11	33	90
Internal ⁸⁹ Sr radiotherapy								
Treatment institutions	4	25	22	29	15	47	142	
Patients	12	111	80	172	83	335	793	
Internal Y-90 radiotherapy								
Treatment institutions	1	3	1	4	4	20	33	
Patients	1	8	3	11	8	122	153	

 $\mathrm{IMRT}=\mathrm{intensity}\text{-}\mathrm{modulated}$ radiotherapy, $\mathrm{Sr}=\mathrm{strontium},\,\mathrm{Y}=\mathrm{yttrium}.$

Table 12. Annual numbers of new patients by disease site ^a

Primary site	n	%
Cerebrospinal	8 065	4.4
Head and neck (including thyroid)	17 513	9.6
Esophagus	10 207	5.6
Lung, trachea and mediastinum	35 149	19.3
Lung	32 540	17.8
Breast	43 315	23.7
Liver, biliary tract, pancreas	6 835	3.7
Gastric, small intestine, colorectal	8 741	4.8
Gynecologic	8 563	4.7
Urogenital	25 832	14.2
Prostate	20 303	11.1
Hematopoietic and lymphatic	8 587	4.7
Skin, bone and soft tissue	4 601	2.5
Other (malignant)	2 377	1.3
Benign tumors	2 706	1.5
Pediatric ≤15 years (included in totals above)	858	0.5
Total	182 491	100

^aThe total numbers of new patients in Table 3 differ from these data, because no data on primary sites were reported by some institutions.

Table 13. Annual number of total patients (new plus repeat) treated for brain metastasis and bone metastasis by scale classification

Metastasis	Scale category (number of institutions)											Total (705)			
	A (123	A (123) H		B (227)		C (129)		D (86)		E (45)		F (95)			
	n	%	n	%	n	%	n	%	n	%	n	%	n	%	
Brain	761	8.6	4 504	11.5	3 345	9.0	3 622	10.4	2 317	9.5	7 216	8.7	21 765	9.6	
Bone	1 414	15.9	5 847	15.0	5 059	13.7	4 812	13.8	2 629	10.8	9 235	11.1	28 996	12.8	

Data presented as number of patients, with percentages in parentheses.

Institution category	Description	Institutions
RH-A	All radio therapy hospitals (FTE RO ≥ 1.0)	374
RH-B	All radiotherapy hospitals (FTE RO < 1.0)	331
Total		705
DCCH-A	Designated cancer care hospitals (FTE RO ≥ 1.0)	260
DCCH-B	Designated cancer care hospitals (FTE RO < 1.0)	114
Total		374

Table 14. Classification of institutions by number of FTE radiation oncologists in all radiotherapy institutions and designated cancer care hospitals

FTE = full-time equivalent, RO = radiation oncologist.

	RH-A (374)		RH-B (331)		Total (705)	
	Average per hospital	Total number	Average per hospital	Total number	Average per hospital	Total number
Total patients	456.5	170 739	169.5	56 112	321.8	226 851
New patients	379.4	141 879	146.4	48 443	270.0	190 322
LINACs	1.4	514	1.0	315	1.2	829
Annual total no. of patients / LINAC	332.2		178.1		273.6	
Annual no. of new patients / LINAC	276.0		153.8		229.6	
FTE ROs	2.2	819.0	0.4	140.2	1.4	959.2
JASTRO-certified ROs (full time)	1.3	503	0.2	61	0.8	564
Annual total no. of patients / FTE RO	208.5		400.3		236.5	
Annual no. of new patients / FTE RO	173.2		345.6		198.4	
FTE RT technologists	3.5	1297.1	1.6	544.2	2.6	1841.3
Annual total no. of patients / FTE RTT	131.6		103.1		123.2	
Annual no. of new patients / FTE RTT	109.4		89.0		103.4	
FTE RT technologists / LINAC	2.5		1.7		2.2	
FTE medical physicists	0.28	103.9	0.08	27.5	0.19	131.3
Annual total no. of patients / FTE MP	1644.1		2044.2		1727.7	
Annual no. of new patients / FTE MP	1366.2		1764.8		1449.5	
FTE RT quality managers	0.24	90.0	0.10	31.5	0.17	121.5
Annual total no. of patients / FTE RTQM	1897.1		1781.3		1,867.1	
Annual no. of new patients / FTE RTQM	1576.4		1537.9		1566.4	
FTE RT quality managers / LINAC	0.18		0.10		0.15	

Table 15. Annual numbers of patients receiving radiotherapy, numbers of LINACs, numbers of staff, patient load per LINAC, and patient load per member of staff according to institution category shown in Table 14; all radiotherapy hospitals

	DCCH-A (260)	DCCH-B (114	.)	Total (374)		
	Average per hospital	Total number	Average per hospital	Total number	Average per hospital	Total number	
Total patients	529.8	137 744	203.8	23 234	430.4	160 978	
New patients	440.8	114 609	178.0	20 295	360.7	134 904	
LINACs	1.5	401	1.0	117	1.4	518	
Annual total no. of patients / Linac	343.5		198.6		310.8		
Annual no. of new patients / Linac	285.8		173.5		260.4		
FTE ROs	2.5	637.5	0.5	62.4	1.9	699.9	
JASTRO-certified ROs (full time)	1.6	426	0.2	28	1.2	454	
Annual total no. of patients / FTE RO	216.1		372.6		230.0		
Annual no. of new patients / FTE RO	179.8		325.5		192.8		
FTE RT technologists	3.9	1013.1	1.9	219.9	3.3	1233.0	
Annual total no. of patients / FTE RTT	136.0		105.7		130.6		
Annual no. of new patients / FTE RTT	113.1		92.3		109.4		
FTE RT technologists / LINAC	2.5		1.9		2.4		
FTE medical physicists	0.31	80.9	0.05	5.6	0.23	86.5	
Annual total no. of patients / FTE MP	1702.6		4186.3		1862.1		
Annual no. of new patients / FTE MP	1416.7		3656.8		1560.5		
FTE RT quality managers	0.27	70.9	0.11	12.6	0.22	83.5	
Annual total no. of patients / FTE RTQM	1944.2		1844.0		1929.0		
Annual no. of new patients / FTE RTQM	1617.6		1610.7		1616.6		
FTE RT quality managers / LINAC	0.18		0.11		0.16		

Table 16. Annual numbers of patients receiving radiotherapy, numbers of LINACs, numbers of staff, patient load per LINAC, and patient load per member of staff according to institution category shown in Table 14; designated cancer care hospitals

LINAC = linear accelerator, FTE = full-time equivalent, RO = radiation oncologist, RTT = radiotherapy technologist, MP = medical physicist, RTQM = radiotherapy quality manager.

	RH-A $(n = 374)$		RH-B $(n = 331)$		Total $(n = 705)$	
	п	%	n	%	п	%
LINAC	514	95.7	315	93.7	829	94.8
with dual-energy function	397	82.6	209	62.5	606	73.2
with 3DCRT function (MLC width ≤ 1.0 cm)	475	89.3	226	68	701	79.3
with IMRT function	310	57.8	65	19.6	375	39.9
with cone-beam CT or CT on rail	190	41.4	49	14.8	239	28.9
with treatment position verification system (X-ray perspective image)	192	39	54	15.7	246	28.1
with treatment-position verification system (other than those above)	148	32.6	66	19.9	214	26.7
CT simulator	365	90.4	268	76.1	633	83.7

	DCCH-A $(n = 260)$		DCCH-B ($n = 114$)		Total ($n = 374$)	
	n	%	n	%	n	%
LINAC	401	98.8	117	99.1	518	98.9
with dual-energy function	318	90.4	94	80.7	412	87.4
with 3DCRT function (MLC width ≤ 1.0 cm)	379	94.6	91	78.9	470	89.8
with IMRT function	261	66.9	34	29.8	295	55.6
with cone-beam CT or CT on rail	158	48.1	24	21.1	182	39.8
with treatment-position verification system (X-ray perspective image)	154	43.5	23	19.3	177	36.1
with treatment-position verification system (other than those above)	117	36.2	29	25.4	146	32.9
CT simulator	264	94.2	104	83.3	368	90.9

LINAC = linear accelerator, 3DCRT = three dimensional conformal radiotherapy, MLC = multileaf collimator, IMRT = intensity-modulated radiotherapy, CT = computed tomography.

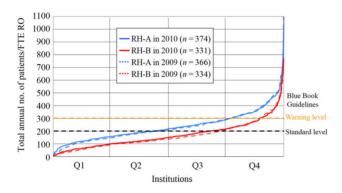


Fig. 3. Distribution of annual total (new plus repeat) patient load per full-time equivalent (FTE) radiation oncologist (RO) in all radiotherapy institutions. Horizontal axis represents institutions arranged in order of increasing total annual number of patients per FTE rRO within the institution. Q1: 0-25%, Q2: 26–50%, Q3: 51–75%, Q4: 76–100%.

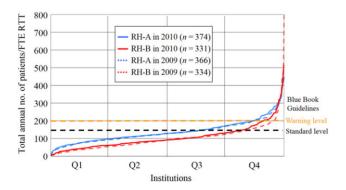


Fig. 4. Distribution of annual total (new plus repeat) patient load per full-time equivalent (FTE) radiotherapy technologist (RTT) in all radiotherapy institutions. Horizontal axis represents institutions arranged in order of increasing total annual number of patients per FTE RTT within the institution. Q1: 0–25%, Q2: 26–50%, Q3: 51–75%, Q4: 76–100%.

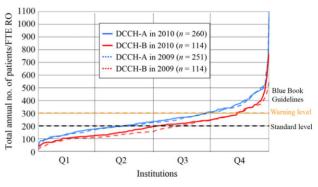


Fig. 5. Distribution of annual total (new plus repeat) patient load per full-time equivalent (FTE) radiation oncologist (RO) in designated cancer care hospitals. Horizontal axis represents institutions arranged in order of increasing value of total annual number of patients per FTE RO within the institution. Q1: 0-25%, Q2: 26-50%, Q3: 51-75%, Q4: 76-100%.

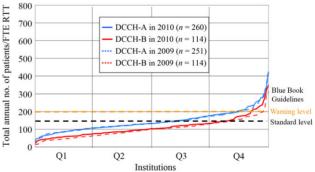


Fig. 6. Distribution of annual total (new plus repeat) patient load per full-time equivalent (FTE) radiotherapy technologist (RTT) in designated cancer care hospitals. Horizontal axis represents institutions arranged in order of increasing total annual number of patients per FTE RTT within the institution. Q1: 0–25%, Q2: 26–50%, Q3: 51–75%, Q4: 76–100%.

2007	2009	2010
721	700	705
94.2%	90.9%	90.4%
170 229	182 390	190 322
205 087	217 829	226 851
236	261	270

1 0 8 5

1 836

1 2 7 1

1 1 2 3

1 841

1 381

Table 18. Numbers of radiotherapy institutions and treatment devices	s, and patient load and personnel trend 1990–2010
--	---

84 379

78.6%

107 150

86.3%

118 016

85.3%

100%

149 793

1 5 5 5

156 318

191 173

1 0 0 3

1 6 3 5

1 007

1 634

1 070

96.9%

71 696

73.9%

Survey year

62 829

48.5%

Institution

New patients

Total patients

LINAC

Telecobalt

192Ir RALS

Full-time ROs

FTE ROs

Response rate

Average no. of new patients

Treatment device (in actual use)

Full-time JASTRO-certified ROs

Treatment-planning equipment

FTE RT technologists

X-ray simulators

CT simulators

RTP computers

88.3%

LINAC = linear accelerator, Ir = iridium, RO = radiation oncologist, FTE = full-time equivalent, JASTRO = Japanese Society for Radiation Oncology, RT = radiotherapy, JRS = Japanese Society for Radiation Oncology, RT = radiotherapy, JRS = Japanese Society for Radiation Oncology, RT = radiotherapy, JRS = Japanese Society for Radiation Oncology, RT = radiotherapy, JRS = Japanese Society for Radiation Oncology, RT = radiotherapy, JRS = Japanese Society for Radiation Oncology, RT = radiotherapy, JRS = Japanese Society for Radiation Oncology, RT = radiotherapy, JRS = Japanese Society for Radiation Oncology, RT = radiotherapy, JRS = Japanese Society for Radiation Oncology, RT = radiotherapy, JRS = Japanese Society for Radiation Oncology, RT = radiotherapy, JRS = Japanese Society for Radiation Oncology, RT = radiotherapy, JRS = Japanese Society for Radiation Oncology, RT = radiotherapy, JRS = Japanese Society for Radiation Oncology, RT = radiotherapy, JRS = Japanese Society for Radiation Oncology, RT = radiotherapy, JRS = Japanese Society for Radiation Oncology, RT = radiotherapy, JRS = Japanese Society for Radiation Oncology, RT = radiotherapy, JRS = Japanese Society for Radiation Oncology, RT = radiotherapy, JRS = Japanese Society for Radiation Oncology, RT = radiotherapy, JRS = Japanese Society for Radiation Oncology, RT = radiotherapy, JRS = Japanese Society for Radiation Oncology, RT = radiotherapy, JRS = Japanese Society for Radiation Oncology, RT = radiotherapy, JRS = Japanese Society for Radiation Oncology, RT = radiotherapy, JRS = Japanese Society for Radiation Oncology, RT = radiation Oncolog	in Radiological Society,
ASTRO = Japanese Society for Radiation Oncology, $CT = computed$ tomography, $RTP = radiotherapy planning$.	

REFERENCES

- Tsunemoto H. Present status of Japanese radiation oncology: national survey of structure in 1990 [in Japanese]. J Jpn Soc Ther Radiol Oncol (Special Report) 1992;1–30.
- 2. Sato S, Nakamura Y, Kawashima K et al. Present status of radiotherapy in Japan—a census in 1990—finding on radiotherapy facilities [in Japanese with an English abstract]. J Jpn Soc Ther Radiol Oncol 1994;6:83–9.
- 3. Morita K, Uchiyama Y. Present status of radiotherapy in Japan—the second census in 1993 [in Japanese with an English abstract]. J Jpn Soc Ther Radiol Oncol 1995;7:251–61.
- JASTRO Database Committee. Present status of radiotherapy in Japan—the regular census in 1995 [in Japanese with an English abstract]. J Jpn Soc Ther Radiol Oncol 1997;9:231–53.
- JASTRO Database Committee. Present status of radiotherapy in Japan—the regular census in 1997 [in Japanese with an English abstract]. J Jpn Soc Ther Radiol Oncol 2001;13:175–82.
- JASTRO Database Committee. Present status of radiotherapy in Japan—the regular structure survey in 1999 [in Japanese with an English abstract]. J Jpn Soc Ther Radiol Oncol 2001;13: 227–35.
- JASTRO Database Committee. Present status of radiotherapy in Japan—the regular structure survey in 2001 [in Japanese with an English abstract]. J Jpn Soc Ther Radiol Oncol 2003;15:51–9.
- 8. JASTRO Database Committee. Present status of radiotherapy in Japan—the regular structure survey in 2003 [in Japanese with an English abstract]. J Jpn Soc Ther Radiol Oncol 2005;17: 115–21.
- Shibuya H, Tsujii H. The structural characteristics of radiation oncology in Japan in 2003. *Int J Radiat Oncol Biol Phys* 2005; 62:1472-6.
- Teshima T, Numasaki H, Shibuya H et al. Japanese structure survey of radiation oncology in 2005 (first report) [in Japanese with an English abstract]. J Jpn Soc Ther Radiol Oncol 2007;19:181–92.
- Teshima T, Numasaki H, Shibuya H et al. Japanese structure survey of radiation oncology in 2005 (second report) [in Japanese with an English abstract]. *J Jpn Soc Ther Radiol Oncol* 2007;19:193–205.
- Teshima T, Numasaki H, Shibuya H et al. Japanese structure survey of radiation oncology in 2005 based on institutional stratification of patterns of care study. *Int J Radiat Oncol Biol Phys* 2008;72:144–52.
- 13. Numasaki H, Teshima T, Shibuya H et al. National structure of radiation oncology in Japan with special reference to designated cancer care hospital. *Int J Clin Oncol* 2009;14:237–44.
- Teshima T, Numasaki H, Shibuya H et al. Japanese structure survey of radiation oncology in 2007 (first report) [in Japanese with an English abstract]. J Jpn Soc Ther Radiol Oncol 2009;21: 113–25.
- Teshima T, Numasaki H, Shibuya H et al. Japanese structure survey of radiation oncology in 2007 (second report) [in Japanese with an English abstract]. J Jpn Soc Ther Radiol Oncol 2009;21:126–38.
- 16. Teshima T, Numasaki H, Shibuya H et al. Japanese structure survey of radiation oncology in 2007 based on institutional

stratification of patterns of care study. *Int J Radiat Oncol Biol Phys* 2010;72:144–52.

- Numasaki H, Teshima T, Shibuya H et al. Japanese structure survey of radiation oncology in 2007 with special reference to designated cancer care hospitals. *Strahlenther Onkol* 2011;187: 167–74.
- Numasaki H, Shibuya H, Nishio M et al. National medical care system may impede fostering of true specialization of radiation oncologists: study based on structure survey in Japan. *Int J Radiat Oncol Biol Phys* 2012;82:e111–7.
- Teshima T, Numasaki H, Nishimura T et al. Japanese Structure Survey of Radiation Oncology in 2009 (First Report) [in Japanese]. http://www.jastro.or.jp/aboutus/datacenter.php (1 November 2013, date last accessed).
- Teshima T, Numasaki H, Nishimura T et al. Japanese Structure Survey of Radiation Oncology in 2009 (Second Report) [in Japanese]. http://www.jastro.or.jp/aboutus/datacenter.php (1 November 2013, date last accessed).
- 21. Teshima T, Numasaki H, Nishio M et al. Japanese structure survey of radiation oncology in 2009 based on institutional stratification of patterns of care study. *J Radiat Res* 2012;53:710–72.
- Numasaki H, Teshima T, Shibuya H et al. Japanese structure survey of radiation oncology in 2009 with special reference to designated cancer care hospitals. *Int J Clin Oncol* 2013;18:775–783.
- Teshima T, Numasaki H, Shibuya H et al. Japanese Structure Survey of Radiation Oncology in 2010 (First Report) [in Japanese]. http://www.jastro.or.jp/aboutus/datacenter.php (1 June 2017, date last accessed).
- Teshima T, Numasaki H, Shibuya H et al. Japanese Structure Survey of Radiation Oncology in 2010 (Second Report) [in Japanese]. http://www.jastro.or.jp/aboutus/datacenter.php (1 June 2017, date last accessed).
- 25. Japanese PCS Working Group. Radiation oncology in multidisciplinary cancer therapy—basic structure requirement for quality assurance of radiotherapy based on Patterns of Care Study in Japan. Ministry of Health, Labor, and Welfare Cancer Research Grant Planned Research Study 14-6, 2005.
- 26. Japanese PCS Working Group. Radiation oncology in multidisciplinary cancer therapy—basic structure requirement for quality assurance of radiotherapy based on Patterns of Care Study in Japan. Ministry of Health, Labor, and Welfare Cancer Research Grant Planned Research Study 18-4, 2010.
- 27. Tanisada K, Teshima T, Ohno Y et al. Patterns of Care Study quantitative evaluation of the quality of radiotherapy in Japan. *Cancer* 2002;95:164–71.
- 28. Teshima T; Japanese PCS Working Group. Patterns of Care Study in Japan. Jpn J Clin Oncol 2005;35:497–506.
- The Designated Cancer Hospitals, Ministry of Health, Labor and Welfare: A List of Designated Cancer Hospitals (Point in time: 1 August 2013). http://www.mhlw.go.jp/ (1 November 2013, date last accessed).
- Cancer Registry and Statistics. Cancer Information Service, National Cancer Center, Japan. http://ganjoho.jp/reg_stat/statistics/dl/ index.html (1 October 2014, date last accessed).