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Abstract

Exploration of brain dynamics patterns has attracted increasing attention due to its fundamental 

significance in understanding the working mechanism of the brain. However, due to the lack of 

effective modeling methods, how the simultaneously recorded LFP can inform us about the brain 

dynamics remains a general challenge. In this paper, we propose a novel sparse coding based 

method to investigate brain dynamics of freely-behaving mice from the perspective of functional 

connectivity, using super-long local field potential (LFP) recordings from thirteen distinct regions 

of the mouse brain. Compared with surrogate datasets, six and four reproducible common 

functional connectivities (CFCs) were discovered to represent the space of brain dynamics in the 

frequency bands of alpha and theta respectively. Modeled by a finite state machine (FSM), 

temporal transition framework of functional connectivities was inferred for each frequency band, 

and evident preference was discovered. Our results offer a novel perspective for analyzing neural 

recording data at such high temporal resolution and recording length, as common functional 

connectivities and their transition framework discovered in this work reveal the nature of the brain 

dynamics in freely behaving mice.

Keywords

local field potential (LFP); brain dynamics; sparse coding; freely behaving; volume conduction

*Co-corresponding authors. 

HHS Public Access
Author manuscript
Brain Topogr. Author manuscript; available in PMC 2020 March 01.

Published in final edited form as:
Brain Topogr. 2019 March ; 32(2): 255–270. doi:10.1007/s10548-018-0682-3.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. Introduction

Studying functional connectivity of the brain has recently received increasing interest due to 

its significant importance in basic and clinical neuroscience (Koenig et al. 2002; Friston et 

al. 2003; Biswal et al. 2010; Williams 2010; Mueller et al. 2013). In early studies, functional 

connectivity has been widely assumed to be temporally stationary (Wang et al. 2006; Lynall 

et al. 2010; Liu 2011; Ou et al. 2015) , where the data during the whole scan were used for 

estimating functional connectivity. However, there are accumulating evidences (Fox and 

Raichle 2007; Gilbert and Sigman 2007; Smith et al. 2012) indicating that brain activities 

are under dramatic temporal changes at various time scales. For instance, it has been found 

that each cortical brain area runs different ‘‘programs’’ according to the cognitive context 

and to the current perceptual requirements, where intrinsic cortical circuits mediate the 

moment-by-moment functional state changes in the brain (Gilbert and Sigman 2007). 

Inspired by the important observations on the brain dynamics from prior studies, there have 

been many studies aiming to quantitatively characterize the temporal dynamics and 

transition patterns of functional brain connectivity (Khan et al. 2013; Li et al. 2013; Ou et al. 

2014; Tomescu et al. 2014; Lopour et al. 2016; Allen et al. 2017).

Functional neuroimaging has been a major tool for neuroscience research and clinical 

applications, whose capability far determines our knowledge. Recently, functional 

neuroimaging techniques such as fMRI (Koshino et al. 2005; Di et al. 2008; Ryali et al. 

2012), EEG (Koenig et al. 1999; Stam et al. 2007; Van Mierlo et al. 2014), and LFP (Adrian 

and Moruzzi 1939; Hubel and Wiesel 1962; Hamill et al. 1981; Pinault 1996) have been 

widely used for such functional connectivity data acquisition and modeling. However, there 

are key methodological and technical limitations in fMRI/EEG-based brain connectivity 

dynamics studies. Specifically, fMRI-based brain connectivity dynamics is limited by its 

temporal resolution and the lack of time series data with sufficient length (Fox and Raichle 

2007). The EEG-based studies have much better temporal resolution and much longer scan 

length. However, as EEG only measures the scalp electric potential field, it lacks the spatial 

accuracy for more precise neuroscience studies (Lee et al. 2009; Da Silva 2013). Recently, 

the local field potential (LFP), as recorded with high-impedance (small contact size) 

microelectrodes, is thought to reflect synaptic activity in the vicinity of the microelectrode 

(Katzner et al. 2009; Khawaja et al. 2009). Highlighted in high temporal resolution, precise 

spatial accuracy and sufficiently-long recording length on cellular-level neural activities, the 

direct measurement of local field potentials (LFPs) at all depths throughout the brain in a 

freely behaving animal provides us a new way to explore the dynamic interactions between 

individual neurons and local networks (Lin et al. 2005; Klausberger and Somogyi 2008; 

Uhlhaas et al. 2010; Donner and Siegel 2011). Recently, many studies used LFP recordings 

from animals, such as mice (Nauhaus et al. 2009), monkeys (Ray and Maunsell 2011; Hu 

and Liang 2013), ferrets (Stitt et al. 2017), cats (Katzner et al. 2009) etc., to investigate 

functional brain connectivity and its dynamics. In terms of functional segregation and 

coordination, LFP recordings with high spatio-temporal resolution would greatly benefit 

better understanding the mechanisms of perception, attention, learning, etc.

In order to investigate the functional brain connectivity and its dynamics via simultaneously 

recorded LFP, we selected thirteen distinct regions from the mouse brain, which have close 
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relationship with the processing of stimulus recognition and fear-conditioning memory. 

Specifically, the hippocampal CA1 (CA1) (Gigg et al. 2000; Chen et al. 2009; Zhang et al. 

2013), dentate gyrus (DG) (Xavier and Costa 2009; Nakashiba et al. 2012), subiculum (S) 

(O’Mara 2005; O Mara 2015; Fröhlich 2016; Eichenbaum 2017), retrosplenial cortices 

(RSG & RSA) (Pothuizen et al. 2009; Czajkowski et al. 2014), are crucial for associative 

fear memories, and subregions of the anterior cingulate cortices (Cg1 & Cg2) (Pardo et al. 

1990; Bush et al. 2000), prelimbic cortex (PrL) (Vidalgonzalez et al. 2006; Ye et al. 2017) 

encode emotionally fearful experiences. Besides, somatosensory cortices (S2Tr & S1HL), 

secondary auditory cortex (AuV) encode inputs of stimulus. Lateral entorhinal cortex (LEnt) 

(Gigg et al. 2000; Wilson et al. 2013; Kuruvilla and Ainge 2017) plays a role in encoding 

space, particularly the current and previous locations of objects within the local 

environment. The perirhinal cortex (PRh) (Murray et al. 2007; Kinnavane et al. 2016) is 

involved in both visual perception and memory, and it facilitates the recognition and 

identification of environmental stimulus These regions constitute the main network of 

fearful memory processing, which benefit us to investigate the brain activities in freely 

behaving condition.

To explore brain dynamics of freely-behaving mice, such as what constitutes the transition 

space of brain dynamics, and how functional connectivities temporally transit across such a 

space, in this paper, we propose a novel sparse coding based method. We used a state-of-the-

art 512-channel tetrode recording system (Xie et al. 2016) to record super-long LFP data 

(about 2 million time points) for each freely behaving mouse. To circumvent the problem of 

volume conduction artefact (Buchthal et al. 1957; van den Broek et al. 1998; Kajikawa and 

Schroeder 2011), the imaginary part of coherency (iCoh) (i.e., excluding the zero-phase lag 

part) was applied to robustly measure brain functional connectivity (Nolte et al. 2004; 

Garcia et al. 2013; Sanchez Bornot et al. 2018). As functional connectivity changed 

systematically across brain states with largest changes occurring in the phase 

synchronization of theta and alpha oscillations (He et al. 2011; Stitt et al. 2017), in this 

paper, we focused on the dynamics of functional connectivity in frequency bands of alpha 

and theta. Inspired by the superior performances of sparse coding in numerous signal 

processing and neuroimaging analysis (Olshausen and Field 1996; Donoho and Elad 2003; 

Olshausen and Field 2004; Smith and Lewicki 2006; Wright et al. 2009), we employed an 

efficient sparse coding method of stochastic coordinate coding (SCC) (Lin et al. 2014) to 

discover underlying functional connectivities, which sparsely encode the brain dynamics. By 

hierarchically clustering, we discovered six common functional connectivities (CFCs) for 

alpha band and four for theta. Further investigation with finite state machine (FSM) revealed 

a dominant CFC and evident preference in the temporal transitions among CFCs. In general, 

the proposed method and the results can add new insights into the neuroscience researches 

for better understanding the brain dynamics through a data-driven approach supported by 

advanced recording techniques.
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2. Materials and Methods

2.1 Overview

In order to explore the dynamics of functional brain connectivity hidden in LFP, we 

simultaneously recorded LFP signals of thirteen distinct brain regions from three mice via 

512-channel tetrode system, with sampling rate 1,000 Hz and recording lengths of 

2,045,004, 1,863,283 and 2,268,864 time points for each mouse respectively. Then, 

functional brain connectivity based on thirteen brain regions was represented via the 

imaginary part of coherency (iCoh) measurement. By efficient sparse coding of stochastic 

coordinate coding (SCC) algorithm, an over-complete dictionary was obtained, from which 

CFCs were derived by Bayesian Information Criterion (BIC). Furthermore, a transition 

framework modeled by finite state machine (FSM) was established to estimate the transition 

of CFCs. Details will be described in the following sections.

2.2 Data Acquisition and Processing

Animal Subjects—Three adult male mice were used for experiments, and detailed 

information of each mouse on surgery day is shown in Table 1. All mice were maintained by 

the trained Animal Facility staff and an experienced veterinarian who conducted routine 

daily health surveillance. All animal handling and tissue preparation were performed in 

accordance with NIH guideline and the protocols approved by IAUCC committee at Augusta 

University.

512-Channel Tetrode System—The names, abbreviations, region index, stereotaxic 

coordinates, and tetrode numbers of thirteen carefully selected brain regions are shown in 

Table 2. The electrode positions are pre-calibrated according to these brain-region 

coordinates provided by the Mouse Brain Atlas (Franklin and Paxinos 2001).

All positions were measured with respect to the bregma point. “AP” and “ML” are short for 

anteroposterior and mediolateral.

The recording tetrodes were made up of four wires, which were twisted together using a 

manual turning device and soldered with a low-intensity heat source. The impedances of 

tetrodes were typically between 0.7 and 1 MΩ. Importantly, the recording ends of the 

tetrodes were cut differentially so that multiple recording sites, located at different depths, 

could be reached. In order to minimize tissue damage, only tetrodes, but not the surrounding 

polyimide tubes, were inserted into the brain tissue. Thirteen modular bundles of tetrodes 

targeting these thirteen brain regions were used to record the neuronal electrical activity 

simultaneously as shown in Fig.2. More details about configurations of 512-channel tetrode 

system are described in Supplementary Materials.

The surgery could be completed in about five hours for each mouse, and for chronic 

recordings, the mice were allowed to recover for 3 ∼ 5 days before the experiment began. 

Helium balloons were applied to balance the system’s weight, so that the mouse with the 

implanted part and cables could move around freely enough. LFPs were recorded once the 

512-channel cables were connected to the 512-channel Plexon multiplex-recording system 

(Lin et al. 2006; Kuang et al. 2010). Since the recordings were almost the same among the 4 
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channels in a single tetrode, we selected the highest amplitude channel without cut-offs from 

each tetrode for the recording. The stability of the ensemble recordings was verified by 

comparing waveforms at the beginning, during, and after the experiments, and the analysis 

showed that the units recorded could maintain good separation and stability over days or 

even week(s).

2.3 Functional Brain Connectivity Representation

LFP signals of 128 tetrodes from thirteen brain regions are obtained by 512-channel tetrode 

system. To eliminate the ill effects of few tetrodes of signals, as well as to avoid the potential 

collinearity problem, we further select only one tetrode LFP signal for each brain region by 

correlation strength, which is described in supplementary material in detail.

Compared with other commonly used functional connectivity measures, such as Pearson 

correlation coefficient, mutual information, and magnitude squared coherence, the imaginary 

part of coherency is the most robust to VC artifact theoretically and practically (Khadem and 

Hossein-Zadeh 2013). Coherency is a measure of the linear relationship at a specific 

frequency between two signals. Given two time series xi(t) and xj(t)of signal i and j, their 

complex Fourier transforms are xi(f) and xj(f) respectively. Coherency is now defined as 

below:

Ci j f ≡
Si j f

Sii f S j j f
(1)

Si j f ≡ xi f x j* f (2)

where Sij(f) is the cross-spectrum, * means complex conjugation, and ⟨ ⟩ means expectation 

value. The expectation value can be estimated as an average over a sufficiently large number 

of epochs in practice.

In the case of brain dynamics, we are interested in the alteration of brain states along time. 

Therefore, in order to acquire the dependence of coherency as a function of the time, we 

applied a sliding window with length T of 500 msec (typically between 250 msec and 1 s) 

(Nolte et al. 2004; Sander et al. 2010; Garcia et al. 2013; Sanchez Bornot et al. 2018), which 

is small enough for the desired time-resolution, given by T (500 msec) itself, and large 

enough for the desired frequency resolution, given by 1/T (2Hz). According to recent studies 

(Van De Ville et al. 2010; He et al. 2011; Keilholz 2014), which suggested that continuous 

resting states could be classified into a limited number of micro states for a time on the order 

of 100 msec, the window skipping step was determined as 100 msec. Coherency then 

becomes a function of both frequency and time:

Ci j f Ci j f , t (3)
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where t indicates the time of the center of the window. Then, the summation of coherency 

was calculated according to the frequency range (alpha: 8~12 Hz, theta: 4~8 Hz) as the 

coherency of a certain frequency band.

∑
f ∈ B

Ci j f , t Ci j
B t (4)

where B indicates the frequency band.

We represent brain connectivity by the imaginary part of coherency (iCoh), which captures 

true source interactions at a given time-lag. The imaginary part of coherency cannot be 

generated by artefact of volume conduction (Nolte et al. 2004), which cannot cause a time-

lag. Therefore, the functional brain connectivity composed by 13 brain regions can be 

represented as below:

FCB t = Img Ci j
B t i, j ∈ 1, ..., 13 (5)

As FC is a skew-symmetric matrix, to reduce dimension, the upper triangular elements of 

FC are picked up and reshaped to a vector with 78 (13×12/2) features, and indicates the 

functional connectivity vector (FCV) at time point t.

2.4 Common Functional Connectivity Estimation

Functional brain connectivity represented by the imaginary part of the coherency is a linear 

combination of a few independent atomic common functional connectivities (derivation 

process is presented in supplementary material in detail). Therefore, investigating brain 

functional connectivity represented by iCoh can be transformed into solving a sparse coding 

problem. Considering the big data of super-long LFP recordings, a highly effective sparse 

coding method, stochastic coordinate coding (SCC), was applied in this paper.

Given the FCV time series X = (x1,…, xn), each FCV is a p dimensional vector, xi ∈ ℝp (i = 

1,…,n). Here is a set D containing m items dj ∈ ℝp, (j = 1,…,m). Then, each FCV can then 

be represented as xi = ∑ j = 1
m Zi, jd j . Therefore, each p dimensional image patch xi is 

represented by a m-dimensional vector Zi(Zi,1,…, Zi,m)T. The learned feature vector Zi is a 

sparse vector. Given a FCV xi, one can formularize the above idea as the following 

optimization problem:

min f i D, zi = 1
2 Dzi − xi

2
+ λ zi 1

(6)

where λ is the regularization parameter, ‖·‖ is the standard Euclidean norm and 

| | zi | |1 = ∑ j = 1
m | zi, j| Each zi is often called the sparse code, in which only a few entries are 

non-zero, and we call these non-zero entries as supports. Here D = (d1, …, dm) ∈ ℝm × p is 
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called the dictionary. To prevent an arbitrary scaling of the sparse code, each column of D is 

restricted to be in a unit ball, i.e., ‖dj‖≤ 1.

It is a non-convex problem with respect to joint parameters in the dictionary D and the 

sparse codes Z = (z1, … ,zn). Therefore, it is often difficult to find a global optimum. 

However, it is a convex problem when either D or Z is fixed. One often uses an alternating 

optimization approach to solve sparse coding problems. When the sparse codes are fixed, it 

is a simple quadratic problem, when the dictionary D is fixed, solving each sparse code zi is 

the well-known lasso problem. Since FCV time series are tremendous datasets and 

dictionaries are also very large, thus, solving a lasso problem is very time consuming.

To deal with large-data sparse coding problem, stochastic coordinate coding (SCC) 

algorithm is applied, which aims to dramatically reduce the computational cost of the sparse 

coding while keeping comparable performance. It is known that updating the sparse code is 

the most time consuming part, and coordinate descent is one of state-of-the-art methods for 

solving this lasso problem. Coordinate descent initializes zi
0 = 0 and then updates the sparse 

code many times via matrix-vector multiplication and thresholding. Empirically, the iteration 

may take thousands steps to converge. However, it is observed that the support locations of zi 

are very accurate after only less than ten steps. Note that the support of the sparse code is 

usually more important than the exact value of the sparse code. Moreover, since the original 

sparse coding is a non-convex problem and it involves an alternating updating, it is 

unnecessary to run the coordinate descent to final convergence. Therefore, the sparse code zi 

is updated by running a few steps of coordinate descent, and stable supports are obtained. 

When updating the dictionary, only the supports of the dictionary but not all dictionary items 

need to be focused on. The algorithmic pipeline of SCC is shown as Fig. 3.

After sparse coding process, the super long FCV time series is represented by an over-

complete dictionary D, where the number of items m is usually much smaller than the length 

of time series n but larger than the dimension of the item p. According to some previous 

studies (Li et al. 2014; Ou et al. 2014; Ou et al. 2015), functional connectivities can be 

divided into a few clusters based on the combination of activated nodes and connections. 

Therefore, in this paper, we applied clustering method to derive a few common functional 

connectivities (CFCs) from the over-complete dictionary items. The optimal number of 

CFCs is identified by Bayesian Information Criterion (BIC) (Schwarz 1978), which is 

defined as:

BIC = mIn σe
2 + kIn m (7)

where σe
2 is the estimation for error variance, which is defined as the summed variance of 

each dictionary item within its corresponding class in this paper. m is the total number of 

dictionary items, and k is the number of classes. The trade-off between class number and 

error variance is balanced by the BIC value, and the optimized number of cluster is 

determined by finding k to minimize BIC value. After clustering items into a few classes, 
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common functional connectivity (CFC) is defined as the weighted average of items in a 

cluster.

2.5 Temporal Transition Modeling

Sparse code vector zi indicates how the dictionary items represent i-th FCV xi. After CFC 

estimation, a CFC-based sparse code series ZCFC can be obtained. Since each sparse code 

zi
CFC may contain more than one non-zero entries, there may be a few CFCs activated in 

brain simultaneously. We assume that the brain state is determined by the dominant CFC 

whose occurrence is the highest. Therefore, brain state at each time point can be labelled 

with a CFC, and the transition of CFCs can be reflected by the transition of brain states. 

Because the length of skipping step has a great influence on the accuracy of CFC duration, 

we only focus on the transitions between two different CFCs, rather than self-transitions.

In order to establish a finite state machine (FSM), all transitions between CFCs should be 

counted, and transition probability for each CFC can be calculated. As CFC with higher 

occurrence is certain to own higher transition probability, thus, the value of transition 

probability is not convincible enough to character CFC transitions. Therefore, transition 

preference, which can eliminate the effect of CFC occurrence, is defined as below:

Pre f i
j =

Pi
j

oi
j (8)

Pi
k =

N j
k

∑m ≠ i Ni
m (9)

oi
k =

Nk
∑m ≠ i Nm

(10)

where Nk is the overall occurrence of k-th CFC during whole duration, Ni
k denotes the 

occurrence of transition from CFCi to CFCk. Thus, 0i
k is the overall occurrence probability of 

CFCk excluding CFCi, and Pi
k represents the probability to transit from CFCk to CFCi. Here, 

Ni = ∑m ≠ i Ni
m because self-transition is not in consideration. Therefore, Pre f i

j is the ratio of 

transition probability over overall occurrence probability. When Pre f i
j > 1 evidently, it 

means there is a preference that CFCi are more likely to transit to CFCk than any other 

CFCs. As such, the preference of mutual transitions among CFCs can be discovered and a 

FSM can be established.
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3. Results

3.1 CFCs Inferred from Mouse Brain LFP Data

In our work, based on the optimal dictionary size and sparseness determined beforehand, we 

implemented a total of 160 trials of SCC sparse coding for each mouse. According to BIC, 

the optimal clustering number of functional connectivity was explored, and the statistics 

results for each mouse are shown in Fig. 4. In Fig. 4(a), it is easy to appreciate that six 

clusters are the most clustered for alpha band, and it is consistent in all three mice. The same 

exploration was also applied to theta band, and four clusters occur the most, as shown in Fig. 

4(b). Therefore, the CFC numbers of frequency band alpha and theta are determined as six 

and four. Six CFCs of alpha band are shown in Fig. 5.

For the purpose of reproducibility validation, each mouse dataset was divided into two parts. 

Then, six CFCs were obtained from each subdataset. Comparing six groups of CFCs 

obtained from 3 mice, it is easy to identify and match each CFC. This result demonstrates 

that six CFCs are stable along time and general among subjects. To make intuitive 

visualization, common features are extracted for each CFC and shown in the right column of 

Fig. 5. Since iCoh indicates phase differences of two signals, therefore, in each CFC, 

positive value (red block) means that signal of column region leads that of row region, 

whereas negative value (blue block) means lagging behind. The bigger the magnitude is, the 

bigger phase difference to lead or lag.

In addition, it is easy to observe that each CFC pattern shows obvious block format, which 

indicates that some brain regions have similar interactions. We identify these regions and 

separate those from the others. Therefore, thirteen brain regions can be separated into seven 

groups: CA1 & DG, S1Tr & S1HL, RSG & RSA, S, PRh & LEnt, AuV, and Cg1& Cg2 & 

PrL. It is interesting to observe that these seven brain region groups from CFCs by data-

driven method are closely related with their spatial locations in brain. As expected, from the 

perspective of brain structure, the interactions between regions within the same brain 

structure are quite stable, such as Cg1 & Cg2 (Anterior Cingulate Cortices), S1HL & S1Tr 

(Somatosensory Cortex), and RSA & RSG (Retrosplenial Cortex). Also, the regions adjacent 

to each other (with direct connections) tends to cooperate coherently, such as CA1 & DG, 

PRh & LEnt and PrL & Cg1 & Cg2.

For the four CFCs obtained from frequency band theta (as shown in Fig. 6), similar block 

characteristics also can be easily observed. Besides, it is interesting to observe that three 

CFCs in alpha band also can be found in theta band. Specifically, CFC#1, CFC#3 and 

CFC#6 in alpha band match CFC#1, CFC#2 and CFC#3 in theta band, which indicates that 

CFCs are stable among frequency bands. In general, despite sharing the same structural 

basis, different bands have their own rhythm of fluctuation, and run respective “program”. 

This finding demonstrates that some brain activities may lead fluctuation in a broad range of 

frequency, which may cover a few frequency bands. Three pairs of identical CFCs in alpha 

and theta bands maybe correspond to three distinct brain activities.

Because CFCs are extracted from LFP signals of freely behaving mice, observing and 

exploratory behaviors might occur during recording. Therefore, it is difficult to identify the 
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function of a certain CFC without other references, such as synchronous videos or manually 

annotations. Even though, CFCs discovered in this paper still can provide us a new method 

to understand brain functional connectivity.

3.2 Occurrences and Transitions of CFCs.

Through sparse coding with SCC and CFC estimation, a CFC-based sparse code series ZCFC 

is obtained for each subdataset, by which we can investigate the occurrence of each CFC. As 

each mouse LFP recordings are divided into two parts, CFCs’ occurrences in six subdatasets 

are shown in Fig. 7.

In Fig. 7(a), six CFCs of alpha band are quite different in occurrence. CFC#1 has the most 

occurrence of over 40 percent, then followed by CFC#2, whose occurrence is about 30 

percent, on average. In contrast, CFC#3 ~ CFC#6 have small occurrences of less than 10 

percent, respectively. For each CFC, the occurrence varies among different subdatasets, 

which can be observed within a single subject or between subjects. For instance, in mouse 

#3, CFC#2 occurs about 10 percent less in second half than in the first. Besides, the 

occurrence differences of CFC#1 between mouse#1 and mouse #2 can be over 10 percent. 

However, these differences of CFC’s occurrence are thought to be reasonable, due to 

individual specificity and free behaviors. In Fig. 7(b), four CFCs of theta band also have 

different occurrences. CFC#1 has a dominant occurrence of 60 percent, on average, whereas 

the other three CFCs have only about 10 percent occurrences, respectively. These results 

reveal that three pairs of identical CFCs in alpha and theta bands also show high similarities 

in occurrence. From the perspective of occurrence, as well as connectivity pattern, it can be 

inferred that a CFC maybe reflect a distinct brain activity, which may cause rhythmic 

fluctuation across different frequency bands.

Based on the assumption that brain state can be labelled with a certain CFC and the 

transition of CFCs can be reflected by the transition of brain states, we built a FSM with 

CFC series (brain state series where each state is labelled by only one CFC). Among all 

directional transitions, we discovered that six transitions in alpha band and three transitions 

in theta have evident preference by significance test (t-test), and these transitions are shown 

in Table 3a and 3b. It is easy to appreciate that all these transitions are related to CFC#1. In 

frequency band of alpha, five of six transitions with evident preference are the transitions 

towards CFC#1, and the rest one is from CFC#1 to CFC#2, which may interpret to some 

extents why CFC#2 has the second highest occurrence. In theta band, all three special 

transitions are all towards CFC#1. The transition patterns of frequency bands of alpha and 

theta with preference are shown in Fig. 8. This special preference of transition demonstrates 

that CFC#1, in both alpha and theta bands, corresponds to a sort of default brain activity or 

brain state, and plays a role as an “intermediate center”.

3.3 Validation of Effectiveness

Because of small body size and thin skull, the vast majority of electrodes used in freely 

behaving mice is still largely limited to 32 or fewer channels, and to only one or two brain 

structures. Therefore, it is difficult to make a straight comparison between our work and 

recent studies, especially based on thirteen distinct brain regions. In order to validate the 
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effectiveness of the proposed method, we tested our method on surrogate datasets, which 

were generated by randomizing the LFP recordings of each mouse in time. Therefore, in 

surrogate datasets, temporal dependency was destroyed, and phase-lags caused by real brain 

activity were removed. Specially, we generated surrogate datasets for each mouse, and 

repeated our method 80 times for each dataset. Based on BIC, the optimal clustering number 

for each mouse was investigated, and it was interesting to find that 4 clusters were the best 

for both alpha and theta bands. The statistics results of mouse #1 are shown in Fig. 9.

For intuitive comparison, the CFCs inferred from surrogate datasets are shown in Fig. 10. In 

Fig.10, it is easy to observe that there are great differences among CFCs, and no CFC group 

could totally match with others. Compared with the results shown in Fig.5 and Fig. 6, it is 

quite difficult to observe any similarities or consistencies of CFCs, neither in alpha band nor 

in theta band. As the LFP recordings were shuffled in time, there were no stable temporal 

dependences hidden within a single surrogate dataset, or among surrogate datasets. These 

results demonstrate that our proposed method have good sensitivity to temporal dependency 

and can reveal functionally relevant CFCs caused by real brain activities.

3.4 Effects of Free Parameters in SCC

As introduced in section 2.4, SCC is a highly effective method to deal with sparse coding 

problems of big data. Before running a task, hyper parameters, especially dictionary size and 

sparseness, which have great influences on the performance of sparse coding, should be 

carefully explored and determined.

The size of dictionary reflects the representing capability of sparse coding. Generally, larger 

dictionary size leads better diversity and more accurate representation. However, an over 

large dictionary may also cause unnecessary segmentation and redundancy, which decreases 

coding efficiency. To determine the size of dictionary, we tried it in a range from 50 to 400, 

with an interval of 50, on the whole FCV time series of Mouse #1, and the results are shown 

in Fig. 11. In Fig. 11(a), it is easy to appreciate that all curves gather closely. They have 

similar changing trend in residual with the change of sparseness. To make a clear 

comparison, we select an area and zoom in as shown in Fig. 11(b). It is easy to observe that 

larger dictionary size corresponds to lower residual, and residual difference decreases as the 

increase of dictionary size, for instance, the residual difference between size 150 and 400 is 

almost the same as that between 50 and 150. Similar curves and traits are also obtained in 

theta frequency band, as shown in Fig. 11(c) ~ 11(d). As residual difference becomes small 

enough after 150, which means that a dictionary with 150 items has sufficient capability to 

represent FCV time series, therefore, we determine the size of dictionary as 150 finally.

Sparseness is a measurement indicating how many dictionary items are used to represent a 

single FCV. Generally, higher sparseness contributes to more accurate representation. In this 

paper, we only focus on the functional connetivities which are relatively common and stable 

in brain activity, however, over high sparseness may bring trivial or insignificant 

components, such as impulse and noise. Therefore, finding an optimal sparseness is of vital 

importance to our work. Based on the residual curve of dictionary size 150 (as shown in Fig. 

11), we calculated the residual difference based on different sparseness, and the results are 

shown in Fig. 12.
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In Fig. 12, it is easy to observe that along with the decrease of sparseness, the residual 

difference increases very slowly at the beginning, then bursts rapidly. The critical changing 

point is thought to be the optimal sparseness, where the FCV series can be represented at the 

most optimal cost. Meanwhile, the part represented by the dictionary items at optimal 

sparseness is considered as the core component of FCV. Similar curve is also obtained from 

frequency band theta, as shown in Fig. 12(b). In SCC, the sparseness is controlled by sparse 

parameter λ. Because the residual difference curve is relatively smooth, it is difficult to 

identify an abrupt changing point. Therefore, we selected a small range of sparseness 

(labeled with blue box) for main experiments.

4. Discussion

Functional connectivity has been recently shown to be powerful in studying the network 

topology of the brain, revealing important information on the interactions between brain 

regions, no matter in humans and experimental animal models. Recent studies indicate that 

dynamic analysis of functional connectivity can better capture the brain region interactions, 

providing additional insights into the macroscale organization and dynamics of neural 

activity (Calhoun et al. 2014; Keilholz 2014b). In the majority of the studies published to 

date, the functional connectivity and its dynamics in mice are investigated via fMRI 

recording data (Mechling et al. 2014; Liska et al. 2015; Grandjean et al. 2017; Belloy et al. 

2018). Compared to electrophysiological measurements, these studies of dynamic functional 

connectivity with fMRI are inherently limited to the coarse time-scale due to the low-pass 

filtering effect of the hemodynamic response. Furthermore, a few LFP-based studies of 

functional connectivity recorded only a few (no more than 32) channels of signals from only 

one or two brain structures, even in rat (Wei et al. 2015; Qi et al. 2017) and pigeon (Chen et 

al. 2018), whose brain sizes are much bigger than that of mouse. In contrast, our work is 

based on super-long LFP signals recorded from thirteen distinct brain regions, with 

outstanding temporal resolution over fMRI-based studies and finer spatial scale compared 

with other LFP-based studies. Until recently, Grandjean et al. applied sliding-window 

approach and dictionary learning method to identify several reproducible dynamic functional 

states in mice based on fMRI (Grandjean et al. 2017). In spite that their work used a few 

similar steps as ours, we applied iCoh and SCC methods to deal with volume conduction 

artefacts and exploding computations, which are quite common only in electrophysiological 

brain studies. Therefore, our work investigated dynamic properties of functional brain 

connectivity in freely behaving mice via such higher temporal resolution and super-long 

length LFP recordings for the first time, as far as we know.

Though our proposed method has achieved remarkable performances in mouse brain 

dynamics investigation via LFP recordings, it still can be improved in a few aspects. First, 

CFCs were derived from the whole dictionary items, and their numbers were determined by 

Bayesian information criterion in this paper. Although sparse coding has extracted more 

critical components of functional connectivity, we still cannot guarantee that all dictionary 

items are significant. Therefore, better clustering methods or criterions should be explored to 

achieve more accurate establishment of CFCs, and some dictionary items could be excluded 

if necessary. Second, CFC is not an accurate enough measure. Because of magnitude 

normalization during sparse coding, the CFC only illustrates the general information, such 
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as leading or lagging phase trait and how distinct regions coordinate with each other, rather 

precise quantitative information, like how much time a region leads or lags another region. If 

some additional benchmarks or criterions could be developed to indicate the phase-lags, the 

results would be more accurate and meaningful. Third, in our work, only LFP recordings 

were applied to derive CFCs, and the CFCs are sort of data-driven results. In the future, if 

other references, such as synchronous videos or manually annotations could be available, it 

would be of great help to identify the function of a certain CFC. In addition, in spite that the 

imaginary part of coherency is the most robust to VC artifact theoretically and practically 

(Khadem and Hossein-Zadeh 2013), compared with Pearson Correlation Coefficient, Mutual 

Information, and magnitude squared Coherence, it lacks the detection of zero-lag 

connectivity which are thought to be preserved in the real part (Sanchez Bornot et al. 2018). 

Therefore, if more advanced brain connectivity method could be developed and applied, the 

results of CFCs would be more comprehensive.

In summary, as large-scale, multi-site in vivo recording techniques have offered a new 

avenue to gain the critical insights into functional connectivity and brain dynamics in the 

freely behaving animals, we proposed a novel sparse coding based method, by which we 

uncovered a set of characteristic functional brain connectivities that are associated with the 

brain dynamics in freely behaving mice. We believe that our method can be potentially 

applied to reveal intrinsic functional brain connectivity in both unconditioned and 

conditioned tasks (i.e. contextual, cued, or trace fear conditioning) (Chen et al. 2009; Zhang 

et al. 2013), in addition to the task-free condition as in this work, and reach beyond the 

current brain regions and animal model. Further, we envision that the scheme proposed in 

this work utilizing super long recording and data-driven approach can contribute to 

transforming the research in brain science into data science, which entails advanced and 

more effective analytics strategies, providing a new perspective for the neuroscience field.
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Fig. 1. 
Pipeline of the proposed method.
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Fig. 2. 
The design of the 512-channel tetrode system for recording in a total of thirteen different 

brain regions in mice. Bundles in same color are grouped in a single module. The scale is 

marked by black bar.
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Fig. 3. 
Pipeline of stochastic coordinate coding algorithm. In k-th iteration, given one FCV xi, ① a 

few steps of coordinate descent (CD) are performed to find the support of the sparse code. 

② A few more steps of coordinate descent (CD) are implemented on the supports to obtain 

a new sparse code zi
k ③ The supports of the dictionary are updated by second order 

stochastic gradient descent (SGD).
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Fig. 4. 
Optimal clustering number for each mouse dataset.
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Fig. 5. 
Six CFCs inferred from alpha frequency band.
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Fig. 6. 
Six CFCs inferred from theta frequency band.

Wang et al. Page 24

Brain Topogr. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Occurrences of CFCs of alpha and theta frequency band. “M1–1st” denotes the first half of 

mouse #1 dataset.
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Fig. 8. 
CFCs’ transitions in alpha and theta frequency bands. Magenta arrows represent transitions 

with evident preference. Green arrows represent common transitions.
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Fig. 9. 
Optimal clustering number for each mouse surrogate dataset.
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Fig. 10. 
Surrogate dataset CFCs of two frequency bands from three mice.
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Fig. 11. 
Residual curves of dictionary size exploration. (b) is the zoom in view of red box area in (a), 

as well as (d) and (c).
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Fig. 12. 
Residual difference curves of sparseness. Optimal sparseness locations are marked with blue 

box.
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Table 1.

Information of mice subjects

Mouse #1 Mouse #2 Mouse #3

Age (days) 81 83 86

Weight (g) 28.6 29.5 33.3
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Table 2.

Configurations of thirteen brain regions.

Name Abbreviations Region
Index

Stereotaxic
Coordinates

Tetrodes
(Channels)

Hippocampal CA1 CA1 1 −3.8 mm
AP, ± 3.0
mm ML

16 (64)

Dentate Gyrus DG 2 −3.75 mm
AP, ± 2.0
mm ML

16 (64)

S1 Trunk Region of the Somatosensory Cortex S1Tr 3  −1.6 mm
AP, ± 1.75
mm ML

8 (32)

S1 Hind Limb of the Somatosensory Cortex S1HL 4 −1.1 mm
AP, ± 1.5
mm ML

8 (32)

Granular Cortex of the Retrosplenial Cortex RSG 5 −2.3 mm
AP, ± 0.3
mm ML

8 (32)

Agranular Cortex of the Retrosplenial Cortex RSA 6 −2.3 mm
AP, ± 0.6
mm ML

8 (32)

Subiculum S 7 −3.08 mm
AP, ± 1.5
mm ML

8 (32)

Perirhinal Cortex PRh 8 −3.80 mm
AP

8 (32)

Lateral Entorhinal Cortex LEnt 9 −3.80 mm
AP

16 (64)

Secondary Auditory Cortex Ventral Portion AuV 10 −1.94 mm
AP, ± 4.75
mm ML

8 (32)

Cg1 of Anterior Cingulate Cortices Cg1 11 +0.50 mm
AP, ± 0.3
mm ML

8 (32)

Cg2 of Anterior Cingulate Cortices Cg2 12 +0.50 mm
AP, ± 0.6
mm ML

8 (32)

Prelimbic Cortex PrL 13 +1.70 mm
AP, ± 0.5
mm ML

8 (32)
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Table 3a.

CFC transitions with evident preference in alpha frequency band.

Transition C#2→C#1 C#3→C#1 C#4→C#1 C#5→C#1 C#6→C#1 C#1→C#2

Preference 1.3195 1.2655 1.2793 1.2056 1.1885 1.1511

Confidence P < 0.0001 P < 0.005 P < 0.05 P < 0.05 P < 0.05 P < 0.0001
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Table 3b.

CFC transitions with evident preference in theta frequency band.

Transition C#2→C#1 C#3→C#1 C#4→C#1

Preference 1.2714 1.2761 1.2038

Confidence P < 0.0001 P < 0.0001 P < 0.0001
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