Skip to main content
. 2019 Jan 22;18:1533033818824339. doi: 10.1177/1533033818824339

Table 3.

SVM Classification Performance of Selected Feature Subsets With Different Methods.

Method of Feature Selection Number of Selected Features Cross-Validation Cohort (5-Fold Cross-Validation With 100 Bootstrapping Repetitions) Independent Validation Cohort
AUC (95% CI) SEN SPEC AUC SEN SPEC
WRST 17 0.658 (0.653-0.663) 0.605 0.644 0.736 0.593 0.727
Relief 21 0.644 (0.639-0.648) 0.612 0.625 0.679 0.630 0.636
Logistic regression 20 0.628 (0.624-0.633) 0.621 0.564 0.667 0.630 0.576
χ2 Test 16 0.667 (0.663-0.670) 0.573 0.671 0.733 0.630 0.697
LASSO 22 0.767 (0.763-0.770) 0.686 0.709 0.837 0.667 0.818

Abbreviations: AUC, area under the ROC curve; LASSO, least absolute shrinkage selection operator; SEN, sensitivity; SPEC, specificity; WRST, Wilcoxon rank-sum test.