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Abstract

RNA sequencing (RNA-seq) is a high throughput technology that provides unique insights into the 

transcriptome. It has a wide variety of applications in quantifying genes/isoforms, detecting non-

coding RNA, alternative splicing, and splice junctions. It is extremely important to comprehend 

the entire transcriptome for a thorough understanding of the cellular system. Several RNA-seq 

analysis pipelines are proposed to date. However, no single analysis pipeline can capture dynamics 

of the entire transcriptome. Here, we compile and present a robust and most commonly used 

analytical pipelines covering entire spectrum of transcriptome analysis, including quality checks, 

aligning reads, differential gene/transcript expression analysis, cryptic splicing events discovery, 

and visualization. Challenges, critical parameters, and possible downstream functional analysis 

pipelines associated with each step are highlighted and discussed. This provides a comprehensive 

understanding of state-of-the-art RNA-seq analysis pipeline and a greater understanding of the 

transcriptome.
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INTRODUCTION

Due to advancement in technology and drop in cost for high-throughput profiling of 

molecular assay and next-generation sequencing, RNA sequencing (RNA-seq) has becoming 

a common tool for scientists to study the transcriptomic phenomenon observed in biological 
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samples. RNA-seq data allows one to study the system-wide transcriptional changes from a 

variety of aspects, ranging from expression changes in gene or isoform levels, to complex 

analysis like discovery of novel, alternative or cryptic splicing sites, RNA-editing sites, 

fusion genes, or single nucleotide variation (Conesa, Madrigal et al. 2016). These analyses 

had been applied in studies to understand complex neurological disease (Sztainberg, Chen et 

al. 2015) to basic molecular mechanisms (Lo, Chung et al. 2017).

In this article, we describe three protocols for RNA-seq data analysis. These protocols are 

applicable to RNA-seq data sets from the most common Illumina sequencing platform with 

an available reference genome. The first protocol covers the standard pipeline on RNA-seq 

data that interrogates the transcriptome at the gene level, which is usually referred as 

differentially expressed gene (DEG) analysis. This pipeline starts from the raw sequence 

reads, and ends with a set of differentially expressed genes. The second protocol goes 

beyond gene level analysis into isoforms, focusing primarily on differential expression (DE) 

and differential usage (DU) of isoforms. Lastly, the third protocol pinpoints specific splice 

junctions and decipher cryptic splicing events. A detailed motivational rationale for each 

protocol is given in respective sections below. Together, the three protocols help to 

thoroughly comprehend a transcriptome of interest from genes to junctions.

STRATEGIC PLANNING

Before starting the protocols, users should install the software listed in the software section 

below from download URL listed in Table 1. Following the download guides, the program 

will be installed so that it could be executed from any directory. Lastly, users should 

download required libraries, reference files such as the reference genome sequences and 

index files accordingly based on the experiments. Respective web resources are listed in 

Table 1.

BASIC PROTOCOL 1

DIFFERENTIAL GENE EXPRESSION ANALYSIS OF RNA-SEQ

The immediate question one could ask from an experiment with RNA-seq is what genes are 

dysregulated due to the designed perturbation, treatment, etc. Thus, the first protocol 

consists of the basic pipeline for analyzing raw sequence reads of RNA data to reveal the set 

of significantly dysregulated genes. Specifically, this pipeline consists of five main steps, 

where each step corresponds to one phase of the analysis that achieve certain milestone. In 

the following protocol, we will use an example data of six samples from GSE72790 and 

provide commands based on this example. To reduce the amount of execution time in testing 

the protocol, we will focus on data from chromosome 19 only.

Necessary Resources

• Hardware: A computer or server with access to UNIX command environment.

• Software: FastQC, Tophat2, samtools, HTSeq, Rstudio, DESeq2. Web resources 

of respective tools are listed in table 1.
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• Input files: Raw sequence reads in fastq formats. We had included 12 fastq files 

(two files each for six samples) in the supplementary materials for this example. 

Each of these files contains about five million reads of 90 base-pair (bp) which 

should be originated from the chromosome 19 of mouse genome.

Step 1. Quality check on the raw reads.: Create a directory named FastQC to store the 

results later. Then, call FastQC to obtain quality check metrics to inspect the quality of raw 

sequence reads (stored in the Fastq directory) and output the metrics to FastQC directory:

$ mkdir FastQC

$ fastqc Fastq/*.fastq –o FastQC

FastQC provides a quick view on the quality of the raw sequence reads from multiple 

analyses, ranging from the sequence quality, GC content, to library complexity. The 

command above will produce a report in HTML format which could be viewed from web 

browser. In the report, each metric evaluated will be annotated with a green check, red cross, 

or yellow exclamation mark to indicate pass, fail, or caution respectively. Usually, the 

quality score (Fig. 1a) and A,C,G,T content (Fig. 1b) across bases could be used to decide 

how the reads should be groomed prior to mapping.

Step 2. Groom raw reads.: Remove sequences with low quality to get better alignment in 

the later steps. Based on the FastQC reports from above commands for this example, the 

qualities of the reads are fine except random distribution of sequence content at the 5’ end of 

reads. Thus, we trim 10bp from the beginning of each read:

$ awk -v s=10 -v e=0 ‘ {if (NR%2 == 0) print substr($0, s+1, length($0)-s-

e); else print $0; } ‘ Fastq/MT1_1.fastq > Fastq/Trim_MT1_1.fastq

$ awk -v s=10 -v e=0 ‘ {if (NR%2 == 0) print substr($0, s+1, length($0)-s-

e); else print $0; } ‘ Fastq/MT1_2.fastq > Fastq/Trim_MT1_2.fastq

$ awk -v s=10 -v e=0 ‘ {if (NR%2 == 0) print substr($0, s+1, length($0)-s-

e); else print $0; } ‘ Fastq/MT2_1.fastq > Fastq/Trim_MT2_1.fastq

$ awk -v s=10 -v e=0 ‘ {if (NR%2 == 0) print substr($0, s+1, length($0)-s-

e); else print $0; } ‘ Fastq/MT2_2.fastq > Fastq/Trim_MT2_2.fastq

$ awk -v s=10 -v e=0 ‘ {if (NR%2 == 0) print substr($0, s+1, length($0)-s-

e); else print $0; } ‘ Fastq/MT3_1.fastq > Fastq/Trim_MT3_1.fastq

$ awk -v s=10 -v e=0 ‘ {if (NR%2 == 0) print substr($0, s+1, length($0)-s-

e); else print $0; } ‘ Fastq/MT3_2.fastq > Fastq/Trim_MT3_2.fastq

We used the awk command native to Unix system here. The s=10 indicates that the first 

10bp (the 5’end) will be trimmed, where e=0 indicates none will be trimmed from the end 

(3’ end). Users should change these according to the FastQC reports. File name for input 

fastq reads is specified before the > sign, where the file name for the trimmed reads should 

be followed after the > sign.

Yalamanchili et al. Page 3

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2019 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Note that although these are pair-end (PE) reads, the forward and reversed reads are trimmed 

separately. Also, users should repeat these steps for the other six fastq files for WT samples.

Usually, quality of the sequence reads at both ends of the reads are low, which can be seen 

from the drop in Phred score at 3’ end and random A,C,G,T concentration at the 5’ end. 

Although some would suggest removing the adapter sequences as well, due to the nature of 

next-generation sequencing, more than 99% of the adapter sequences are cleaved from the 

RNA fragments before sequencing and should not be present in the sequence reads. Thus, 

we did not include that step. However, if it happened that some adapters were not 

successfully cleaved and being sequenced, they should be removed prior to mapping to 

avoid poor mapping quality.

Step 3. Align raw reads to reference genome: Map the trimmed sequence reads to 

reference genome using tophat2. Specifically, we first create a directory with the sample 

name to store the output then calling tophat2 and output results to the directory’s sub-

directory named Tophat_Out. Since this is a mouse sample, UCSC mm10 is used as the 

reference genome and the reference transcriptome file and bowtie index files are stored 

under Indexes directory in the home directory. Bowtie2 index files contain the genome 

sequences to be aligned to in bowtie2 format. Tophat2 uses bowtie2 as the base sequence 

aligner.

$ mkdir MT1

$ tophat2 -r 200 -p 8 -o MT1/Tophat_Out -G

~/Indexes/Mus_musculus/UCSC/mm10/Genes/genes.gtf

~/Indexes/Mus_musculus/UCSC/mm10/Sequence/Bowtie2Index/genome

Fastq/Trim_MT1_1.fastq Fastq/Trim_MT1_2.fastq

Users should repeat these commands for other five samples, MT2, MT3, WT1, WT2, WT3, 

and change the directory and file names accordingly.

Note that with PE reads, the order of the input file names for R1 (forward reads) and R2 

(reverse reads) should not be mixed up. Default parameters for tophat2 are used here. The 

insert size of 200 is used because the average fragments for the data in this example is 

~400bp and common to data sequenced from Illumina HiSeq 2000. This step would take 

approximately 30 minutes on each sample for this example. The execution time for this step 

would depend on the number of reads and number of processing CPU (specified with –p 

parameter of tophat2) used.

Step 4. Assemble gene expression from aligned reads: Use HTSeq to quantify the number 

of reads mapped to each gene:

$ samtools view MT1/Tophat_Out/accepted_hits.sorted.bam | python -m

HTSeq.scripts.count -q -s no - ~/Indexes/Mus_musculus/UCSC/mm10/Genes/
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genes.gtf >

MT1/MT1.count.txt

Repeat this command to the other five samples and change the input and output file names 

accordingly as in last step. Upon successful execution of this step, six text files suffixed with 

“count.txt” will be generated with each prefixed with the sample ID and stored under the 

subdirectory of the sample, for example MT1/MT1.count.txt, MT2/MT2.count.txt, and so 

son.

Note that we need to sort the alignment file (BAM file) prior to calling HTSeq, as HTSeq 

requires the reads ordered by reads identifier. The output of this step will be a tab-delimited 

text file with two columns and about 24 thousands rows, where each row represents a gene, 

first column is the gene identifier, second column is the number of reads mapped to the gene.

Step 5. Differential gene expression analysis from assembled gene expression: Take the 

steps as suggested by DESeq2 manual to carry out the analysis. These standard steps are 

listed in the following five sub-steps:

5.1. Launch RStudio and load necessary library

> library(“DESeq2”)

5.2. Create necessary data object.

> sample.names <- sort(paste(c(“MT”, “WT”), rep(1:3, each=2), sep=““))

> file.names <- paste(“../”, sample.names, “/”, sample.names, “.count.txt”, 

sep=““)

> conditions <- factor(c(rep(“MT”, 3), rep(“WT”, 3)))

> sampleTable <- data.frame(sampleName=sample.names,

fileName=file.names,

condition=conditions)

> # read in the HTSeq count data 

> ddsHTSeq<-DESeqDataSetFromHTSeqCount(sampleTable=sampleTable, 

directory=“.”, 

design=~ condition )

In this sub-step, we specify the sample identifiers, name of files with gene counts for each 

sample, and experiment condition(s) for each sample; then pass this information to 

DESeqDataSetFromHTSeqCount function to make a DESeqDataSet object for following 

analysis.

5.3. Run differential gene analysis.
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> ddsHTSeq <- ddsHTSeq[rowSums(counts(ddsHTSeq)) > 10, ]

> dds <-DESeq(ddsHTSeq)

Prior to differential gene analysis, filter out genes with low counts, which are analogous to 
genes that are not expressed. Then, use DESeq function for the differential gene analysis 
based on negative binomial distribution. Specifically, DESeq function is a wrapper function 
with multiple default analyses, including estimating the size factors and dispersions, fitting 
the negative binomial generalized linear model, and performing Wald tests for differential 
gene analysis (Love, Huber et al. 2014)

5.4. Quality checks on the samples.

> rld <- rlogTransformation(dds, blind=FALSE)

> # Plot PCA plot

> plotPCA(rld, intgroup=“condition”, ntop=nrow(counts(ddsHTSeq)))

> # Plot correlation heatmap

> cU <-cor( as.matrix(assay(rld)))

> cols <- c( “dodgerblue3”, “firebrick3” )[condition]

> heatmap.2(cU, symm=TRUE, col= colorRampPalette(c(“darkblue”,”white”))

(100), 

labCol=colnames(cU), labRow=colnames(cU),

distfun=function(c) as.dist(1 - c), trace=“none”, Colv=TRUE, 

cexRow=0.9, cexCol=0.9, key=F, font=2,

RowSideColors=cols, ColSideColors=cols)

Draw PCA plot (Fig. 2a) and correlation heatmap (Fig. 2b) to visualize if the samples cluster 

per their conditions. In this example, samples are clustered into two groups, which are their 

genotypes. In cases where samples do cluster in groups but the grouping is not the 

experimental conditions or genotypes, it indicates that the samples are clustered by other 

factors. These factors could be latent biological subtypes or technical factors such as the 

batch effect. For example, the samples in supplemental Figure S1 are prepared in two 

different batches and PCA analysis shows two clusters corresponding to the batches, instead 

of four designed phenotype groups.

5.5. Output differential gene analysis results

#> res <- results(dds, contrast=c(“condition”, “MT”, “WT”))

> grp.mean <- sapply(levels(dds$condition), function(lvl) 

rowMeans(counts(dds,normalized=TRUE)[,dds$condition == lvl] ) )

> norm.counts <- counts(dds, normalized=TRUE)
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> all <- data.frame(res, grp.mean, norm.counts)

> write.table(all, file=“DESeq2_all_rm.txt”, sep=“\t”)

Call the results function from DESeq2 package to extract the results from the differential 

gene analysis. These results include base means across samples, log2 fold changes, standard 

errors, test statistics, p-values and adjusted p-values. Then, combine the results obtained 

with the average expressions for each genotype (grp.mean) and normalized read counts 

(norm.counts) for each sample into a data table. Finally, save the data table into a tab-

delimited file. Group means and normalized read counts are useful when users want to 

inspect how a gene is expressed in the experiment. Furthermore, users could get these values 

and apply to other software for more analysis.

5.6. Generate figures on significantly differentiated genes

> plotMA(res, ylim=c(−5,5), alpha = 0.01)

> topGene <- rownames(res)[res$padj <= sort(res$padj)[5] &!is.na(res$padj)]

> with(res[topGene, ], {

points(baseMean, log2FoldChange, col=“dodgerblue”, cex=1.5, lwd=2)

text(baseMean, log2FoldChange, topGene, pos=2, col=“dodgerblue”)

})

> library(pheatmap)

> sig.dat <- assay(rld)[res$padj < 0.01 & !is.na(res$padj), ]

> annC <- data.frame(condition=conditions)

> rownames(annC) <- colnames(sig.dat)

> pheatmap(sig.dat, scale=“row”, fontsize_row=9,

annotation_col = annC)

Two common plots to visualize findings from a differential gene analysis are MA plot and 

gene expression heatmap. The MA plot (Fig. 3a) shows how gene expressed between two 

genotypes (log fold-change in Y-axis) with respect to overall expression on all samples (in 

X-axis), highlights the significantly differentially expressed genes (DEGs, adjusted P-value 

< 0.01) in red, and annotates the five most statistical significant DEGs.

In Fig. 3b, heatmap is used to show the expression pattern of DEGs for all the samples and 

annotate the samples with their genotypes.

COMMENTARY

Background Information—Since RNA-seq first presented in studies published in year 

2008 (Lister, O’Malley et al. 2008, Mortazavi, Williams et al. 2008, Nagalakshmi, Wang et 

al. 2008), it has becoming the default tool to use for whole transcriptome experiments in less 
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than a decade. Various algorithms, tools, and pipelines had been developed to analyze RNA-

seq data throughout these years; starting from bwa, bowtie, tophat, Cufflinks, to the new 

alignment free methods such as kallisto (Conesa, Madrigal et al. 2016). Among different 

analyses proposed, differential gene analysis, isoforms analysis, and splicing events are the 

three most common analyses carried out in studies with RNA-seq data, with differential 

gene analysis as the first and default analysis to go with.

Critical Parameters and Troubleshooting—The first potential problem for this 

pipeline can be related to the input data, the raw sequence reads. We could detect this risk 

from FastQC reports in the first step of the protocol. Although we could not transform the 

problematic sequence reads into high quality sequence reads, we could apply a more 

stringent threshold in grooming the reads to retain only good quality reads, in order to 

prevent the noisy data being propagated into downstream analysis.

The insertion size for tophat2 (Step 3 of protocol 1) is another important factor in this 

pipeline. As discussed above, a wrong insertion size will lead to poor mapping. 

Subsequently, this will affect the accuracy of quantified expressions and splice junction 

detection.

Lastly, reference genome index and gene annotation used are critical. Inaccurate path to 

these annotations will cause failure during mapping. Wrong annotation with correct path set 

would allow the protocol executes without error but the mapping would be poor. This could 

be detected from low-mappability.

Advanced Parameters—Standard Illumina RNA-seq data available is stranded paired-

end reads. Note that stranded RNA-seq is not strand-specific, where reads are aligned to 

both the forward or reverse strand regardless if the read is an upstream read (read 1) or 

downstream read (read 2). In non-strand specific RNA-seq, antisense genes/ transcripts will 

not be able to be differentiated from the overlapping sense genes/transcripts. A significant 

number of antisense transcripts were observed from sense strand resulting in complimentary 

non-coding RNAs and such non-coding RNA are often linked to important regulatory 

functions (Levin, Yassour et al. 2010). Therefore, other sequencing technologies with library 

preparation methods such as dUTP and NSR were developed to effectively retain the strand 

information in sequencing reads.

If the library is prepared such that sequence reads are strand-specific RNA-seq reads, two 

steps should be modified as follows:

1. In Step 3 of protocol 1, specify --library-type to be ‘fr-firstrand’ or ‘fr-

secondstrand’ according to the library preparation protocol. In the protocol 

above, we did not specify this parameter as tophat2 assumes --library-type to be 

‘fr-unstranded’ by default.

2. In Step 4 of protocol 1, set -s to be ‘yes’. We set ‘-s no’ above as we have to 

specify that it is not strand-specific as HTSeq-count default is strand-specific 

assay.
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Suggestions for Further Analysis—Users will obtain a list of differentially expression 

genes (DEGs) upon successful completion of this first protocol. The list of DEGs obtained 

could be used as the input for downstream analysis and functional analysis such as the 

enrichment of gene ontology (GO) terms (Gene Ontology 2015), gene set enrichment 

analysis to known pathways, network analysis to study the interactions between the DEGs 

(Yalamanchili, Yan et al. 2014), or even RNA-editing discovery.

Furthermore, users could integrate the transcriptomic findings from RNA-seq with 

genomics, ChIP-seq, or DNA-methylations to get the systems view of regulatory 

mechanisms.

BASIC PROTOCOL 2

BEYOND DEGs: DIFFERENTIAL EXPRESSION AND USAGE OF ISOFORMS

A single gene can code multiple proteins with different functions by re-arranging constituent 

exons (Yalamanchili, Xiao et al. 2012). This process of exon rearrangement (inclusion/

skipping) is called splicing and different forms of the same gene are called isoforms. 

Standard DEG analysis presented in Protocol 1 is based on overall gene expression and 

could underutilize significant biological details such as the isoform specific expression. 

Different isoforms vary in expression in different conditions making them primary targets to 

explain biological anomalies that could not be explained by gene level changes (Garcia-

Blanco, Baraniak et al. 2004). Isoform specific expression is found to be associated with 

different diseases, for example the human epidermal growth factor receptor (HER-2) in 

breast cancer (Menon and Omenn 2010). It is very crucial to explore expression difference 

of isoforms to decipher disease mechanisms and therapeutic targets (Yalamanchili, Li et al. 

2014). This protocol guides through two analyses to dissect the biological phenomenon at 

isoform levels: 1) absolute difference in expression for each isoform, 2) change of relative 

abundance of isoforms of a gene across conditions.

Necessary Resources

• Hardware: A computer or server with access to UNIX command environment.

• Software: Kallisto, Sleuth, Isoform Usage Two-step Analysis: IUTA, samtools, 

Rstudio. Web resources of respective tools are listed in Table 1.

• Input files: Raw fastq reads for differentially expressed isoforms (DEIs) and 

aligned bam files for differential usage of isoforms. Alignment bam files must be 

sorted and indexed (can use the files from step 3 of protocol 1). Model reference 

genome in fasta format, gene annotation file in GTF format, and model 

transcriptome (cDNA sequences). Web resources of respective tools and files are 

listed in Table 1.

Step 1. Quantification of isoforms from raw reads: Typically, in most of the analysis 

pipelines for RNA-seq, raw reads are first mapped to reference genome and then quantified, 

as presented in protocol 1 above. This is highly time-consuming especially when the number 

of samples is large. Recent computational approaches have made quantification two 
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magnitudes faster by pseudo-aligning reads to a reference, i.e. producing target transcripts 

list to each read while avoiding alignment of individual bases. This step demonstrated the 

use of kallisto, an alignment free near-optimal isoform quantification tool.

Kallisto pseudo-alignment is a two-step process: creating a “transcriptome index” and 

quantifying the transcripts. To begin, first create a directory “Index” and copy the reference 

genome fasta files into it. Next, build the index using kallisto index command. After building 

the index, kallisto quant command is used to quantify reads with respect to the reference 

transcriptome. See the following commands:

# Create a directory Kallisto_Analysis and copy all fastq files to it #

$ cd Kallisto_Analysis

# Creating Index directory #

$ mkdir Index

$ cp ~/genome.fa Index/Reference_Genome.fa

# Building Index #

$ kallisto index -i Index/transcripts.idx Index/Reference_Genome.fa

# Running Kallisto #

$ kallisto quant -i Index/transcripts.idx -o Kallisto_output/MT1/Quants -b 

100

MT1_1.fastq MT2_2.fastq

Parameters: –i is the index built, -o is the output directory, and –b is the number of 

bootstraps required. Isoform quantifications are outputted to a tab-separated file (tsv) 

“abundance.tsv” and respective bootstrapping results to “abundance.h5”. These two files will 

be stored in the specified output directory (“Kallisto_output/MT1/Quants” in this example).

Repeat the last step (kallisto quant) for other five samples, MT2, MT3, WT1, WT2, and 

WT3 by changing the directory and file names accordingly.

Step 2. Differential expression of isoforms (DEI) analysis: Sleuth is an R package for 

analyzing transcript abundances quantified by kallisto. It implements statistical algorithms 

for differential analysis and provides exploratory data analysis interface through shiny 

framework in RStudio. Below has the most commonly used kallisto-sleuth pipeline:

2.1 Launch RStudio and load necessary library.

> library(“sleuth”)

2.2 Specify the kallisto results directory where each subdirectory corresponds to a sample. 

Here Kallisto_output have only 6 subdirectories (WT1, WT2, WT3, MT1, MT2, and MT3) 

one per sample.
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> base_dir <- “Kallisto_Analysis”

2.3 Getting sample ID information from kallisto results directory.

> sample_id <- dir(file.path(base_dir,”Kallisto_output”))

2.4 The result can be displayed by typing:

> sample_id 

## [1] “MT1” “MT2” “MT3” “WT1” “WT2” “WT3”

lines beginning with ## show the output of the command

2.5 Assign file paths to sample IDs:

> kal_dirs <- sapply(sample_id, function(id) file.path(base_dir, 

“Kallisto_output”, id, “Quants”))

> kal_dirs

## MT1 

## “Kallisto_Analysis/Kallisto_output/MT1/Quants”

## MT2 

## “Kallisto_Analysis/Kallisto_output/MT1/Quants” 

……… so on for rest of the samples

2.6 Reading experimental design from a file (sample names in column 1 and condition in 

column2) and adding file paths.

### samples_info.txt #

sample_name condition

WT1   WT

WT2  WT

MT1  MT … so on

> s2c <- read.table(file.path(base_dir, “samples_info.txt”), header = TRUE, 

stringsAsFactors=FALSE)

> s2c <- dplyr::select(s2c, sample = sample_name, condition)

> s2c <- dplyr::mutate(s2c, path = kal_dirs)
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2.7 Creating sleuth object: This triggers reading in kallisto results, normalizing est_counts, 

normalizing tpm values, merging in metadata, normalizing bootstrap samples and 

summarizing bootstraps.

# Creating object

> so <- sleuth_prep(s2c, ~ condition)

2.8 Fitting full models and testing using likelihood ratio test.

# Fit full model

> so <- sleuth_fit(so)

# Fit reduced model. In this case, the reduced model is the intercept-only 

model:

> so <- sleuth_fit(so, ~1, ‘reduced’)

# Test #

> so <- sleuth_lrt(so, ‘reduced’, ‘full’)

2.9 Writing results to a file and exploratory data analysis and visualization in sleuth Shiny 

app.

# Write results to a file #

> results_table <- sleuth_results(so, ‘reduced:full’, test_type = ‘lrt’)

> write.table(results_table,file=“Out.txt”,sep=“\t”)

# Visualization in Shiny#

> sleuth_live(so)

Sleuth outputs a tab delimited text file. Each row corresponds to a transcript. User can screen 

for statistically significant differentially expressed transcripts by applying a q-values cutoff, 

column 4 in the example output (provided as supplementary file). Sleuth also provides an 

intuitive exploratory data analysis and visualization interface. As described in protocol 1, 

several analytical plots like PCA, heatmap, MA, scatter plots, density and fragment 

distribution can be plotted using sleuth shiny app. Representative plots are shown in Figure 

4. PCA and heatmaps plot are discussed in protocol 1 above. Scatter plots and density plots 

useful in comparing transcriptome expressions of any two samples (Drăghici 2012).

Step 3. Differential usage of isoforms analysis: Cells often express different isoforms of a 
gene in different concentrations. This is one of the key mechanisms controlling cell fate and 
tissue differentiation. Any imbalance in expression proportions could lead to adverse effect 
in several diseases including cancer, for example imbalance between the long and short 
isoforms of B-cell lymphoma affects lung cancer prognosis (Dou, Xu et al. 2010). Standard 
analysis of individual isoforms cannot completely decipher the shift in isoform proportions. 
It is very possible to have expression level differences with no change in relative abundance. 
Following steps demonstrate how to identify differential isoform usage using Isoform Usage 
Two-step Analysis ( IUTA) (Niu, Huang et al. 2014).
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3.1 First, create a directory named DUI and copy all the alignment (bam) files by renaming 

them to sample names. Bam files from step 3 of protocol 1 can be used here. Use samtools 

to sort and index all bam files.

$ mkdir DUI

$ cp MT1/Tophat_Out/accepted_hits.sorted.bam.bam DUI/MT1.bam

$ samtools sort MT1.bam MT1.sorted

$ samtools index MT1.sorted.bam 

Repeat this step for the other five samples MT2, MT3, WT1, WT2, and WT3; and change 

the directory and file name accordingly.

3.2 Launch RStudio and load IUTA library.

> library(“IUTA”)

3.3 Set input, output and other parameters

# Output directory #

> outdir <- “IUTA_OUT” 

# number of core to use # 

> ncores <- 6 

# Control files #

> bam.list.1<-c(‘WT1.sorted.bam’,’WT2.sorted.bam’,’WT3.sorted.bam’) 

> rep.info.1 = rep(1,length(bam.list.1)) 

# Treatment files # 

> bam.list.2<-c(‘MT1.sorted.bam’,’MT2.sorted.bam’,’MT3.sorted.bam’)

> rep.info.2 = rep(1,length(bam.list.2)) 

3.4 Provide reference transcriptome annotations in gtf format.

> transcript.info <- ‘/Projectdirectory/genes.gtf’

3.5 Run IUTA command with desired parameters.

> IUTA(bam.list.1, bam.list.2, transcript.info,rep.info.1,rep.info.

2,output.dir =outdir,

output.na = FALSE,
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genes.interested = “all”,

strand.specific = rep(“1.5”,length(rep.info.1)+length(rep.info.2)),

gene.filter.chr = c(“_”, “M”, “Un”),

mapq.cutoff = NA, alignment.per.kb.cutoff = 10,

IU.for.NA.estimate = “even”,

sample.FLD = FALSE, FLD = “empirical”,

mean.FL.normal = NA, sd.FL.normal = NA,

number.samples.EFLD = 1e+06,

isoform.weight.cutoff = 1e-4,

test.type = “SKK”, log.p = FALSE, fwer = 1e-2,

mc.cores.user = ncores)

A few important parameters for IUTA are: alignment.per.kb.cutoff to specify the minimum 

expression value (in number of reads) to be considered, mapq.cutoff for read quality, 

strand.specific to indicate the sample library strand type (1, 2 and 1.5 for sense, anti-sense 

and un-stranded libraries), and FLD to specify what fragment length distribution to be used. 

Two options are available for FLD: normal or empirical, where empirical is recommended 

when we are not sure about the distribution and let the program to estimate from the data. 

For most analyses “SKK” is recommend for test.type.

In general, IUTA first estimate transcript abundance and then test for differential usage of 

isoforms. Upon successful execution, IUTA will output two files: estimates.txt with sample-

wise transcript estimates and p_values.txt with results indicating the significance of 

differential isoform usage.

3.6 Visualize results for a gene with differential isoform usage with intuitive pie chart plot. 

Below is an example on inspecting the differential usage of gene Gfra1.

> gene<-”Gfra1”

> pie_compare(gene, 3, estimates.file = “estimates.txt”,

geometry = “Euclidean”, adjust.weight = 1e-300,

output.file = paste(“Pieplot_”,gene, “.pdf”, sep = ““),

group.name = c(“WT”, “MT”),

output.screen=FALSE)

A pie chart is plotted based on isoform abundance estimates from “estimates.txt” output 

from IUTA function in last step. The pie charts from the command above are shown in 

Figure 5.

COMMENTARY

Background Information—A typical transcript level analytical pipeline will first align 

sequence reads to a reference and then estimate the abundance. This approach is highly time 

consuming and trails far behind accelerating next-generation sequencing rate. For instance, 

widely used programs like TopHat2 and Cufflinks require 20 hour to map and 14 hour to 

quantify 20 samples, each with 30 million reads on a 20 core computer (Bray, Pimentel et al. 
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2016). Despite several streamlined quantification algorithms proposed to speed up the 

pipeline, alignment overhead cannot be avoided. To address these challenges, ultra-fast 

lightweight alignment free quantification methods including kallisto and Salmon have been 

proposed. Kallisto pseudo-aligns reads to a reference transcriptome rather than to a reference 

genome and is faster than previous methods by two orders of magnitude without 

compromising on accuracy (Bray, Pimentel et al. 2016, Jin, Wan et al. 2017). Though 

transcriptome analysis can drive new insights, it is limited in terms of understanding non-

coding genome, transcriptional regulation and other non-coding variations (Conesa, 

Madrigal et al. 2016).

Critical Parameters—Kallisto is an expectation maximization (EM) -based alignment-

free quantification method. As in any EM-based algorithm, sample size is the main factor 

affecting the estimation. In this scenario, the number of reads available for quantification is 

the sample size. Thus, to avoid any quantification bias, it is important to design experiment 

such that all the samples have comparable sequencing depth.

To build the Kallisto index, authors of Kallisto recommended a default “kmer” values of 31 

(maximum kmer allowed). However, the kmer value should be adjusted according to the 

sequenced read length, smaller kmer for shorter reads. It is recommended to try out different 

kmer values and do a saturation check.

Performance of EM-based methods will drop with the increase in number of isoform for a 

gene. Both IUTA and Kallisto suffer from this issue. Any significant hits with high number 

of isoforms should be interpreted cautiously.

Fragment length distribution (FLD) used in IUTA is a critical parameter. Since different 

samples may have different fragment lengths, it is always recommended to set FLD to 

“empirical” for the distribution to be computed for each sample based on the sample input 

itself.

Troubleshooting—Processing data from public repositories like GEO (gene expression 

omnibus) may cause read pair mismatch issues with IUTA. This can be fixed by renaming 

paired read IDs to be the same.

Advanced Parameters—Similar to advanced parameters section discussed in protocol 1, 

the strand-specific RNA-seq library should be handled slightly different. Specifically, the 

quantification step in step 1 of this protocol should be modified as follows:

$ kallisto quant [–-single/--fr-stranded/--rf-stranded] –i index fastq files 

Use –-single for single-end data, --fr-stranded for first read forward and --rf-stranded for first 

read reverse.

Yalamanchili et al. Page 15

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2019 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



BASIC PROTOCOL 3

DEEP INTO RNA-SEQ: CRYPTIC SPLICING

With recent advances in deep sequencing technologies, a significant number of novel splice 

junctions are observed in several eukaryotic datasets (Kapustin, Chan et al. 2011). Such un-

annotated cryptic splice cites (CSS) are usually inactive or recognized only at very low 

levels (Green 1986). Because of their dormant nature, cryptic splice sites are often ignored 

as noise. However, it has been only recently shown that cryptic sites can be activated if a 

nearby canonical splice is mutated (Padgett, Grabowski et al. 1986). Cryptic site activation is 

also linked to a wide range of genetic diseases (Wang and Cooper 2007). Almost 50% of the 

disease causing mutations disrupt alternative splicing either by mutating canonical splice 

sites or by activating CSS. Several recent studies have established the role of cryptic site 

activation in various human diseases, from cancers to neurological disease like amyotrophic 

lateral sclerosis (ALS) and frontotemporal dementia (FTD) (Ling, Pletnikova et al. 2015). 

Owing to their potential roles in disease, it is extremely important to thoroughly understand 

the mechanism of CSS activation. Identification of target cryptic sites is the first step to 

decode any CSS-dependent disease mechanism. The following protocol guides through 

CrypSplice (Tan, Yalamanchili et al. 2016), a novel computational approach to identify 

cryptic splice sites from RNA-seq data.

Necessary Resources

• Hardware: A computer or server with access to Unix command environment.

• Software: CrypSplice, Bedtools version 2.17 or higher, R libraries ibb and 

MASS, Integrative Genomics Viewer (IGV) and samtools. Web resources of 

respective tools are listed in Table 1.

• Input files: Aligned bam files. Files must be sorted and indexed (can use the files 

from step 3 of protocol 1). Junction bed files also from step 3 of protocol 1. 

Genome model files: Alternative splicing events, gene model and junction 

database files (can be downloaded directly from CrypSplice link from above 

reference).

Step 1. Preparing alignment and junction files.: CrypSplice need alignment files in bam 

format and junction files in bed format. Refer to steps 1 to 3 in protocol 1 to get bam and 

bed files from raw fastq reads using tophat2. Create a directory named CrypSpliceAnalysis 

and copy all the required input files mentioned above into it. By default, alignment files and 

junction files (from step 3 of protocol 1) are saved as accepted_hits.sorted.bam and 

junctions.bed respectively. Rename them according to sample names while copying. Then, 

sort and index all the bam files using samtools. Sort command will output a sorted alignment 

files based on chromosomal location. The samtools index command will create and index 

file for the sorted bam file. This index is used by other tools like bedtools to quickly extract 

the information.

$ mkdir CrypSpliceAnalysis
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$ cp MT1/Tophat_Out/accepted_hits.sorted.bam CrypSpliceAnalysis/MT1.bam

$ cp MT1/Tophat_Out/junctions.bed CrypSpliceAnalysis/MT1.bed

$ samtools sort CrypSpliceAnalysis/MT1.bam CrypSpliceAnalysis/MT1.sorted

$ samtools index CrypSpliceAnalysis/MT1.sorted.bam 

Repeat these commands for other five samples, MT2, MT3, WT1, WT2, WT3 by changing 

the directory and file names accordingly.

Step 2. Running CrypSplice: Next, run CrypSplice on sorted and indexed bam and 

junction files with user desired parameters.

# Download genome annotation files from http://www.liuzlab.org/CrypSplice/ 

to the # directory CrypSpliceAnalysi and uzip the downloaded file.

$ cd CrypSpliceAnalysis

$ python CrypSplice.py –C WT1.bed,WT2.bed,WT3.bed –T MT1.bed,MT2.bed,MT3.bed 

–G MM10 –F 10 –M 0.95 –P 6

Input junction files should be indicated in comma-separated list followed by parameters –C 

and –T for control and treatment samples respectively. Known alternative splicing events, 

gene model and known junction database files (files for model organisms available from 

http://www.liuzlab.org/CrypSplice/) should be stored in the genome directory specified by –

G. Noise filter –F is used to indicate that any junction less than this threshold is considered 

noise and will be discarded from analysis. Junction match –M followed by a floating value 

ranging from 0 to 1 specifies the minimum fractional overlap to filter out known junctions. 

Parallel processes –P specifies the number of processing core used to run CrypSplice (one 

core per sample is recommended). More details on how to choose appropriate parameters for 

CrypSplice will be discussed in the critical parameters section below. In brief, CrypSplice 

first filters out noisy and all annotated junctions provided in genome model directory from 

the junction files provided. Then, 5’ exon coverage is computed for every junction. Junction 

counts and respective exon counts are used to test for statistical significance using a beta 

binomial model. Finally, every cryptic junction is adjusted for multiple testing and classified 

into three categories: junction gains, junction losses and differential junctions.

Step 3. Filtering and visualizing results: CrypSplice outputs results to three tab-delimited 
text files. Junction gains: Cryptic junctions observed only in treatment samples. Junction 
loses: Cryptic junctions observed only in control samples. Differential junctions: Cryptic 
Junctions observed in both control and treatment samples but with different expression 
strengths. Statistically significant results can be filtered using an adjusted p-value cutoff. 
Finally, junctions can be visualized in Integrative Genomics Viewer (IGV) with the 
following steps: (i) Choose appropriate genome, mm10 for this example. (ii) Load bam files 
to IGV using “File” load option. (iii) Paste junction coordinates of interest to visualize 
junction reads (Fig. 6a). (iv) Right click on any track to open a menu and choose sashimi 
plot. Sashimi plot is an intuitive junction visualization graph showing both exon coverage 
and junction connections. Example sashimi plots from the demo data are shown in Fig. 6b.
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COMMENTARY

Background Information—Recently, more studies had shown the important connections 

of cryptic splice sites to various human diseases, ranging from cancer to neurological disease 

such as amyotrophic lateral sclerosis. Despite of huge interest from the transcriptomic 

communities, we remains lack of a robust computational approach to identify cryptic splice 

sites from RNA-seq data for the past decade. CrypSplice is the first computational tool 

focusing exclusively on identifying cryptic splice sites from RNA-seq data. It uses a beta-

binomial model to effectively handle both inter- and intra-sample variance. Its merit is 

apparent from the large number of TDP-43-dependent splicing defects identified that were 

not previously discovered (Tan, Yalamanchili et al. 2016). Supporting experimental 

validations also conforms the practical usability of the method.

Critical Parameters—Noise threshold (-F): Noisy alignments are unavoidable in any 

high-throughput sequencing data. However, these noisy alignments should not be recognized 

as cryptic events. CrypSplice uses a user defined noise threshold to filter out these noisy 

alignments. By default, a cutoff of 10 reads is used to filter out noisy junctions. However, it 

is recommended to choose this cutoff as a function of sequencing depth, with large cutoff for 

higher coverage and vice versa.

Junction Match (-M): CrypSplice filters out all known junction from that are observed to 

detect cryptic sites. Any minor mapping errors could result in putative cryptic sites. To 

account for such mapping shifts, CrypSplice allows a junction match threshold. Any two 

junctions falling within the cutoff are collapsed to one. However, if the threshold is weak, 

the potential novel junction could be collapsed. It is recommended to choose this cutoff as a 

function of anchor length used to map junction reads (0.95 is used in this protocol). Longer 

anchor length should use a higher cutoff.

Troubleshooting—CrypSplice is mainly dependent on bedtools and ibb package. Any 

changes or upgrades in these packages can potentially cause problems. In case of any issues, 

downgrading to original reported versions of bedtools (V2.17) and ibb package (13.06) can 

help. Alternatively, one can edit bedtools intersect and bedtools coverage commands 

accordingly in the file “CrypSplice.py”.

GUIDELINES FOR UNDERSTANDING RESULTS

Upon successful execution of the steps described in the protocols above, one would obtain a 

list of candidates that are dysregulated at the gene, isoform and junction levels. With the 

candidate list, users could further investigate the regulatory mechanisms that are disturbed 

due to the experiment, for example, from a functional analysis on the candidate genes, gene 

set enrichment analysis, etc (Pathan, Keerthikumar et al. 2015).

Although the pipeline was successfully executed, problems with the analysis could still 

exist. A few common red flags could be checked while interpreting the results:
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• Poor quality of raw sequencing reads could be detected from the FastQC step 

(Step 1 of the basic protocol 1). If the FastQC reports failures on many metrics, 

the quality of the library being sequenced might have been compromised.

• Poor overall mappability of the samples. Overall mappability of a typical pair-

end RNA-Seq data is 80% or higher. Quality of the sample and library will lead 

to variation in mappability. For example, degraded sample such as frozen tissue, 

degraded RNA, library with high GC contents will pose a challenge in mapping 

and lead to lower mappability.

• Discordant mappability of 10% or higher. This hints that a large number of the 

pair-end reads were not mapped according to the expected pair-reads 

assumptions, such as the insertion size and paring of the input reads. In this case, 

users should make sure the input files are in correct order and the reads in the 

files are in pair at the same order. In addition, users could tune the insertion size 

parameter (-r parameter of tophat2) to obtain better mappability.

• Outlier sample(s) observed from PCA plot and correlation heatmap. If a sample 

was not clustered to the other samples of the same genotype from both plots, it 

could be considered as outlier. Users could remove the sample(s), re-normalized 

the counts, and plot the PCA and correlation heatmaps again to assess the sample 

clusters. Due to limited number of samples in most experiments (less than five 

samples per group), the outlier detection with PCA and heatmap should be taken 

cautiously. In addition, users should assess the sample clustering on other factors 

such as batch, library preparation, gender of the mice, types of tissues, and others 

to check if the samples cluster per other factor instead of the designed treatment.

• Differentially expressed genes and isoforms can be filtered and ranked based on 

adjusted P-value and fold change filters respectively. Adjusted P-value ≤ 0.05 

and fold change ≥ 1.5 (at least 50% change) should suffice majority of the 

studies. Fold change cutoff can be adjusted according to the impact of treatment, 

smaller value to capture subtle changes and vice versa.

• Huge differences in isoform usage are attractive. However, it is strongly 

recommended to cross check the estimated isoform proportions with actual 

mapping using IGV. The EM (expectation maximization) procedure of isoform 

quantification may introduce some bias.

• Cryptic junction changes are classified into junction gains, junction losses and 

differential junctions as described in step 3 of protocol 3. Two consecutive 

junction gains between any two consecutive exons indicate cryptic exon 

inclusion. On the other hand, a loss of junction suggests an intron retention. A 

single junction gain corresponds to an alternative start/stop according to the 

strand orientation. Though junctions can be ranked based on relative strength 

(Junction score) always the absolute baseline should also be considered in 

selecting top hits. High relative junction strength (Junction score) need not 

guarantee high impact/cryptic activity.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Quality check metrics on raw sequence reads from FastQC.
Bar plot of quality score (Phred score) for each base in the reads (a). Line plot showing the 

distribution of each nucleotide (A, C, G, T) in the sequence reads on each bases (b).
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Figure 2. Visualization inspection of sample clustering.
PCA plot (a) and heatmap on correlation coefficient between samples (b) based on gene 

expression profiles of the six samples.
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Figure 3. Results of differential gene expression analysis.
MA plot (a) and expression heatmap on the DEGs (adjusted P < 0.01) (b).
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Figure 4. Representative plots from sleuth analysis shiny app.
(a) PCA, (b) Heatmap, (c) Scatterplot, and (d) Density plots.
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Figure 5. Pie chart showing differential isoform usage for gene Gfra1 between WT and MT 
samples.
The usage of isoform P10382 is decreased from 80.7% in WT to 65.3 % in MT samples. On 

the other hand, the usage of P18895 increased in MT samples.
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Figure 6: Visualizing splicing events in IGV:
(a) Screen shot showing exon coverage and (b) Sashimi plots with black arrows pointing to 

junction gains and red arrows pointing to junction losses.
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Table 1.

Required tools and respective web resources

Tool and resource Download URL

Data resources

Sample Fastq files https://bcm.box.com/s/c9q7otvxoog7cmn1b4p9mp8c7thu7q32

Bowtie2 index https://ccb.jhu.edu/software/tophat/igenomes.shtml

Protocol 1: DIFFERENTIAL GENE EXPRESSION ANALYSIS OF RNA-SEQ

FastQC http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Tophat2 (Kim, Pertea et al. 2013) https://ccb.jhu.edu/software/tophat/index.shtml

Samtools (Li, Handsaker et al http://www.htslib.org

HTSeq (Anders, Pyl et al. 2015) https://pypi.python.org/pypi/HTSeq

Rstudio https://www.rstudio.com/

DESeq2 (Love, Huber et al. 2014) http://bioconductor.org/packages/release/bioc/html/DESeq2.html

pheatmap https://cran.r-project.org/web/packages/pheatmap/

Protocol 2: DIFFERENTIAL EXPRESSION AND USAGE OF ISOFORMS

Kallisto (Bray, Pimentel et al. 2016) https://pachterlab.github.io/kallisto/

Sleuth http://pachterlab.github.io/sleuth/about

IUTA (Niu, Huang et al. 2014) https://ccb.jhu.edu/software/tophat/index.shtml

Genome files /GTF files http://www.ensembl.org/info/data/ftp/index.html

Protocol 3: CRYPTIC SPLICING

CrypSplice (Tan, Yalamanchili et al. 2016) http://www.liuzlab.org/CrypSplice/

IGV (Thorvaldsdottir, Robinson et al. 2013) https://software.broadinstitute.org/software/igv/download

Bedtools (Quinlan and Hall 2010) http://bedtools.readthedocs.io/en/latest/

R: Ibb (Pham, Piersma et al. 2010) http://www.oncoproteomics.nl/software/BetaBinomial.html

R: MASS https://cran.r-project.org/web/packages/MASS/index.html
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