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m Classic hairy cell leukemia (HCL) is a tumor of mature clonal B cells with unique genetic,
morphologic, and phenotypic features. DNA methylation profiling has provided a new tier of
* Correspondence of investigation to gain insight into the origin and behavior of B-cell malignancies; however,
normal B-cell subsets the methylation profile of HCL has not been specifically investigated. DNA methylation
tohiCESlggesisiine profiling was analyzed with the Infinium HumanMethylation27 array in 41 mature B-cell
nontumoral counterpart . . . . :
of the disease tumors, including 11 HCL, 7 splenic marginal zone lymphomas (SMZLs), and chronic
; lymphocytic leukemia with an unmutated (n = 7) or mutated (n = 6) immunoglobulin gene

* We identified a heavy chain variable (IGHV) region or using IGHV3-21 (n = 10). Methylation profiles of
methylation-driven

signature of HCL that
involves genes regulat-
ing the B-cell receptor
and the BRAF signaling
pathways.

nontumor B-cell subsets and gene expression profiling data were obtained from public
databases. HCL had a methylation signature distinct from each B-cell tumor entity, including
the closest entity, SMZL. Comparison with normal B-cell subsets revealed the strongest
similarity with postgerminal center (GC) B cells and a clear separation from pre-GC and GC
cellular programs. Comparison of the integrated analysis with post-GC B cells revealed
significant hypomethylation and overexpression of BCR-TLR-NF-«B and BRAF-MAPK
signaling pathways and cell adhesion, as well as hypermethylation and underexpression of
cell-differentiation markers and methylated genes in cancer, suggesting regulation of the
transformed hairy cells through specific components of the B-cell receptor and the BRAF
signaling pathways. Our data identify a specific methylation profile of HCL, which may help
to distinguish it from other mature B-cell tumors.

Introduction

Classic hairy cell leukemia (HCL) is a rare mature B-cell tumor that is characterized by the accumulation
of leukemic cells in the bone marrow, spleen, and peripheral blood."

The universal genetic fingerprint of HCL is the acquisition of the BRAF V600E mutation in all individual
hairy cells.’® The mutation leads to constitutive BRAF-MEK-ERK pathway activation'? and represents
an effective therapeutic target in patients.®® KLF2 and CDKN1B (p27) mutations may cooperate with
BRAF VB00E in the tumor cells of some patients.” However, HCL typically has a highly stable genomic
profile,2° and the inability of BRAF inhibitors to completely eradicate HCL in patients suggests that
factors other than genetics may contribute to disease pathogenesis and behavior.?
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Expression of multiple functional immunoglobulin isotypes is an-
other unique feature of HCL.'®"" Its association with low levels of
intraclonal variations of the immunoglobulin gene heavy chain variable
(IGHV) region and ongoing isotype-switch events prior to deletional
recombination are suggestive of ongoing environmental interac-
tions promoting or maintaining the tumor clone.'®"® However, the
behavior of mature B-cell tumors is also influenced by the DNA
methylation status of the transformed cell.'®'® DNA methylation is
involved in controlling cellular differentiation and cell type specifi-
cation during hematopoietic development.'”'® In the most common
form of adult leukemia, chronic lymphocytic leukemia (CLL), the
methylation profile is clearly different between the 2 main subsets
with unmutated (U-CLL) or mutated IGHV (M-CLL) and is stable
over the course of the disease, likely reflecting the maturation of the
cell of origin.'”2%22 Methylation profiling also helps to better define
specific disease subentities, like IGHV3-21 * CLL, and it can con-
tribute to defining of disease prognosis.'”2324

The DNA methylation profile of HCL has not been extensively
investigated. Here, we investigated the DNA methylation
profiles of a series of HCL using the lllumina HumanMethyla-
tion27 array and compared them with other B-cell tumor
entities and with normal peripheral blood B cells at different
stages of differentiation.

Methods

Tumor panel

Peripheral blood mononucleated cells were obtained at diagnosis
or prior to any treatment from 41 mature B-cell tumors, including 11
HCLs, 7 splenic marginal zone (MGZ) lymphomas (SMZLs), 7
U-CLLs, and 6 M-CLLs. The CLL cohort also included 10 IGHV3-
21% CLLs (CLL-VHS3-21, all mutated for IGHV), which was
analyzed as a separate subentity. Diagnosis was made according
to the World Health Organization 2018 Classification of Tumors of
Hematopoietic and Lymphoid Tissues.?® Differential diagnosis of
HCL and SMZL was verified by allele-specific oligonucleotide
polymerase chain reaction and sequencing.?® HCL samples were
confirmed BRAF V600E mutated, whereas all SMZLs were
confirmed BRAF V600E unmutated. Use and mutational status of
the expressed tumor IGHV gene were determined using our previ-
ously reported procedures.'® Purity of tumor B cells was =70% in
all samples, as measured by immunophenotyping.? The character-
istics of the 11 HCL samples are shown in supplemental Table 1.
Patients provided informed consent in accordance with the local
institutional review board requirements and the Declaration of
Helsinki.

Genome-wide promoter methylation profiling

DNA extraction and quality control were performed as previously
described.? Methylation profiling was performed with the Infinium
HumanMethylation27 array (lllumina, San Diego, CA), as previously
described.?”

Data mining

Probes inside or outside cytosine guanine dinucleotide islands
(CGls)?® were analyzed separately, as previously reported.?” The
methylation profiles of the CLL cases were derived from previous
publications.?®?” To identify the normal counterpart of HCL,
defined as the nontumor B-cell subset with the closest methylation
profile to HCL cells, we studied a series of B-cell subpopulations
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obtained with the Infinium HumanMethylation450 BeadChip and
acquired from the European Genome-phenome Archive dataset
EGAS00001000534.'® Methylation data were preprocessed,
including background correction and quantile normalization, using
the “minfi” package in R environment.?® Batch effect was corrected
for 27k and 450k platforms using the ComBat algorithm,®° and only
probes commonly annotated in both 27k and 450k platforms were
considered in the study. To stabilize the variance of methylation
range across the series, B values were transformed into M-values
for the identification of differentially methylated probes. A moder-
ated Student t test (limma) was used to identify the differentially
methylated regions (g value < 0.05; absolute difference of average
M-values > 1.0).3! To further identify probes with changes in
methylation, the Fisher's exact test was performed on the 8 values
(P < .05; not methylated for 3 from 0 to 0.33, hemimethylated for
B from 0.33 to 0.66, and methylated for § > 0.66).

Gene expression profiling (GEP) data, obtained with Affymetrix
U95A and U95Av2 arrays, were extracted from Gene Expression
dataset GSE2350 and analyzed by limma to characterize the
differentially expressed genes (g value < 0.05 and absolute logs
fold change >1.0). The methylation-GEP correlation (Pearson)
was calculated only for genes with probes common to the
GSE2350 dataset.>> We considered inversely correlated those
genes significantly hypomethylated and overexpressed, or hyper-
methylated and underexpressed, in =1 of the following indepen-
dent comparisons (computed separately on methylation and gene
expression profiles using the moderated Student ¢ test): HCL vs
post—germinal center (GC) B cells, HCL vs SMZL, HCL vs M-CLL,
and HCL vs U-CLL. For functional annotation, >6100 gene sets
belonging to The Molecular Signatures Database vb5.1 gene set
enrichment analysis (GSEA) collection,®® were grouped into 100
major biological themes (“concepts,” supplemental Table 2), re-
ducing the number and the redundancy of gene sets. Single-sample
GSEA ([ssGSEA], “GSVA" package in R environment)®* was then
performed on the methylation and GEP data. The ssGSEA output
was subsequently analyzed by limma at the concepts level.®'
Analyses were performed using R environment (R Studio console;
RStudio, Boston, MA).

Results

The global methylation pattern of HCL shows
similarities to normal post-GC B-cell subsets and
splenic MGZ B-cell lymphomas

We studied the genome-wide promoter methylation profile of 11
HCLs (all harboring BRAF V600E mutation) vs defined normal
B-cell subsets'®*® or vs SMZL (n = 7), U-CLL (n = 7), or M-CLL
(n = 6).

Unsupervised analysis of all probes provided insight into the
potential normal B-cell counterpart of HCL. Unsupervised cluster-
ing (Figure 1A) and multidimensional analysis (Figure 1B) high-
lighted a marked distance of HCL from naive B-cell and GC founder
B-cell subsets, whereas the closest subsets to HCL were the post-
GC subsets, including splenic MGZ, low-maturity memory, and
intermediate-maturity memory B-cell subsets.

When the other B-cell tumors were compared, HCL samples
clustered very much closer to SMZL than to CLL. Although the
latter distributed largely according to its IGHV mutational status
(U-CLL, M-CLL, IGHV3-21 CLL), as expected,'®'82* SMZL cases
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Figure 1. The global methylation pattern of HCL differs from other indolent B-cell tumors and normal B-cell subpopulations. (A) Unsupervised hierarchical

clustering (Euclidean distance, complete linkage). (B) Multidimensional scaling plot showing a 2-dimensional projection of distances across the different histotypes within the

series. Methylation profiling (histotype_Meth) included HCL, naive B cells (preGC_Bcell), GC founder B cells (B cells upon antigen encountering, GCfounder_Bcell), low-,
intermediate-, and high-maturity memory B cells (loMat_postGC_Bcell, inMat_postGC_Bcell, and hiMat_postGC_Bcell, respectively), splenic MGZ B cells (MGZ_Bcell),

CLL samples (U-CLL IGHV, M-CLL IGHV, IGHV3-21" [CLL-VH3-21]), and SMZL.

clustered with (2/7) or very close to (5/7) HCL samples. Indeed,
1 of the 2 cases, initially classified as CD103"DBA44" HCL,
lacked the BRAF V600E mutation and was reclassified as an
SMZL only after central immunohistochemical revision due to
ANXA-1 negativity.

Two additional unsupervised analyses were performed to better
understand the epigenetic program of HCL cells: 1 for the CGl
probes only (supplemental Figure 1A) and another 1 with probes
outside of the CGls (supplemental Figure 1B). Both analyses
generally overlapped with the clustering on the global genome-wide
methylation profile, although it is worth mentioning that the CGl-only
methylation profile clustered all HCL samples in an independent
branch, separately from post-GC B cells but still together with the 2
SMZL cases mentioned above.

Hence, this analysis documented that HCL has a global methylation
profile close to post-GC B cells and SMZLs.
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Methylation contributes to the HCL
gene expression signature

HCL has a gene expression profile similar to that of post-GC
B cells but with a specific signature that is distinct from normal
and other neoplastic B cells.®? The published HCL gene-
expression signature®® was then integrated with promoter
methylation profiles by independent comparisons of HCL with
post-GC B cells and with other B-cell tumors (HCL vs SMZL,
HCL vs M-CLL, and HCL vs U-CLL). Enrichment analysis by
GSEA revealed hypermethylation of the underexpressed HCL
gene signature, whereas the overexpressed HCL signature
was hypomethylated compared with post-GC B cells (supple-
mental Figure 2A). An integrated analysis using the moderated
Student t test showed that 47% (36/76) of the differentially
transcribed genes were inversely correlated with their methylation
status (supplemental Figure 2B; supplemental Table 3). The top 10
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Figure 2. Integration of methylation profiles of HCL, post-GC B cells, and other B-cell tumors. Scatter plot on the differentially methylated probes (g value < 0.05;

absolute difference of average M-values > 1.0). Fold change of HCL compared with post-GC B cells is shown on the x-axis, whereas the y-axis represents the fold change in

HCL compared with other B-cell tumors, including SMZL and CLL. Commonly hypermethylated probes in HCL are highlighted in orange, whereas commonly hypomethylated

probes are represented in lime green. Probes showing different methylation profile in HCL compared with post-GC B cells or with other B-cell tumors are in blue.

Hypermethylated probes in HCL compared with normal or tumor are showed in red or brown, respectively, whereas hypomethylated probes in HCL vs post-GC B cells or other

B-cell tumors are in green or light green, respectively. Labels show gene symbol and probe-ID by lllumina.

hypomethylated and overexpressed transcripts were
EPB41L2, DST, RIN2, EMP1, PDE4DIP, ENG, RCBTB2, AlF1,
FLT3, and PLOD2, whereas only 4 transcripts were hyper-
methylated and underexpressed: CXCR5, TRAF5, PAWR, and
TNFAIPS.

The observed inverse correlation between gene expression and
methylation (Pearson correlation p = —0.375, P < .001) points to
DNA promoter methylation as a mechanism involved in the regula-
tion of the specific gene expression signature of HCL.

€ blood advances 12 Fesruary 2019 - vOLUME 3, NUMBER 3

Epigenetic profile identifies specific methylation
patterns in HCL
Independent supervised analyses were performed to compare HCL

methylation patterns with those of post-GC B cells and with the
methylation profiles of SMZL, M-CLL, U-CLL, and CLL-VH3-21.

Commonly hypermethylated genes in HCL, compared with post-
GC B cells or with the other B-cell tumors, included those involved
in regulation of B-cell proliferation, cell motility, and immune system
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Figure 3. Integration of methylation and gene expression profiles of HCL and post-GC B cells. Scatter plot on the differentially methylated or expressed genes

(g value < 0.05; absolute difference in average M-values > 1.0 for methylation, and absolute log, fold change >1.0 for gene expression). A of M-value is represented

on the x-axis, whereas the y-axis represents log, fold change in gene expression. Negatively correlated genes are labeled and highlighted in blue (hypermethylated and

underexpressed) or in red (hypomethylated and overexpressed), whereas positively correlated genes are not labeled and are represented in light green. The p and P values

correspond to Pearson’s correlation for methylation and GEP fold changes.

process. The top hypermethylated genes in HCL included
TNFRSF13B, MCM5, VHL, ENTPD1 (CD39), CCL22, MNDA,
SFTPB, FOXN1, FCER1G, and RUNX3. Commonly hypomethy-
lated genes included those involved in the RAS signaling cascade.
The top 10 hypomethylated genes in HCL were RIN2, ACTAT,
EMP1, SPARCL1, COL11A2, IL10, LRRC32, CMKLR1, RAD50,
and FOXD1 (Figure 2; supplemental Tables 4-10).

We then searched methylation differences between HCL and
post-GC B cells for genes that were not differentially methylated
from other B-cell tumors. Hypermethylated genes in HCL were
annotated for transmembrane transport and genes downregulated
by overexpression of an oncogenic form of KRAS; among the top
genes we found RNF126, BLCAP, CDH12, ELF2, and PTENP1.

388 ARRIBAS et al

The top hypomethylated genes in HCL were LAPTMS5, TRAF1,
MAP2K1, IL10RA, and IL5RA; and GSEA provided enrichment in
antigen-dependent B-cell activation and RAS, interleukin-10
(IL-10), IL-2, and MAPK signaling pathways (Figure 2; supplemental
Tables 4-10).

DNA promoter methylome of HCL was further interrogated to
identify genes differentially methylated from other B-cell tumors
(SMZL, M-CLL, U-CLL, and CLL-VH3-21) but not from post-GC
B cells. Among the top hypermethylated genes we found CHI3L2,
MMP11, LILRB4, PRDM2 (RIZ1), and BRD4, whereas TJP1, SIX1,
ADAM12, BTBD3, and GATA4 were the top hypomethylated
genes. GSEA showed that hypermethylated probes were enriched
in genes modulated by AKT-mTOR, IL-2, and IL-15 signals and by
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JNK inhibitors; meanwhile, polycomb repressive complex 2 targets,
cell-cell interactions, and G protein—coupled receptor signaling
were enriched in the hypomethylated genes in HCL (Figure 2;
supplemental Tables 4-10).

BCR-TLR-NF-kB and BRAF-MAPK pathway
methylation and expression patterns differ in
HCL and post-GC B cells

Methylation and gene expression profiles were further integrated to
compare HCL with post-GC B-cell subsets. The unsupervised
methylation profiling analysis identified low-maturity memory and
intermediate-maturity memory B cells and MGZ B cells as the
normal populations closest to HCL; unfortunately, gene expression
data for these populations were not publicly available.*? Thus,
we integrated the methylation profile of post-GC B cells (nonclass
switched and class switched) with the gene expression profile
of the closest available B-cell subset, CD27* memory B cells,
although these were primarily represented by class-switched
memory B cells.

Despite this shortcoming, the comparison identified 119 hyper-
methylated or hypomethylated genes in HCL. TNFRSF13B,
ENTPD1, KLK1, CCL22, TRPM2, CXCR5, LY86, CD86, RUNX3,
and APOBEC2 were the 10 most hypermethylated and underex-
pressed genes, whereas the top 10 genes with hypomethylation
and high expression included SPARCL1, RIN2, EMP1, LRRC32,
AIF1, FLT3, CMKLR1, DST, RCBTB2, and ITGAD (Figure 3;
supplemental Figure 3; supplemental Table 11). Interestingly, GEP
signatures and several genes associated with BCR-TLR-NF-kB
and BRAF-MAPK signaling pathways and cell adhesion were
hypomethylated and overexpressed. Conversely, cell-differentiation
markers and methylated genes in cancer appeared hypermethy-
lated and underexpressed (Figure 4; Table 1; supplemental
Table 12).

Methylation profiling distinguishes HCL from other
B-cell tumors

We then integrated gene expression and methylation data to
compare HCL with SMZL and CLL. This analysis showed a marked
overlap with the deregulated pathways identified in the comparison
of HCL with post-GC B cells, suggesting a specific methylation-
driven gene expression signature of HCL cells. A set of 245 genes
was differentially methylated and expressed in HCL compared with
SMZL and CLL. The top 10 hypermethylated and underexpressed
genes were LILRA4, SFTPB, TNFRSF13B, KCNN4, PMAIP1,
CXCR5, TRAF5, TGIF1, FAM65B, and LILRB4, whereas RIN2,
BTBD3, SPARCL1, SLITRKS5, EMP1, CXADR, CAMK1, PLOD2,
LRRC32, and CHN2 were hypomethylated and overexpressed
(Figure 5; supplemental Figure 4; supplemental Table 13). Finally,
when HCL methylation profiles were compared with those of
CLL-VH3-21, 85 differentially methylated genes were differentially
identified, because there were no publicly available GEP data for
this subset of CLL. Among the top low-methylated genes we found
RAD50, FOXD1, RORA, CCNC, and WT1, whereas FCER1G,
CCL2, NFKBIE, CD86, and MGMT appeared hypermethylated
(supplemental Table 13).
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The gene expression signature of HCL includes B-cell
survival pathways

Enrichment analysis revealed high expression of signaling pathways
that are key to B-cell survival among the hypomethylated and
overexpressed transcripts. These included integrin and CD40
signaling, MAPK (ERK, JNK) and RAS-RAF-MEK-ERK pathways,
NF-«B activation upon TLR signaling, and B-cell activation mediated
by the IKK complex. In accordance with the postulated HCL cell of
origin, GC and pre-GC programs were methylated and repressed in
HCL. Similarly, genes involved in transcription and the respiratory
cascade, as well as genes harboring methylation marks, appeared
more methylated and less expressed in HCL than in the other
entities (Figure 6; supplemental Table 14).

Discussion

We have characterized the genome-wide DNA promoter methyl-
ation pattern of HCL and compared it with normal B-cell subsets
and with other mature B-cell tumor entities (U-CLL, M-CLL, IGHVS3-
21 CLL, and SMZL). HCL had a distinct methylation pattern. The
closest normal counterpart was post-GC B cells (low-maturity
memory and intermediate-maturity memory B cell), along with MGZ
B cells. The closest neoplastic entity was SMZL, which is in
agreement with HCL and SMZL being morphologically and
phenotypically similar, albeit distinct, tumor entities.

HCL is characterized by the presence of the BRAF VB60OE somatic
mutation, which leads to constitutive BRAF-MEK-ERK pathway
activation and represents an effective therapeutic target in
patients.® However, BRAF inhibitors are unable to completely
eradicate HCL,?**® suggesting that factors other than genetics may
contribute to disease pathogenesis and behavior. The platform
used in this study had a limited number of genes compared with the
arrays currently available and was not associated with the gene-
expression profile of the individual cases. However, we were still
able to define the contribution of promoter methylation to the
previously reported HCL gene expression signature,®? identifying a
set of hypomethylated and highly expressed genes associated with
the BCR and the BRAF signaling pathways. This result supported
the notion that promoter methylation is generally associated with
repression of transcription and vice versa.®®

Different methylation changes that we observed in HCL were
consistent with the constitutive activation of the RAS-RAF-MEK-
ERK pathway,'™ pointing to a permissive epigenetic landscape as
a player in the upregulation of BRAF-related genes and, thus,
participating in the specific biology of HCL. RIN2, encoding for a
Ras effector that plays a role in the stimulation of GTPase activity,?”
was hypomethylated and overexpressed. Transcriptional targets of
the Ras cascade, such as EMP1, encoding an integral tetraspan
membrane protein,® were hypomethylated and overexpressed.
There was hypomethylation and overexpression of /IGFR17, which
initiates a cascade of downstream signaling events leading to
activation of the RAS/MEK/ERK pathway,39 IGF-related signatures,
and its direct target gene SPARCL1.“° CMKLR1 appeared
hypomethylated and overexpressed in HCL. The protein product of
CMKLR1, RARRES2, which induces cell proliferation by increasing
phosphorylation of ERK1/2,*' was also overexpressed. Hypermethy-
lation of CD157 may also cooperate with BRAF VB00E somatic
mutation in the RAS constitutive signaling of HCL patients, because
the gene acts as a negative regulator of adhesion-dependent
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Figure 5. Integration of methylation and gene expression profiles of HCL and other tumor entities. Scatter plot on the differentially methylated or expressed genes

(g value < 0.05; absolute difference of average M-values > 1.0 for methylation, and absolute log, fold change >1.0 for gene expression). A of M-value is represented

on the x-axis, whereas the y-axis represents log, fold change in gene expression. Negatively correlated genes are labeled and highlighted in blue (hypermethylated and

underexpressed) or in red (hypomethylated and overexpressed), whereas positively correlated genes are not labeled and are represented in light green. The p and P values

correspond to Pearson’s correlation for methylation and GEP fold changes.

activation of Ras.*> CHI3L2, the most hypermethylated gene in
HCL compared with other B-cell tumors, encodes for a component
of the chitinase family that has been reported to be hypermethylated
in RAS-activated cancer subtypes.*® VHL is a tumor-suppressor
gene that mediates degradation of the hypoxia-inducible factor,
contributing to the activation of a series of pathways, including the
RAS-RAF-MEK-ERK pathway,** which is constitutively active in
HCL. Last, and consistent with this constitutive activation, a number
of hypomethylated genes in HCL are likely to contribute to RAS
signaling, including MAP2K1, IL10RA, LAPTM5, and TRAF1.
Among these, MAP2K1 and IL10RA also had a high expression
in HCL. MAP2K1 encodes for the BRAF-downstream kinase
MEK1, and it is activated by somatic mutation in 50% of

392 ARRIBAS et al

HCL-variant patients.>*® /L 10RA is reported to promote survival
upon ERK phosphorylation.*®

Our current work also identified methylation patterns that may affect
homing/migration and survival pathways of tumor cells. HCL is charac-
terized by a gene expression signature® that appears to be inversely
correlated with DNA promoter methylation, indicating the importance of
methylation in gene expression control. Interestingly, the CXCR5
promoter was methylated in our HCL samples. CXCR5 is a chemokine
receptor for B cells, and its absence on HCL cells*” might explain the
lack of tropism of the tumor cells to the white pulp and to lymph nodes.

In this study, we found that antiapoptotic genes, including TRAF5
and TNFAIP8, were hypermethylated. TRAF5 and TNFAIP8
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expression is known to be downregulated in HCL.32 TRAF5is a gene profile and not detectable by phenotype.'? TNFAIP8 (TIPE) is a
involved in the signal transduction of tumor necrosis factor-type member of the tumor necrosis factor-a—induced protein family. lts
receptors, including CD27, which is reduced by gene expression repression protected hematopoietic cells from apoptosis,*® and
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TNFAIP8-deficient mice showed increased leukocyte infiltration.*®
Other genes, including cell-differentiation markers and known tumor-
suppressor genes, appeared highly methylated in HCL. O-6-
methylguanine—~DNA methyltransferase, coded by MGMT, is involved
in DNA repair and is often methylated in cancers, including lymphoid
tumors.’® PRDM2 is also hypermethylated in leukemia and solid
tumors, and its silencing induces high-grade B-cell lymphoma in
mice.?'®® ENTPD1 encodes for the plasma membrane protein
CD39 and may have diagnostic value, because it was hyper-
methylated in HCL compared with all CLL subsets (M-CLL, U-CLL,
and CLL-VH3-21). Unsupervised and supervised analyses docu-
mented a highly methylated TNFRSF13B (TAC/) and MNDA in
HCL; indeed, these genes were proposed for the differential
diagnosis of MZL vs B-cell tumor entities other than HCL.3#°®

Among the genes that appeared hypomethylated in HCL, we found FGF2
(fully nonmethylated across the series) and FLT3, which are known to be
upregulated and might contribute to the bone marrow fibrosis that is
characteristic of HCL.®2®® Indeed, autocrine secretion of FGF2 by tumor
cells is responsible for fibronectin production.?” The ligand of FLT3, a
potential therapeutic target in other leukemias,?® is responsible for B-cell
adhesion to fibronectin.>> RBBP4 and SUZ12, coding for components of
the polycomb repressive complex 2, were hypomethylated, whereas
genes silenced by methylation and transcripts harboring the trimethylation
marks were methylated and repressed, pointing to the acquisition of a
polycomb  repression-associated methylator phenotype,®®  potentially
linked to BRAF VB600E mutation, at least in solid cancers.®°

In conclusion, our data reveal that HCL differs from SMZL, CLL, and normal
B cells and indicate that the HCL-specific methylation pattern affects
pathways involved in the homing, migration, and survival of HCL cells.
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