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Abstract: .-aminobutyric acid type B (GABAB) receptors are broadly expressed in the
nervous system and play an important role in neuronal excitability. GABAB receptors are G
protein-coupled receptors that mediate slow and prolonged inhibitory action, via activation of
G,i/o-type proteins. GABAB receptors mediate their inhibitory action through activating inwardly
rectifying KD channels, inactivating voltage-gated Ca2D channels, and inhibiting adenylate cyclase.
Functional GABAB receptors are obligate heterodimers formed by the co-assembly of R1 and R2
subunits. It is well established that GABAB receptors interact not only with G proteins and effectors
but also with various proteins. This review summarizes the structure, subunit isoforms, and function
of GABAB receptors, and discusses the complexity of GABAB receptors, including how receptors are
localized in specific subcellular compartments, the mechanism regulating cell surface expression and
mobility of the receptors, and the diversity of receptor signaling through receptor crosstalk and
interacting proteins.
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Introduction

.-aminobutyric acid (GABA) is the major
inhibitory neurotransmitter in the central nervous
system (CNS). As many as one-third of CNS neurons
in the brain use GABA as their primary neuro-
transmitter.1),2) Most of these neurons are interneur-

ons, which are capable of altering the excitability of
neural circuits by regulating glutamatergic neurons
and preventing hyperexcitation. GABA provides
strong inhibitory effects by acting on two distinct
classes of receptors based on their physiological
and pharmacological properties. GABA type A
(GABAA) receptor is a ligand-gated chloride channel
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which mediates fast inhibitory signals through rapid
postsynaptic membrane hyperpolarization,2) whereas
the metabotropic GABAB receptor produces slow
and prolonged inhibitory signals via G proteins and
second messengers.3) Altered GABAB receptor func-
tion has been reported in a variety of neurological
and psychiatric disorders, including epilepsy, depres-
sion, drug addiction, cognition, and nociception. This
review will summarize our current knowledge of
GABAB receptor structure, function, and binding
partners, and how GABAB receptor trafficking is
modulated by posttranslational modification. In
addition, the relevance of GABAB receptors in
various diseases will be discussed, along with current
therapeutic attempts with GABAB receptor drugs.

1. Structure of GABAB receptors

GABAB receptors were first identified by Dr.
Norman Bowery in 1979 as a receptor that reduces
norepinephrine release through bicuculline- and
isoguvacine-insensitive receptors.4),5) The first
GABAB receptor was only cloned in 1997, nearly 20
years after their discovery.6) GABAB receptors are
members of class C G protein-coupled receptor
(GPCR) family. GPCRs are commonly divided into
four classes (A, B, C, and F) based on the sequence
homology levels of their transmembrane domains,7)

and class A is by far the largest and most studied
GPCRs. Class C GPCRs are composed of metabo-
tropic glutamate receptors (mGluRs), GABAB re-
ceptors, Ca2D-sensing receptors, taste receptors,
pheromone receptors, and several orphan receptors.8)

GABAB receptors and taste receptors are obligatory
heterodimers, whereas others are traditionally con-
sidered to function as homodimers, although recent
studies discovered the assembly of class C GPCRs
with other classes of GPCRs.9),10)

GABAB receptors are prototypical heterodimers
of R1 and R2 subunits.11)–13) GABAB receptor
subunits are composed of three domains: a long
extracellular N-terminal domain called Venus fly-
trap domain (VFT), which contains the orthosteric
binding site for GABA; a heptahelical transmem-
brane domain (7TM); and a C-terminal intracellular
tail (Fig. 1). Among these domains, the three-
dimensional structures have been solved for the
extracellular N-terminal domain and a fragment of
the C-terminal intracellular tail.14)–16) The VFT of
R1 subunits binds to orthosteric ligands but not R2
subunits, although R2 subunits share 54% similarity
with R1 subunits.17),18) Instead, R2 subunits couple
with G protein to produce G protein-mediated

signaling.19)–21) Therefore, it is necessary for GABAB

receptors to form R1/R2 heterodimers to produce
GABA-mediated GPCR functions. The VFT is a
shared structural feature among all class C GPCRs
and is also found in bacterial periplasmic binding
proteins.8),22) The existence of numerous alterna-
tively spliced variants of GABAB receptor subunits
have been described.3) R1 subunits comprise several
splice variants designated as R1a, R1b, R1c, R1e,
R1j, R1k, R11, R1m, and R1n.23) In the human
CNS, the two major splice variants are the R1a and
R1b isoforms, which have been studied intensively
and are known to provide the molecular diversity of
GABAB receptors.3),24) Structurally, the isoforms
differ in their N-terminal domain, with a pair of
sushi domains present in R1a (961aa) but not in
R1b (844aa) (Fig. 1).25) Sushi domains have been
found in several GPCRs26) and can mediate protein
interactions in a wide variety of adhesion pro-
teins.27) Possibly due to the presence of these sushi
domains, R1a subunit-containing GABAB receptors
are preferentially targeted to the axon terminals of
excitatory synapses. Postsynaptically, both R1a and
R1b isoforms are found in dendrites, but only the
R1b subunit seems to localize in spine heads.28),29)

Other splice variants of R1 subunits also exhibit
some unique features. The R1c isoform has a single
sushi domain and is widely expressed in the
brain.30),31) The R1e/g/h/i/j/l/m/n isoforms do
not have the 7 transmembrane domains, G-protein
coupling region nor the C-terminal tail; therefore,
they are thought to be secreted from cells. The R1e
isoform (578aa), which is mainly expressed in
peripheral tissues, strongly interacts with R2 sub-
units and disturbs normal R1/R2 heterodimer
formation.32) Purified sushi domains of the R1j
isoform impairs the inhibitory effect of GABAB

receptors on evoked and spontaneous glutamate
release.33) The R1g/h/i isoforms show similar
sequences to R1j (190aa) containing sushi domains
followed by a unique C-terminal sequence,34) but
their function remains to be elucidated. Other
isoforms such as R1d/f are mostly found in tran-
scription expression profiles and so far, no function
has been confirmed.34) Taken together, R1 subunit
alternative splicing provides a diverse range of
structural and functional GABAB receptors, and
further studies are necessary to understand the
physiological role of these isoforms.

The structure of a heterodimeric complex of
R1b VFT and R2 VFT has been solved by X-ray
crystallography.16) The two subunits bind in a side-
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by-side manner through non-covalent interactions
between the N-terminal lobe structure within the
VFT but facing the opposite direction.16) The VFT
contains two lobes, LB1 and LB2, reaching further
into the extracellular space, and LB1–LB1 interac-
tion serves to facilitate heterodimer formation.15) In
addition, GABAB receptor subunits lack the cys-
teine-rich region found at the C-terminal end of
mGluR ectodomains, which are involved in the
propagation of signals induced by the binding of
orthosteric agonists to mGluRs.16),35)

Dimers, tetramers, or even higher-order oligo-
mers of GABAB receptors can be detected both in
heterologous systems and in native neurons.36)–39)

GABAB receptors are present in equilibrium between
heterodimers and higher-order oligomers with a
relative preference for tetramers (dimers of dimers)
and octamers (tetramers of dimers).37) Of note,
GABAB receptor heterodimers are stable due to
strong non-covalent interactions, and the higher-
order oligomers are the result of weaker and possibly
transient interactions among heterodimers.37) Ago-
nist stimulation does not alter receptor di-/oligome-
rization, but increases the lateral mobility of GABAB

receptor complexes.37),40) Therefore, it is possible that
the association and dissociation of GABAB receptors
occurs in specific locations on the cell surface, and the
dynamic re-arrangement of GABAB receptor com-
plexes allow the expression of a variety of GABAB-
mediated signaling pathways in various cellular
locations.

2. GABAB receptor function

GABAB receptor-mediated signaling pathways
involve one of three effector proteins: G protein-
activated inwardly-rectifying KD (GIRK) channels,
voltage-gated Ca2D (CaV) channels, and adenylyl
cyclase (Fig. 1).3) The downstream effects of GABAB

receptors include inhibition of neurotransmitter
release and modulation of neuronal excitability.3)

The GABAB receptors couple to pertussis toxin-
sensitive G proteins (G,i/o family).41) Following
GABAB receptor activation, G proteins dissociate
into their G, and GO. subunits. The G,i/o subunits
inhibit adenylyl cyclase to reduce cyclic AMP
(cAMP) levels, whereas GO. subunits inhibit Ca2D

channels and activate GIRK channels.42)–44) It is
known that G,i/o proteins inhibit adenylyl cyclase
types I, III, V, and VI, whereas GO. stimulates
adenylyl cyclase types II, IV, and VII. This stim-
ulation depends on the presence of G,s, which results
from the activation of GPCRs.45),46) GABAB receptor

agonist stimulation inhibits basal and forskolin-
stimulated neuronal adenylyl cyclase and reduces
intracellular cAMP levels.47) However, it has been
reported that the activation of GABAB receptors
can enhance cAMP formation through Gs-coupled
GPCR activation.48) Both the inhibition and en-
hancement of cAMP levels by GABAB receptors have
been confirmed in vivo.49) GABAB receptors have
been implicated in synaptic plasticity and memory
formation.50) Because cAMP-dependent protein kin-
ase (PKA) expresses a specific form of synaptic
plasticity, which is associated with hippocampal
long-term memory,51) the cAMP-PKA signaling
pathways regulated through GABAB receptors are
likely to be a mechanism for fine-tuning synaptic
plasticity.

CaV channels mediate calcium influx in response
to membrane depolarization, thus regulating intra-
cellular processes such as muscle contraction, release
of hormones and neurotransmitters, excitation of
neurons, and gene expression.52) One of the first
confirmed ion channel effectors of the GABAB

receptor is the CaV channel. GABAB receptors
decrease calcium conductance in neuronal mem-
branes, and this action appears to be linked primarily
with presynaptic receptors.53) Presynaptic GABAB

receptors inhibit the opening of CaV channels, mainly
N-type (CaV2.2) and P/Q-type (CaV2.1), through
GO. subunits to repress calcium influx and trigger
neurotransmitter release.54) CaV channels are formed
as a complex of several different subunits, ,1, ,2/,
O1-4, and .. The structural subunit of CaV channels
is ,1, which forms an ion channel pore and regulates
ion gating properties.55) The electrophysiological and
pharmacological diversity of CaV channels also arises
from the existence of ,1 subunits, which encode at
least 10 distinct genes that are further divided into
three subfamilies (CaV1, CaV2, and CaV3).56) The
CaV1 subfamily includes CaV1.1, CaV1.2, CaV1.3,
and CaV1.4, which are known as L-type channels, are
typically high voltage-activated and dihydropyri-
dine-sensitive. CaV2.1, CaV2.2, and CaV2.3 are high
voltage-activated and dihydropyridine-insensitive
channels mediating P/Q-type, N-type, and R-type
Ca2D currents. CaV3 channels CaV3.1, CaV3.2, and
CaV3.3 are low voltage-activated and dihydropyr-
idine-sensitive channels, which are called T-type for
their transient currents production.52) L-type and
T-type CaV families are expressed in many cell types,
whereas N-, P/Q-, and R-types are predominantly
expressed in neurons. There is also some evidence
suggesting that GABAB receptors inhibit N-type and

M. TERUNUMA [Vol. 94,392



P/Q-type CaV channel subtypes at postsynaptic
sites.57) These channels are likely to have a role in
the generation of dendritic spikes and the amplifica-
tion of excitatory postsynaptic potentials.58)

GIRK channels are widely expressed within the
CNS and constitute a key determinant of membrane
excitability because they mediate the postsynaptic
inhibitory effects of many neurotransmitters, includ-
ing GABAB receptors.59) When activated, postsy-
naptic GABAB receptors increase potassium con-
ductance in neuronal membranes by opening GIRK
channels to promote KD efflux (Fig. 1).60) This
reaction occurs through GO. subunits, resulting in
a hyperpolarization of the neuron that underlies slow
and prolonged inhibitory postsynaptic potentials.59)

There is also a convincing evidence that G, subunits
can directly interact with intracellular domains of
GIRK channels and control their gating.61),62) In
mammals, there are four different GIRK channel
subunits (GIRK1, GIRK2, GIRK3, and GIRK4);
each consists of two transmembrane spanning do-
mains with both the N- and C-terminus on the
intracellular side of the membrane, and a pore
domain located between the two transmembrane
domains.63) These GIRK channel subunits form
functional homotetrameric or heterotetrameric chan-
nels.64),65) Three GIRK channel subunits (GIRK1,
GIRK2, and GIRK3) exhibit broad distributions
in the CNS, whereas GIRK4 expression is found
primarily in the heart.66) Consisting of a functional
interaction between GIRK channels and GABAB

receptors, these two receptors are highly colocalized
in dendritic spines,67) and the oligomerization of
GABAB receptors with GIRK channels (GIRK1 and
GIRK3) has also been reported.68)

3. Pharmacology of GABAB receptors

The ligands for GABAB receptors can be divided
into three types, agonists, antagonists, and allosteric
modulators. Baclofen, an analogue of GABA, was the
first selective agonist, which was synthesized in 1962,
to enhance blood-brain barrier (BBB) penetration.3)

Up to now, baclofen is the only drug that targets
GABAB receptors on the market, and it is used as
a muscle relaxant to treat spasticity due to spinal
cord injury, cerebral palsy, and multiple sclerosis.69)

Phenibut, a deschloro analogue of baclofen, was
developed in the Soviet Union in the 1960s and
introduced as a neuropsychotropic drug.70) It is also a
potent blocker of ,2/ subunit-containing voltage-
dependent calcium channels.71) Today, phenibut is
marketed for medical use in Russia, Ukraine, and

Latvia, but is not approved for clinical use in the
United States and in most of European countries.
The anticonvulsant and analgesic drug gabapentin
interacts with the sushi domain of R1a/R2 hetero-
dimer.72)–74) However, the inhibitory effect of gaba-
pentin was found to be independent of the activation
of GABAB receptors.75)–78) The phosphinic acid
analogue of GABA, 3-aminopropyl-phosphonic acid
(CGP27492) and its methyl homolog CGP35024 are
more potent than baclofen.79)–81) Of note, CGP27492
and CGP35024 also act as antagonists for GABAC

receptors, the newly identified members of the
Cl!-permeable ionotropic GABA receptors that
mediate slow and sustained neural inhibition.82)–84)

Other methyl phosphinic acid-based agonists include
CGP44532 and its (R)-(D)-enantiomer CGP44533.
CGP44532 has a longer lasting inhibitory effect than
CGP44533 with more potent analgesic response than
baclofen.85)

There is a rapid transition from .-aminopropyl-
methyl-phosphinic acid CGP35024 acting as a
GABAB receptor agonist to its homolog .-amino-
propyl-ethyl-phosphinic acid CGP36216 acting as a
GABAB receptor antagonist.79),86),87) It has been
shown that CGP47656 increases the release of GABA
on presynaptic GABAB autoreceptors in the rat
neocortex but it also acts as a full agonist at
presynaptic GABAB heteroreceptors by inhibiting
the release of somatostatin.88) .-Hydroxy-butyric
acid (GHB) is a minor metabolite of GABA
synthesized by GABA transaminase and succinic
semialdehyde reductase. GHB is known to act as a
weak GABAB receptor partial agonist and is used to
treat excessive daytime sleepiness and cataplexy in
patients with narcolepsy.89)

GABAB receptor antagonists that block slow
inhibitory signaling have been developed.90) Notably,
the first available selective GABAB receptor antag-
onists are all baclofen analogues, namely phaclofen,
sacrofen, and 2-hydroxy-sacrofen. Although these
antagonists display low potency, they cannot pene-
trate the BBB. The first GABAB receptor antago-
nists capable of penetrating the BBB were
3-aminopropyl-diethoxymethyl-phosphinic acid
(CGP35348), 3-aminopropyl-butylphosphinic acid
(CGP36742), 3-aminopropyl-cyclohexylmethyl-
phosphinic acid (CGP46381), and 3-amino-2(R)-
hydroxypropyl-cyclohexylmethyl-phosphinic acid
(CGP51176). These antagonists are called first-
generation GABAB receptor antagonists.69) Cur-
rently there are numerous GABAB receptor antago-
nists, which display IC50 values from the nanomolar
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to micromolar range and their therapeutic potentials
are currently being studied.

Allosteric modulators are molecules that bind to
a site on a neurotransmitter receptor that is topo-
graphically distinct from the orthosteric binding
pocket for agonists.91) Allosteric agents have little
or no intrinsic agonistic activity on their own but
induce conformational changes in the receptor, and
affect the interaction of receptors with agonists and
associated proteins. Allosteric modulators of GABAB

receptors constitute a good pharmacological alter-
native to gain selectivity for the treatment of various
disorders, because of their unique structure. The
GABAB receptor positive allosteric modulator
(PAM) acts by stabilizing the active conformation
of the 7TM domain in R2 subunits and thus induces
the closure of the VFT domain in the R1 subunit,
which is associated with GABAB activity (Fig. 1).
The first available PAMs for GABAB receptors were
2,6-di-tert-butyl-4-(3-hydroxy-2,2-dimethyl-propyl)-
phenol (CGP7930) and N,NB-dicyclopentyl-2-meth-
ylsulfanyl-5-nitropyrimidine-4,6-diamine (GS39783),
both of which enhance agonist-stimulated responses
by binding at the 7TM domain of the R2 subunit.91)

CGP7930 shows antidepressant-like effects and
reduces alcohol intake in rodents.92) CGP7930
directly acts as a PAM and a partial agonist through
R2 subunits, which can facilitate agonist responses
at low concentrations, and activate the receptor at
higher concentrations.93)–95) A more potent com-
pound has also been identified, GS39783, which
enhances GABAB receptor-mediated inhibition of
cAMP formation and shows anxiolytic-like effects
and attenuates rewarding properties of the substan-
ces of abuse.96)–98)

4. GABAB receptor interacting proteins

GPCR function can be attributed to receptor
interacting molecules that are expressed and function
in distinct cell types.99) A number of interacting
proteins for GABAB receptors have been identified
(Fig. 2).99) These proteins are important not only for
regulating receptor activity but also for modulating
receptor trafficking. This section summarizes the
types of proteins that interact with GABAB receptors
and discusses their roles in GABAB receptor function
(Table 1).

G proteins and RGS proteins. GABAB

receptor-mediated signal transduction requires G
proteins and G protein signaling (RGS) proteins.100)

From biochemical studies, it is evident that GABAB

receptors predominantly couple to G,i- and G,o-

type G proteins.101) Activated receptors catalyze
the exchange of guanosine diphosphate to guanosine
triphosphate (GTP) on G, subunits, promoting
conformational changes of heterotrimeric G proteins
(G,O.) and dissociation of G, subunits from GO.

subunits. The GTP-bound G,i/o subunit then
inhibits adenylyl cyclase, decreases intracellular
cAMP levels and reduces PKA-mediated signal-
ing.100) GO. subunits, on the other hand, couple with
two types of ion channels, GIRK and Ca2D channels.
These channels modulate second messengers such as
cAMP, diacylglycerol (DAG), or inositol trisphos-
phate (IP3) and regulate multiple signaling cascades.

It is well known that the family of RGS proteins
are essential for GPCR-GIRK channel signaling
pathway.102) RGS proteins negatively regulate
GPCR signaling by serving as G, GTPase-activating
proteins.103) At least 37 RGS proteins have been
identified in humans, with a conserved RGS homol-
ogy domain that is crucial for GTPase activity.104)

They are classified into eight subfamilies (RZ, R4,
R7, R12, RA, GEF, GRK, and SNX) based on their
structure and amino acid sequence similarities. RGS2
protein reduces GABAB-GIRK signaling sensitivity
in dopaminergic neurons of the ventral tegmental
area.105) RGS6 protein plays a role in motor
coordination by modulating GABAB receptor signal-
ing in the cerebellum.106) Furthermore, RGS4 protein
directly associates with the R2 subunit of the
GABAB receptor in the prefrontal cortex and
hypothalamus.107) RGS4 protein also induces a faster
form of desensitization within a second of agonist
application in vitro.108)

Transcription factors. Two transcription
factors, activating transcription factor (ATF)/cAMP
response element binding-protein (CREB) family and
CCAAT/enhancer-binding protein (C/EBP) homol-
ogous protein (CHOP) have been reported to
associate with GABAB receptor subunits.109)–112)

The C-terminus of R1 subunit interacts with the
leucine zipper motif of ATF4/CREB2 and ATFx.
Translocation of ATF4/CREB2 into or out of the
nucleus is seen following GABAB receptor activation;
however, the physiological significance of ATF4/
CREB2 interaction with GABAB receptors is yet to
be determined.110),111) The interaction of GABAB

receptor and CHOP is reported to regulate GABAB

receptor surface expression. The C-terminal leucine
zipper of CHOP associates with the leucine zipper
present in the C-terminal domain of R2 subunits,
and the N-terminal domain of CHOP associates
with an unidentified intracellular site of the R1a
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Fig. 2. GABAB receptor interacting proteins. A number of proteins have been found to interact with the C-terminus of GABAB

receptor subunits. Among the interacting proteins are leucine-zipper transcription factors ATF4/CREB2 and CHOP, scaffolding and
adaptor proteins 14-3-3, GISP, NSF, and PDZ domain-containing scaffold proteins Shrm4 and Mupp1. It is proposed that these
proteins regulate receptor dimerization, intracellular trafficking, and synaptic localization. The C-terminus of the R2 subunit
associates with KCTD proteins, which regulate CaV channel activity and GABAB receptor trafficking. The C-terminus of the
R1 subunit associates with the brain-specific RNA binding protein Marlin-1 to target the cytoskeleton and regulate receptor
transportation. Neurotransmitter receptors such as GABAA receptor .2 subunit, mGluRs, and GIRK channels are also GABAB

receptor binding partners although only the .2 subunit has been identified to directly associate with R1 subunits so far. The N-
terminus of R1 subunits also interact with proteins such as extracellular matrix protein fibulin-2 and tenascin. The extracellular
sushi domains of the R1 subunit interact with fibulin-2, whereas tenascin binds to the extracellular domains of R1 subunits, possibly
via the second transmembrane domain. Other proteins such as Gi/o proteins and RGS proteins bind to the R2 subunit to induce
GPCR signaling.
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Fig. 1. Structural organization of GABAB receptors and the primary GABAB receptor effectors. Functional GABAB receptors form
heterodimers composed of R1 and R2 subunits. Both subunits are heptahelical membrane proteins that have seven-transmembrane
(7TM) domains with a large extracellular N-terminal domain containing a Venus flytrap (VFT) domain and a large intracellular
C-terminal tail containing a coiled-coil protein–protein interaction module. The R1 subunit is responsible for ligand binding in the
VFT domain, whereas the VFT of R2 subunit fails to bind any known ligands. Instead, the heptahelical domain of the R2 subunit
contains a binding site for allosteric modulators, which affect the affinity of ligand binding to the R1 subunit. The interaction between
the R1 and R2 subunits takes place at their C-terminus through the coiled-coil domains. The R1 subunit exists in two main isoforms.
R1a is distinguished from R1b by the presence of two sushi domains (SDs). An endoplasmic reticulum (ER) retention signal (RSRR)
is present distal to the coiled-coil domain in the R1 subunit and prevents the ER exit of R1 unless it is masked by an R2 subunit. The
binding of GABA results in the recruitment and activation of G,i/o proteins via the R2 subunit. The activated G,i/o subunits
inhibit adenylyl cyclase, resulting in lowered cAMP levels, while GO. subunits activate GIRK channels at postsynaptic sites and
inhibit CaV channels at presynaptic sites, leading to neuronal inhibition.
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subunit.112) In HEK293 cells, overexpression of
CHOP induces the accumulation of GABAB recep-
tors in the endoplasmic reticulum (ER).112) Ischemia-
mediated up-regulation of CHOP down-regulates
cell surface GABAB receptors by preventing their
trafficking from the ER to the plasma membrane,
and disrupts GABAB receptor heterodimerization.113)

Nerve growth factor (NGF) and brain-derived
neurotrophic factor (BDNF) genes are thought to
be the targets of GABAB-mediated transcriptional
regulation. The production of both NGF and BDNF
are enhanced following GABAB receptor antagonist
stimulation.114) However, the linkage of GABAB

receptor to the transcriptional factors such as a
transduction signaling mechanism to the nucleus,
still needs to be addressed.

Scaffolding proteins. Scaffold proteins are
crucial regulators of many key signaling pathways. It
offers a simple and flexible mechanisms for regulating
selectivity in signaling pathways, shaping output
cellular behaviors, and achieving new responses.115) It
is known that GPCRs also function as scaffolds for
the recruitment of a variety of proteins that serve to
modulate both G protein-dependent and -independ-
ent cellular signaling pathways, and regulate GPCR
trafficking.116)

The C-terminus of the R1 subunit contains
consensus motifs involved in binding to 14-3-3
proteins, small dimeric proteins (27–32 kDa) with
seven highly conserved isoforms (O, ., 1, <, C, 2,
and =).117) These proteins have been implicated in a
variety of cellular processes, including regulation of

Table 1. Summary of GABAB receptor interacting proteins

Proteins Site of interaction Function References

Gi/o
R2 subunit second

intracellular loop

Effector binding

Essential for GABAB-mediated signaling

3

101

RGS R2 subunit GIRK channel signaling 102–108

ATF4/CREB2 R1 subunit C-terminus Receptor-mediated transcriptional regulation
110

111

CHOP
R2 subunit C-terminus

R1a subunit

Receptor-mediated transcriptional regulation

Accumulation of GABAB receptors in the ER
112

14-3-3 R1 subunit Interfere R1/R2 heterodimerization 118

GISP R1 subunit Enhance GABAB receptor surface expression 119

NSF
C-terminus of R1 and

R2 subunits

Enhance GABAB receptor signaling and

trafficking
120

Shrm4 R1 subunit C-terminus
Enhance GABAB receptor signaling and

trafficking
121

Mupp1 R2 subunit C-terminus
Modulate GABAB receptor stability and

signaling
122

GABAA receptor .2

subunit
R1 subunit

Enhance R1 subunit surface expression

Enhance R1/R2 heterodimer internalization
126

mGluR1 ND
GABAB receptor-mediated Ca2D signaling

Increase glutamate sensitivity of mGluR1

130

134

GIRK channel ND Receptor signaling
67

68

KCTD R2 subunit C-terminus
Reduces GABAB receptor internalization

Increase S892 phosphorylation in R2 subunit
145–148

Marlin-1 R1 subunit C-terminus GABAB receptor transport? 149

Fibulin-2
Sushi domain of the

R1 subunit
Receptor anchoring 25

Tenascin
Extracellular domains

of R1 subunit

Suppress postsynaptic GABAB receptor

activity
151

USP14
R1 subunit second

intracellular loop

Regulates post-endocytic sorting of GABAB

receptors
170

ND: not determined.
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synaptic transmission via KD channels, GPCR-
mediated signal transduction, and interactions with
phosphoproteins.117) Only two isoforms of 14-3-3
proteins 1 and 2 interact with the R1 subunit of the
GABAB receptors, and interfere with R1/R2 hetero-
dimerization.118) A 130-kDa protein, GPCR interact-
ing scaffolding protein (GISP), associates directly
with the R1 subunit via a coiled-coil domain. GISP
promotes GABAB receptor surface expression and
enhances GIRK currents.119) The C-terminus of
both R1 and R2 subunits interact with the scaffold-
ing protein N-ethylmaleimide-sensitive factor (NSF),
an ATPase that is critical for intracellular traffick-
ing.120) Coordinated action of NSF and protein kinase
C (PKC) regulates the activity of GABAB receptors.

The C-terminus of the R1 subunit contains a
putative PDZ domain-binding consensus sequence.
A recent study identified that Shrm4, a protein
expressed only in polarized tissues and whose
mutations have been linked to epilepsy and intellec-
tual disability, interacts with the C-terminus of the
R1 subunit and controls their cell surface expression
and intracellular trafficking via a dynein-dependent
mechanism.121) Shrm4 associates with both R1a and
R1b subunits, and Shrm4 knockdown reduced the
levels of both isoforms in dendrites. Because the R1a
subunit preferentially localizes to axons via its sushi
domains, only an R1a subunit that could escape from
axonal targeting may associate with Shrm4 in the
Golgi apparatus and be re-directed to dendrites.121)

GABAB receptor R2 subunits possess a C-terminal
motif VSGL that has the potential to interact with
PDZ-domain-containing scaffold proteins. Biochem-
ical analysis confirmed that Multi-PDZ domain
protein 1 (Mupp1) interacts with R2 subunits and
regulates GABAB receptor signaling as well as
receptor stability.122)

Neurotransmitter receptors. GABAB recep-
tors interact with several neurotransmitter receptors
and regulate receptor activity. Examples of such
receptors are ionotropic GABAA receptors. Twenty-
one GABAA receptor subunits have been cloned from
the mammalian CNS. These have been divided into
eight classes based on sequence identity: ,(1–6),
O(1–3), .(1–3), /, C(1–3), :, 3, and ;(1–3).123) The
majority of GABAA receptor subtypes in the brain
are composed with a likely stoichiometry of
2,:2O:1..124) To a lesser extent, //C/: subunits
replace the . subunit to form benzodiazepine-
insensitive receptor subtypes.125) The .2 subunit of
GABAA receptors was found to interact with the
R1 subunits of GABAB receptors and promote R1

subunit surface expression in the absence of R2
subunits.126) On the other hand, the .2 subunit
associates with functional R1/R2 heterodimers and
enhances GABAB receptor internalization in re-
sponse to agonist stimulation.126) In contrast, the
activation of GABAB receptors promotes BDNF
secretion through increased phospholipase C
(PLC)/DAG/PKC activation, and enhances
GABAA receptor cell surface expression.127) Signaling
crosstalk between GABAB and GABAA receptors
has also been identified. In developing hypothalamic
neurons, GABAB receptor activation depresses
GABAA receptor-mediated Ca2D elevation, both by
reducing the presynaptic release of GABA and
decreasing postsynaptic Ca2D responses.128) In den-
tate gyrus granule cells, GABAB receptors colocalize
with GABAA receptors on postsynaptic dendritic
and somatic membranes, and GABAB receptor
activity enhances tonic inhibition induced by extra-
synaptic GABAA receptors.129)

mGluR1 is another receptor found to interact
with GABAB receptors.130) mGluR1 belongs to class
C type GPCRs as a GABAB receptor. It couples
with Gq protein to increase IP3 production and
Ca2D signaling when activated by glutamate.131) Both
receptors exhibit a high co-localization in the
dendritic spine of Purkinje cells but no oligomeriza-
tion of GABAB receptor and mGluR1a is observed,
suggesting the existence of a GABAB-mGluR1
receptor complex but with no physical contact.132),133)

Extracellular Ca2D interacts with GABAB receptors
in cerebellar Purkinje cells, leading to an increase
in the glutamate sensitivity of mGluR1, and that
extracellular Ca2D-mediated crosstalk is not medi-
ated via G,i/o proteins.134) Precise control of these
two receptors is thought to be important for the
balance of neuronal inhibition and excitation.

Although no physical contact or complex for-
mation has been reported, there is functional cross-
talk between GABAB receptors and ionotropic
glutamate receptors. The major synaptic Ca2D

signals in the brain are mediated via N-methyl-D-
aspartate (NMDA) receptors, which are crucial for
activity-dependent changes in synaptic plasti-
city.135),136) Ca2D influx via NMDA receptors is
inhibited by GABAB receptor activation.137) This
effect on NMDA receptors is independent of GIRK
channel or CaV channel activation. There are several
reports, including from the author, that NMDA
receptors can regulate GABAB receptor endocytosis,
trafficking and, degradation.138)–140) NMDA receptor
activation promotes GABAB receptor phosphoryla-
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tion and dephosphorylation depending on the length
of NMDA receptor activation, and regulates GABAB

receptor cell surface expression.139) NMDA receptor-
mediated regulation of GABAB receptors may be
important in conditions of neurological diseases, such
as epilepsy and ischemia. Another type of ionotropic
glutamate receptor, , -amino-3-hydroxy-5-methyl -
4- isoxazolepropionic acid (AMPA) receptors are
the main fast synaptic transduction elements and
crucial for synaptic plasticity. It was found that
enhanced GABAB receptor activity increases the
number of excitatory synapses and cell surface
AMPA receptors.50)

Functional crosstalk between GABAB receptors
and receptor for tyrosine kinases (RTKs) has also
been reported. GABAB receptors trigger the secretion
of BDNF and subsequent activation of the tropo-
myosin-related receptor kinase B (TrkB) receptor
signaling pathway to promote the development of
GABAergic synapses.141) The GABAB receptor can
also transactivate insulin-like growth factor-1 (IGF-
1) receptor (IGF-1R) to induce Akt (protein kinase
B) phosphorylation and protect cerebellar granule
cells from apoptosis.142) Upon activation of GABAB

receptors, G,i/o and GO. subunits are released from
GABAB receptors, followed by recruitment of focal
adhesion kinase 1, IGF-1R, and Akt to GABAB

receptors. This dynamic regulation of GABAB

receptor-associated complex formation is critical for
signal transduction and transactivation-dependent
neuronal survival.143)

Other important binding proteins. A recent
study showed that GABAB receptors form macromo-
lecular complexes with members of a subfamily of the
potassium channel tetramerization domain-contain-
ing (KCTD) proteins. KCTD proteins consist of 26
members that share sequence similarity with the
cytoplasmic domain of voltage-gated KD (Kv) chan-
nels and have roles in various biological processes
including transcriptional repression and cytoskeleton
regulation.144) The KCTD protein family members
KCTD8, KCTD12, KCTD12b, and KCTD16 are
tightly associated with the C-terminus of GABAB

receptor R2 subunit.145),146) This co-assembly changes
the properties of GABAB receptors in a KCTD
subtype-specific manner. For instance, KCTD16 and
KCTD8 lead to the persistent inhibition of CaV
channel activity, whereas KCTD12 and KCTD12b
receptors transiently decrease CaV channel activ-
ity.146),147) Furthermore, KCTD12 reduces the con-
stitutive receptor internalization to increase the
magnitude of receptor signaling.148)

The C-terminus of the GABAB receptor R1
subunit associates with brain-specific RNA-binding
protein Marlin-1, also designated as Jamip-1 or
Jakmip1.149) The association of GABAB receptor
and Marlin-1 was found in cytoskeleton, thus it is
thought to regulate receptor transport.150) The N-
terminus of the GABAB receptors also interacts with
proteins such as fibulin-2. Fibulin-2 is an extra-
cellular matrix protein that binds to the sushi domain
of R1a subunit, but not R1b subunit.25) Because R1a
and R1b isoforms of the R1 subunit have been shown
to preferentially localize to different subcellular
compartments, fibulin-2 may provide evidence for
the existence of subtype-specific interacting proteins.
Finally, there is some evidence that the HNK-1
carbohydrate carried by many neural extracellular
matrix proteins, such as tenascin-R and tenascin-C,
binds to an extracellular domain of R1 subunits.151)

HNK-1 carbohydrate may be involve in homeostatic
regulation of GABAA receptor-mediated perisomatic
inhibition by suppressing postsynaptic GABAB

receptor activity.151)

5. Posttranslational modification
of GABAB receptors

Posttranslational modifications (PTMs) of pro-
teins play an important role in cellular functions.
PTM is the covalent addition of certain functional
groups to proteins. More than 40 PTMs have been
identified, and their relation to the diseases such as
cancer and neurological disorders have been pro-
posed. This section summarizes two major PTMs
found in GABAB receptors, phosphorylation and
ubiquitination, and their role in regulating GABAB

receptor function.
Phosphorylation. Protein phosphorylation is

the most common and best studied PTM, in which
protein function is regulated in response to extra-
cellular stimuli both inside and outside the nervous
system.152) Regulation of protein phosphorylation
requires protein kinases, protein phosphatases, and
substrate proteins. Phosphorylation is involved in
almost every cellular process, and it modulates the
activity of target proteins at various cellular loca-
tions, and controls the activity of signaling networks.
Protein phosphorylation is achieved by protein
kinases that transfer a phosphate group from
adenosine triphosphate (ATP) to serine, threonine,
and/or tyrosine residues of a target protein, and this
can be reversed by a reaction called dephosphoryla-
tion by protein phosphatases. Disruption or enhance-
ment of protein phosphorylation is implicated in the
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progression of various serious diseases including
cancer, neurodegeneration, and immune diseases.153)

Prolonged agonist stimulation of GPCRs often
leads to phosphorylation of multiple intracellular
residues, which is largely dependent upon the activity
of G protein-coupled receptor kinases (GRKs). In
general, phosphorylation of GPCRs by GRKs in-
duces the desensitization of the receptor followed by
an interaction with cytosolic cofactor protein O-
arrestin, which uncouples G proteins from the
receptor and removes them from the plasma mem-
brane via clathrin-dependent endocytosis to termi-
nate receptor signaling.154) This is considered as an
important mechanism for GPCRs to regulate recep-
tor signaling efficacy. Emerging evidence for GABAB

receptors suggests that this GPCR does not conform
to this type of regulation. Multiple studies using both
native and recombinant receptors have demonstrated
that GABAB receptors do not undergo agonist-
induced internalization and are not GRK sub-
strates.155) Although GRKs did not appear to be
GABAB receptor kinases, GRK4 and GRK5 have
been reported to play a role in agonist-induced
desensitization.156),157) The suppression of GRK4
levels in cerebellar granule cells strongly inhibits
GABAB receptor desensitization.156) Similarly, in
Xenopus oocytes and baby hamster kidney cells,
expression of GABAB receptors and GIRKs does not
result in desensitization unless co-expressed with
GRK4 or GRK5.157) Thus, unlike most GPCRs,
GRKs may function as anchoring proteins that
regulate GABAB receptor activity but not phospho-
rylation. Biochemical studies have revealed that
GABAB receptors are phosphorylated by various
kinases on multiple serine and threonine residues
within the cytoplasmic domains of both R1 and R2
subunits.158) Moreover, GABAB receptor exhibits
significant levels of basal phosphorylation that are
not due to agonist stimulation and undergo clathrin-
dependent constitutive endocytosis followed by
receptor recycling.155)

So far, five phosphorylation sites have been
identified: serine 867 (S867) and S917/923 on the
R1 subunit, and S783 and S892 on the R2 subunit
(Fig. 3). S867 on the R1 subunit is subject to
phosphorylation by calcium/calmodulin-dependent
protein kinase II (CaMKII). S867 phosphorylation
promotes dynamin-dependent GABAB receptor en-
docytosis particularly to the receptors that cluster
with GIRK channels.140) Phosphorylation of S917/
923 on the R1 subunit and S783 on the R2 subunit
are all mediated by 5BAMP-dependent protein kinase

(AMPK).159) AMPK acts as an energy sensor to
regulate cellular metabolism and directly associates
with the R1 subunit via residues 910–925 within the
coiled-coil domain. The role of S783 phosphorylation
in GABAB receptors has been studied intensively by
the author in both native and recombinant receptors.
The physiological relevance of all three AMPK
substrates have been examined by measuring
AMPK-mediated GIRK channel activity, and so
far, only S783 phosphorylation is evident in enhanc-
ing the cell surface stability of GABAB receptors.159)

Termination of S783 phosphorylation has also been
studied. Activation of NMDA-type glutamate recep-
tors rapidly increase S783 phosphorylation followed
by a slower protein phosphatase 2A activity, which
transiently switches the state of S783 phosphoryla-
tion. Dephosphorylated GABAB receptors undergo
clathrin-mediated endocytosis and divert from a
recycling to a proteasomal degradation pathway to
attenuate GABAB receptor signaling.139) It is evident
from the studies using S783A mutant knock-in mice
that S783 phosphorylation does not significantly
impact presynaptic GABAB receptor function at
glutamatergic neurons but modulate postsynaptic
GABAB receptor activity.50) S892 on the R2 subunit
is a PKA substrate.160) S892 phosphorylation enhan-
ces the membrane stability of GABAB receptors,
and prolonged activation of GABAB receptors via
activation of G,i/o protein, leads to the inhibition
of adenylyl cyclase to reduce PKA levels, and
consequently a reduction in the phosphorylation of
S892.155) The phosphorylation of S892 can be
promoted by the assembly of KCTD12 with R2
subunits.161) The assembly of receptors with
KCTD12 increases basal S892 phosphorylation and
stabilizes receptors on the cell surface.148) Increased
tonic S892 phosphorylation attenuates KCTD12-
induced fast desensitization. Phosphorylation of
S783 and S892 has also been detected in astrocytes,
which are the most abundant cells in the CNS and
play essential roles in synaptic transmission. ATP-
mediated P2Y receptor (P2YR) signaling elevates
intracellular calcium levels and enhances both S783
and S892 phosphorylation.162) S783 phosphorylation
is mediated via P2YR-Ca2D/CaM-dependent protein
kinase kinase (CaMKK)-AMPK signaling, and S892
phosphorylation is induced by pertussis toxin-sensi-
tive P2YRs. These phosphorylation on astrocytic
GABAB receptors are likely to act as a detector to
fine-tune astrocyte activity.

PKC is also known to phosphorylate GABAB

receptor R1 subunits, although the phosphorylation
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site has not been identified.120) In Chinese hamster
ovary cells, GABAB receptor activity promotes PKC
recruitment to the plasma membrane and induces
R1 subunit phosphorylation. Phosphorylation of
the R1 subunit fosters the dissociation of NSF pro-
tein from GABAB receptors and enhances desensiti-
zation. PKC phosphorylation does not trigger
GABAB receptor internalization similar to PKA
phosphorylation.120)

Ubiquitination. Ubiquitination is a posttrans-
lational modification that generally directs proteins
for degradation by proteasomes or by lysosomes,
and this modification functions to regulate the
number of cellular processes including inflammation,
stress responses, and DNA repair. An 8.5 kDa protein
ubiquitin associates with the lysine (Lys) residues of
target proteins by a sequential reaction of three
enzymes: ubiquitin activating enzymes (E1), ubiq-
uitin-conjugation enzymes (E2), and ubiquitin ligases
(E3). Ubiquitination of GPCRs and the mechanisms
for regulating receptor to undergo lysosomal degra-
dation are well established.163) Furthermore, recent

findings have provided strong evidence for the
additional role of ubiquitin in other cellular mecha-
nisms such as receptor trafficking, O-arrestin- and G
protein-mediated signaling.164)–166)

Ubiquitination has been reported to regulate the
amount of newly synthesized GABAB receptors that
traffic to the plasma membrane via endoplasmic
reticulum-associated degradation machinery.167) The
Lys-48-linked polyubiquitination of lysines 767/771
in the C-terminal domain of the R2 subunit targets
receptors to proteasomes for degradation, and
inactivation of these ubiquitination sites increases
receptor levels in the plasma membrane as well as
GABAB receptor-mediated signaling. Another type
of GABAB receptor ubiquitination, Lys-63-linked
ubiquitination of R1 subunit is known to promote
surface receptor degradation.168) Cell surface GABAB

receptor degradation has been reported upon
activation of glutamate receptors, possibly through
CaMKII-mediated phosphorylation of S867 on the
R1 subunit.138),169) Lys-63-linked ubiquitination of
the R1 subunit is mediated by the E3 ligase Mind
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Slow desensitization

Increase surface stability
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Fig. 3. Phosphorylation of GABAB receptors and their functional modulation. Five phosphorylation sites have been identified so far:
serine 867 (S867) and S917/923 on the R1 subunit, and S783 and S892 on the R2 subunit. Calcium/calmodulin-dependent protein
kinase II (CaMKII) phosphorylates S867 on R1 subunit and promotes dynamin-dependent receptor endocytosis. 5BAMP-dependent
protein kinase (AMPK) has been found to phosphorylate S917/923 on the R1 subunit and S783 on the R2 subunit. However, only
S783 phosphorylation is evident in native tissue. S783 phosphorylation stabilizes GABAB receptors on the plasma membrane, thereby
enhancing GIRK channel activity. The termination of S783 phosphorylation is due to dephosphorylation by protein phosphatase
2A (PP2A), which promotes clathrin-mediated endocytosis of GABAB receptors followed by proteasomal degradation. S892
phosphorylation by PKA enhances GABAB receptor cell surface stability, promotes potassium channel tetramerization domain-
containing (KCTD) 12 (KCTD12) protein assembly with the R2 subunit and attenuates KCTD12-induced desensitization.
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Bomb-2.169) PKC-induced ubiquitination of GABAB

receptors has also been proposed recently, and the
de-ubiquitination enzyme USP14 (ubiquitin-specific
protease 14), which associates with the R1 subunit
via the second intercellular loop, regulates post-
endocytic ubiquitination of the GABAB receptors.170)

6. GABAB receptor trafficking
and cell surface mobility

Cell-surface trafficking of GABAB receptors is
controlled by an ER retention sequence (RSRR) in
the C-terminus of R1 subunits, thus the R1 subunit
cannot reach the plasma membrane by itself and is
retained in the ER. The C-terminal tail of R2 subunit
masks ER retention sequences in the R1 subunit via
their coiled-coil domain interaction and escort the
R1 subunit to the cell surface.171)

Control of cell surface GABAB receptor expres-
sion plays an important role in the regulation of
receptor efficacy. GABAB receptor cell surface
expression is remarkably stable, and baclofen treat-
ment does not induce conventional O-arrestin recruit-
ment.155),160) However, the GABAB receptor under-
goes constitutive endocytosis via clathrin-mediated
pathways.172) In basal conditions, GABAB receptors
internalize as heterodimers via clathrin- and dyna-
min-dependent mechanisms and localize to Rab11-
positive recycling endosomes. After constitutive
endocytosis, large numbers of GABAB receptors
recycle back to the plasma membrane to maintain
steady-state cell surface numbers.138),155) Of note,
endocytosis is detected only in dendrites and not in
axons.138) The balance between insertion and degra-
dation after receptor internalization as well as a rapid
recycling processes maintain GABAB receptor cell
surface expression levels.173) As mentioned earlier,
phosphorylation of GABAB receptors dramatically
regulate cell surface stability of the receptors.
Exposure to glutamate promotes phosphorylation/
dephosphorylation of GABAB receptors and regu-
lates cell surface number of the receptors.

Lipid rafts are dynamic assemblies of proteins
and lipids that float freely within the liquid-
disordered bilayer of cellular membranes. These
highly dynamic raft domains are essential in signaling
processes and also form sorting platforms for targeted
protein trafficking. GABAB receptors and their
downstream effectors, G,i/o proteins, are all local-
ized in lipid rafts.174),175) Notably, GABAB receptors
in raft-enriched fractions exhibited lower GTP.S
response to agonist binding than in whole mem-
branes, suggesting that changes in the membrane

environment may regulate receptor function.175)

Furthermore, studies of the dynamic lateral diffusion
of GABAB receptors at the cell surface revealed that
the restricted mobility of GABAB receptors is
regulated by the C-terminal region in R2 subunits.
After activation by baclofen, the levels of mobile
receptors are increased significantly.40) By using
single-molecule analysis of fluorescence-labeled
GABAB receptor, it is evident that agonist stimula-
tion increases the mobility of large oligomers of
GABAB receptors on the cell surface.176) These data
suggests the possibility of GABAB receptor mobility
between lipid raft and non-lipid raft domains. Given
that the level of cell surface GABAB receptors is
stable after agonist stimulation, lateral diffusion of
GABAB receptors may provide a mechanism for
controlling inhibitory strength.

7. GABAB receptors and diseases

Impaired GABAB receptor-mediated synaptic
transmission underlies a variety of neurological and
psychiatric disorders. This section will discuss several
diseases in which GABAB receptors are known to be
involved together with some promising indications
for treatment using GABAB receptor drugs.

Anxiety and depression. GABAB receptors
have been implicated in the pathophysiology of
emotional disorders such as anxiety and depres-
sion.177) Interest in the role of GABAB receptors in
anxiety has emerged because R1 subunit-deficient
mice are more anxious than their wild-type counter-
parts in several anxiety-related tests, such as the
light-dark box and staircase tests.178) The role of
GABAB receptors in emotional behavior was also
suggested by the elevated levels of GABAB receptor
expression in the limbic system.178) Supporting these
observations, baclofen has been shown to have an
anxiolytic effect and GABAB receptor PAMs were
found to be promising compounds in the treatment
of anxiety disorders.179) The antagonism of GABAB

receptors may also be a potential therapeutic
strategy for depression. R1 subunit-deficient mice
display an antidepressant-like phenotype in forced
swim tests, and these phenotypes were recapitulated
in studies using the GABAB receptor antagonist
CGP56433A.178) In support of these data, baclofen
attenuates the decrease in immobility caused by
antidepressants.180),181)

Addiction. Over the years, a number of clinical
observations suggested that baclofen may offer
benefit in the treatment of alcohol use and substance
use disorders.182)–185) Multiple preclinical studies have
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demonstrated the ability of baclofen to suppress
alcohol drinking, oral alcohol self-administration,
and intravenous self-administration of cocaine, nic-
otine, amphetamine, methamphetamine, morphine,
and heroin in rodents.186) Some randomized con-
trolled trials and case reports support the efficacy of
baclofen in suppressing alcohol consumption, craving
for alcohol, and alcohol withdrawal symptomatology
in alcohol-dependent patients.186) Baclofen attenu-
ates the reinforcing effects of abused drugs by
influencing the mesolimbic dopamine system.187)

Recently, interest in testing high doses of baclofen
in alcohol use disorder treatment has emerged;
however, side-effects such as somnolence, insomnia,
dizziness, and paresthesia pose a principle limitation
to its administration in alcohol addiction.188),189)

Preclinical research has then extended the anti-
addictive properties of baclofen to PAM. In light of
their more favorable side-effect profile compared to
baclofen, PAMs may represent a major step forward
in GABAB receptor-based pharmacotherapy of alco-
hol use and substance use disorders.186)

Epilepsy. GABAB receptors have been
implicated into the etiology of epilepsies.3) The
G1465A polymorphism in the gene for the R1 subunit
has been linked to the risk of temporal lobe epilepsy
as well as the severity of the disease.189) mRNA
expression and immunoreactivity of GABAB recep-
tors, as well as GABAB-mediated pre- and post-
synaptic responses, are decreased in discrete cortical
and hippocampal areas of epileptic patients.189)–192)

In addition, R1 subunit-deficient mice exhibited
generalized seizure activities.193),194) The role of
GABAB receptor-mediated mechanisms in the patho-
genesis of seizures depends on neural networks that
involve GABAB receptors, which determine the
seizure type. GABAB receptor agonists have been
shown to diminish seizure activity in mouse models
of both generalized convulsive and focal seizures;
however, generalized non-convulsive seizures such as
typical and atypical absence seizures are exacerbated
by GABAB receptor agonists and blocked by GABAB

receptor antagonists.195)–197) This dichotomy is likely
due to the involvement of thalamic circuitry in both
typical and atypical absence seizures. Therefore,
GABAB receptor-mediated mechanisms can be pro-
or anti-convulsant depending on the nature of the
pathological neuronal networks. Recent studies
reported that GABAB receptor PAMs offer anti-
convulsive actions in animal models.198)–200) Consid-
ering that PAMs offer beneficial behavioral effects
without overt side-effects, PAMs may serve as a

clinically relevant strategy for the management of
epileptic seizures.69),201),202)

Cognition. GABAB receptors are highly
expressed in brain regions implicated in learning
and memory.203) Post-mortem GABAB receptor
expression studies in Alzheimer’s disease brains has
suggested an increase in R1 subunit expression in
the hippocampus that correlates with the extent of
neurofibrillary tangle pathology.204) Alternative
splicing of GABAB receptors and GIRK expression
have also been suggested a possible changes in
GABAB receptor signaling in Alzheimer’s disease.205)

In this respect, a clinical trial using GABAB receptor
antagonist SGS742 (formerly known as CGP36742)
was progressed to Phase II in an attempt to treat
mild cognitive impairment.206) SGS742 was adminis-
tered orally at 600mg three times a day for eight
weeks in a double-blind trial in 75 patients. SGS742
significantly improved working memory and atten-
tion, suggesting that GABAB receptor antagonism
can promote cognitive performance. However,
SGS742 failed to progress to a Phase III clinical
trial, and currently there are no other GABAB

receptor antagonists in development for cognitive
diseases.207) Identifying novel targets to develop
specific drugs for GABAB receptors will be necessary.

8. Conclusion

This review summarizes how one single receptor,
GABAB receptor, generates multiple functions such
as: (1) the presence of heterodimers and large
oligomers increase the complexity in cellular local-
ization and function; (2) splice variants of the R1
subunit contribute to the functional diversity of this
receptor; (3) interacting proteins for GABAB recep-
tors provide a vast amount of receptor function by
regulating receptor localization, signaling specificity,
and pharmacological profiles; (4) crosstalk between
various receptors helps to balance neuronal inhibition
and excitation as well as signal transduction and
transactivation-dependent neuronal survival; (5)
PTMs such as phosphorylation and ubiquitination
regulate receptor trafficking and the amount of
receptors on the plasma membrane; and (6) receptor
localization in lipid rafts is involved in regulating
the efficacy of receptor signaling. These complexities
generated from a single GPCR still need to be
clarified, but future studies will help to confirm the
mechanisms regulating GABAB receptor function
and reasons for the interactions with multiple
proteins. GABAB receptors are excellent therapeutic
targets, because drugs acting on these receptors have
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the potential to treat a wide variety of neurological
diseases. The full therapeutic benefits of GABAB

receptors need to be elucidated using various
methods.
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