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Abstract

Objective: Prior research has identified numerous genetic (including sex), education, health and 

lifestyle factors that predict cognitive decline. Traditional model selection approaches (e.g., 

backward or stepwise selection) attempt to find one model that best fits the observed data, risking 

interpretations that only the selected predictors are important. In reality, several predictor 

combinations may fit similarly well but result in different conclusions (e.g., about size and 

significance of parameter estimates). In this paper we describe an alternative method, Information-

Theoretic (IT) model averaging, and apply it to characterize a set of complex interactions in a 

longitudinal study on cognitive decline.

Method: Here we used longitudinal cognitive data from 1256 late-middle aged adults from the 

Wisconsin Registry for Alzheimer’s Prevention study to examine the effects of sex, 

Apolipoprotein E (APOE) ɛ4 allele (non-modifiable factors), and literacy achievement 
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(modifiable) on cognitive decline. For each outcome, we applied IT model averaging to a set of 

models with different combinations of interactions among sex, APOE, literacy, and age.

Results: For a list-learning test, model-averaged results showed better performance for women 

vs men, with faster decline among men; increased literacy was associated with better performance, 

particularly among men. APOE had less of an association with cognitive performance in this age 

range (~40–70).

Conclusions: These results illustrate the utility of the IT approach and point to literacy as a 

potential modifier of cognitive decline. Whether the protective effect of literacy is due to 

educational attainment or intrinsic verbal intellectual ability is the topic of ongoing work.

Keywords

Kullback-Leibler divergence; model averaging; model likelihoods; model selection; cognitive 
decline; Alzheimer’s disease

Introduction

Signs of cognitive decline often begin a decade or more before diagnosis of dementia due to 

late-onset Alzheimer’s disease (AD), a neurodegenerative disease associated with greatly 

impaired cognition and daily functioning (Price et al., 2009; Price & Morris, 1999). After 

age, presence of one or more Apolipoprotein E (APOE) ɛ4 alleles is the strongest predictor 

of risk of late onset AD (Strittmatter & Roses, 1996; Tang et al., 1996), particularly among 

non-Hispanic Caucasians (Tang et al., 1998). Several studies report earlier and faster 

declines in memory or executive function among APOE ɛ4 carriers than non-carriers (i.e., 

APOE by age interactions), with detectable accelerations in decline beginning around age 60 

(Caselli et al., 2009; Chang et al., 2014; Wisdom, Callahan, & Hawkins, 2011). Studies also 

indicate that the rate of ɛ4-associated cognitive decline and AD risk are moderated by sex 

with ɛ4-carriage increasing rate of decline and risk more in women than in men (Altmann, 

Tian, Henderson, & Greicius, 2014; Beydoun et al., 2012; Koran, Wagener, & Hohman, 

2017; Mielke, Vemuri, & Rocca, 2014; Mortensen & Høgh, 2001; Neu et al., 2017; Payami 

et al., 1996; Riedel, Thompson, & Brinton, 2016). Higher literacy levels (as measured by 

word reading tasks) have been shown to mitigate age- and/or APOE-related cognitive 

decline in non-demented elders (Kaup et al., 2015; Manly, Touradji, Tang, & Stern, 2003).

No studies, to our knowledge, have investigated the combined influences of sex, APOE 
genotype, and literacy on early to late middle-age cognitive trajectories in an integrated 

analytic framework. However, the number of configurations in which these and other 

covariates could be associated with a given outcome is quite large, and this presents a 

problem of what model configuration to choose. Traditional model selection approaches, 

such as forward, backward, or stepwise selection, attempt to find a model that best fits the 

observed data. One issue that can arise from such methods is concluding that only the 

selected predictors are important while assuming those not selected are unimportant 

(Anderson & Burnham, 2002). In reality, several models may fit the data similarly well but 

result in different conclusions, and inference from a single model chosen after a selection 

procedure can lead to overly optimistic results and conclusions (Claeskens and Hjort 2008). 
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Information-theoretic (IT) modeling techniques offer a way to characterize complex sets of 

interactions and make multi-model inference while avoiding the pitfalls of predictor 

selection methods (Anderson & Burnham, 2002; Claeskens & Hjort, 2008).

The IT framework evaluates “a small set of science hypotheses, all of which are plausible” 

(p. 202, (Anderson & Burnham, 2002)). The IT approach has its roots in biological ecology 

research (Burnham, Anderson, & Huyvaert, 2011; Hegyi & Garamszegi, 2011; Richards, 

2005; Richards, Whittingham, & Stephens, 2011; Symonds & Moussalli, 2011), and aims to 

use the relative strength of information among all considered models instead of selecting a 

single model. The methods start with formulating a reasonably sized collection of models 

with the same outcome, but different covariate structures (such as different main effects, 

interactions, etc.). Each model should test hypotheses that are scientifically reasonable to 

include. After fitting all of these models to the data, results are combined across models in 

proportion to the relative strength of information each model provides. These relative 

strengths are quantified through the theory of the corrected Akaike Information Criterion 

(AICc), which estimates the relative differences among these models with respect to their 

Kullback-Leibler divergence, a measure of the distance between a proposed model and the 

“true” model (see Figure 1, Burnham et al., 2011; Hurvich & Tsai, 1989). This allows 

models fitting similarly well to contribute relatively equal amounts of influence on the 

resulting parameter estimates, while models that fit poorly have little or no influence on 

results.

The aims of this study were to describe the IT model averaging method and apply it to 

characterize how sex, literacy, and APOE genotype influence age-related trajectories for 

several neuropsychological tests in a longitudinal sample enriched for risk of developing AD 

(Wisconsin Registry for Alzheimer’s Prevention (WRAP)). In secondary analyses, we 

compare the IT model averaging results with traditional model selection methods.

Methods

WRAP study and participants

WRAP is a longitudinal cohort study enriched for AD-risk via over-enrollment of 

participants with a parental history of AD (for details, see (Johnson et al., 2017)); primary 

aims of the study include identifying predictors associated with cognitive decline and 

estimating their associations. All participants were free of dementia at baseline. At the time 

of these analyses, there were 1549 enrolled WRAP participants (baseline age mean(sd)= 

53.7(6.6); parental history of AD n(%)= 1125(72.6%)). To be included in these analyses, 

participants had to be free at baseline of Mild Cognitive Impairment (MCI) and any of four 

neurological conditions (stroke, Parkinson’s disease, multiple sclerosis, epilepsy), have 

completed at least 2 study visits, and have complete data in the predictors needed for the 

analyses (n=1256 eligible; n’s excluded: MCI, n=4; neurological disorder, n=59; <2 visits, 

n=226; incomplete predictors, n=4; see Table 1 for additional details). This study was 

conducted in compliance with ethical principles for human subjects research defined in the 

Declaration of Helsinki, including approval by the University of Wisconsin Institutional 

Review Board.
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Study protocol and outcomes

At each study visit, participants completed comprehensive cognitive assessments, detailed 

health and lifestyle questionnaires, and provided blood samples for current and future 

analyses. The first follow-up visit occurred approximately 4 years after baseline, with 

subsequent visits occurring approximately every 2 years (for details, see (Johnson et al., 

2017)). We analyze ten outcomes in this study that have been shown to be sensitive to AD-

related cognitive changes (one intraindividual variability (IICV) measure and nine cognitive 

measures available since baseline of the WRAP study). The nine measures used are: the Rey 

Auditory Verbal Learning and Memory Test (Schmidt, 1996), sum of learning trials (“AVLT 

Total”) and long delay recall trial (“AVLT Delay”); Trail Making Test (“Trails A” and 

“Trails B”, (Lezak, Howieson, Bigler, & Tranel, 2012)); Stroop Color-Word Interference 

Test (Trenerry, Crosson, DeBoe, & Leber, 1989), number of correct items in two minutes; 

Controlled Oral Word Association Test (Benton, Hamsher, & Sivan, 1994), total words in 60 

seconds for each letter: C, F, L (“CFL”); the Boston Naming Test (“BNT”, (Kaplan, 

Goodglass, & Weintraub, 2001)), total correct and Digit span forward and backward total 

items correct (Wechsler, 1997).

Given recent results in WRAP and other studies suggesting that higher intraindividual 

cognitive variability (IICV) across tests at a given visit predicts increased risk of subsequent 

decline or AD pathology (Anderson et al., 2016; Gleason, Norton, Anderson, Wahoske, 

Washington, Umucu, Koscik, Dowling, Johnson, & Carlsson, 2017; Holtzer, Verghese, 

Wang, Hall, & Lipton, 2008; Koscik et al., 2016), we also characterized how IICV varied by 

sex, literacy, APOE, and age in our sample. Specifically, we calculated “4-Test IICV” as the 

standard deviation of z-scores of AVLT Total and Delay, Trails B, and the Wide Range 

Achievement Test (3rd ed., “WRAT”) reading recognition subtest standard score (Wilkinson, 

1993); AVLT Delay, Trails B, and WRAT were Box-Cox transformed prior to z-scoring 

(AVLT Delay had a constant of 1 added to all scores before transformation) The WRAT 

Reading score when used in middle-aged and older adults is accepted as a stable proxy for 

premorbid verbal abilities and quality of education (Ashendorf, Jefferson, Green, & Stern, 

2009; Manly et al., 2003; Olsen, Fellows, Rivera-Mindt, Morgello, & Byrd, 2015). Baseline 

WRAT reading and IICV were not correlated (Spearman rho=.022, p=.44) even though 

WRAT is a component of the IICV calculation.

Key Predictors and Covariates

Key predictors in this study include age (years), sex (Male/Female), APOE ɛ4 allele count 

(i.e., 0, 1, 2 (for details on genotyping methods, see (Darst et al., 2017))), and WRAT. For 

subjects without baseline WRAT, the value at their second visit was used. Additional 

covariates included race/ethnicity (non-Hispanic Caucasian vs underrepresented group, 

URG), if English was the subject’s native language (ESL), and socioeconomic status (SES; 1 

= <$20k; 2 = $20k-<$40k; 3= $40k-<$60k; 4=$60k-<$80k, and 5=$80k or more). 

Missingness in SES was present in 54 (4.3%) participants. To recover these subjects for 

analyses, their baseline SES values were imputed through proportional odds regression using 

baseline values of age, sex, race/ethnicity, the Center for Epidemiological Studies of 

Depression (CES-D) total score (Radloff, 1977), literacy, and years of education as 

predictors.
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Data analysis

We followed the steps outlined for the IT-modeling approach detailed below.

1. Specifying the model set.—Based on research indicating potential interactions 

between literacy and sex, APOE ɛ4 count (0=reference group) or age (on cognitive 

outcomes), we developed a set of 28 research-supported hypothesized models representing 

increasingly complex relationships among sex, literacy, APOE ɛ4 status, and age-related 

cognitive decline (Table 2). We then proceeded with steps 2–7 for each of our outcomes.

2. Fit each model and check model assumptions.—All models used a mixed 

effects structure, with the fixed effects for each model in the set as specified by Table 2, and 

subject specific intercepts and age-related slopes as random effects. For outcomes of AVLT 

Delay and BNT, logistic regression mixed models were used to address the discrete nature 

and ceiling effects in the data; other outcomes used standard linear mixed effects models. 

For all models, SES was treated as continuous, age and SES were centered to their baseline 

means, and their associated quadratic terms calculated from these centered values. Each 

model was fit to the data by maximum likelihood, and model diagnostics were performed on 

the model with the most parameters and the “best fitting” model (lowest AICc value). 

Diagnostics included checking for homoscedastic and appropriately distributed residuals, 

outliers, normally distributed random effects, correlation between random effects and 

residuals, and overdispersion (for logistic regressions). CFL and IICV were square-root 

transformed to address residuals issues. Stroop Color Word was removed from subsequent 

analysis due to several residuals violations not addressed with reasonable transforms.

Even after reasonable transformations, the following issues persisted. Small correlations 

between the random effects and residuals were noted (≤ ~|0.3|). CFL also had several large 

positive residual outliers associated with a single subject. A sensitivity analysis for CFL 

removed this subject and re-performed the entire algorithm; because results did not change 

in any meaningful way, CFL results presented here include this subject.

3. Extract model statistics.—For each model in the set, the extracted model statistics 

included the number of model parameters (k, including number of both fixed and random 

effects terms), Akaike’s Information Criterion-corrected (AICc), and the log likelihood 

statistic. AICc is based on the Kullback-Leibler (K-L) divergence, which is a measure of 

information loss when model ‘g’ is used to approximate the true data generating model, 

model ‘f’ (Burnham & Anderson, 2003). For data with n observations and fitted regression 

model ‘g’ with k parameters, the formula for AICc is (K. P. Burnham & Anderson, 2002):

AICc = − 2ln p(y θ ) + 2kn
n − k − 1

where y is the observed data, θare the maximum likelihood estimates of the k parameters 

from model ‘g’, and ‘p()’ the likelihood function for model ‘g’.
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4. Calculate Δj’s.—The minimum AICc across the model set was used to calculate the 

difference between the best fitting model (i.e., that with the minimum AICc) and model j. 

For model j:

Δ j = (AICc o f model j) − (minimum AICc value in set), f or j = 1, 2, …J models in the set

5. Calculate model weights.—Δj’s for each model are used to calculate the Akaike 

weights (wj’s) of all models in the set. Heuristically, wj represents the likelihood that model j 

is the K-L best model in the set. The wj’s helps quantify model uncertainty and are used to 

combine information across the set of models. wj is calculated as:

w j =
exp −Δ j/2

∑k exp −Δk /2

6. Combine results across models.—Regression coefficient results from each model 

are multiplied by their corresponding weight (wj), and all weighted results are then summed 

together for the final model averaged result. When a regression parameter does not appear in 

a particular model, it is set to zero in that model. Thus, for the ith regression parameter in 

one model, the model averaged ith regression parameter is:

βi = ∑
j

ω jβi( j), where βi( j) = 0 i f βi does not appear in model j

7. Confidence intervals and inference using model averaged results.—To 

facilitate multi-model inference, model-averaged estimates were evaluated using 95% CI’s 

obtained through non-parametric bootstrapping. For each outcome, the data used to fit the 

model sets was first stratified at the subject level by the total number of visits (2, 3, 4, or 5) 

per subject. Within each stratum, subjects were selected, with replacement, back to the 

number of subjects within that stratum, thus preserving the original number of subjects, 

observations/subject, and distribution of follow-up visits. Each bootstrap replicate went 

through steps 2–6; 10,000 bootstrap replicates were performed for each outcome. Bootstrap 

quantiles were used to calculate CI’s (using linear interpolation when necessary). Standard 

CI interpretation methods were used for inference about regression parameters (i.e., CI’s that 

did not overlap with 0 were considered significant at the α=0.05 level). This process was 

used for both regression parameters and predicted outcomes.

Bootstrap rationale.: While Burnham and Anderson propose analytical methods for model-

averaged inference and CI’s, these methods are predicated upon assumptions of a limiting 

normal distribution for the model-averaged estimate (Burnham & Anderson, 2002). 

Clauskens and Hjort have shown that, unless one assumes the model weights (wj’s) used are 

fixed and not random quantities, there is no guarantee of a limiting normal distribution 

(Claeskens & Hjort, 2008). Thus, we utilized bootstrapping methods similar to those 

proposed by Burnham and Anderson (Burnham & Anderson, 2002).
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Secondary analyses.

Comparison of modeling methods.—To illustrate how results from the above 

approach differ from some traditional approaches, we selected three tests and compared IT 

model averaged results with results obtained via single regression models determined by a 

best fitting model approach and by a backwards elimination approach. In both methods, the 

same general mixed effects model structure and use of maximum likelihood fits were used. 

For the best fitting approach, the model selected was that out of the candidate set which had 

the minimum AICc value. For backwards elimination, the starting model included all terms 

that appeared in any of the models within the candidate set, and the criteria for elimination 

was which covariate reduced AICc by the largest amount, while preserving the hierarchy of 

higher order terms. Elimination stopped when removal of any remaining term did not reduce 

AICc. For both methods, CI’s and inference from the resulting single models utilized the 

asymptotic normal properties of regression estimates.

Type I error assessment.—No family-wise error rate correction was performed; 

however, an assessment of the interaction findings in relation to type I error rates was done. 

For each outcome, 17 unique interaction coefficients defined by the model set were 

examined (eleven two-way and six three-way) for a total of 99 two-way and 54 three-way 

interactions across the nine outcomes. For each of these coefficient groupings, the binomial 

distribution was used to examine how often one would expect to detect at least the number 

of significant coefficients found in these analyses (at the 0.05 level), assuming the global 

null hypothesis that all coefficients are truly zero, and (naively) the results collection is 

mutually independent.

Software used.—All analyses were performed using R version 3.4.0. Proportional hazard 

models were fit using ‘polr’ in the MASS package; mixed effect regression models were fit 

using ‘lmer’ and ‘glmer’ in the lme4 package; AICc-based model statistics were calculated 

using ‘aictab’ in the AICcmodavg package; bootstrapping was performed utilizing 

HTCondor version 8.6.3.

Results

Sample Characteristics

Baseline sample characteristics are shown in Table 1 overall and by sex. Mean(sd) age at 

baseline and last visit were 53.7(6.6) and 62.8(6.8), respectively. Men and women did not 

differ in terms of age, years of follow-up, proportion of URG or ESL, and IICV. The sexes 

differed on APOE ɛ4 count, SES, and all cognitive tests at baseline. Women performed 

better than men at baseline on all tests except BNT and Digit Span. Those who were 

excluded due to having completed only one visit did not differ from the analysis group in 

terms of age, sex, or IICV but did have lower SES and baseline cognitive scores, and higher 

proportions URG (36%) and ESL (10.8%).

Model-averaged Results

Model averaged coefficients and corresponding 95% CI’s for all non-intercept terms are 

shown in Tables 3 (AVLT Total, AVLT Delay, log10Trails A and log10Trails B, and CFL) and 
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4 (Digit Span forward and backward, BNT, and 4-Test IICV). In each table, 95% CI’s that 

exclude 0 are identified by bold-face; gray shading denotes CI’s containing 0. AICc’s and 

weights for all outcomes and models in the set are presented in Supplemental Table 2. 

Results are summarized below using model numbers (and the first time a model number is 

referenced in the results, the corresponding highest order term(s) beyond those included in 

Model 1 are included in parentheses); for each outcome, results are supported by a two-

panel figure (left-panel depicts 95% CIs that exclude 0 and right-panel depicts predicted 

outcomes by age and selected predictors using model-averaged estimates).

Memory.

For AVLT Total, Model 21 (highest order terms: sex*age, sex*WRAT) was best-fitting, 

contributing a weight of .562 to model averaging; Model 26 (sex*WRAT*age2) contributed .

183 and Model 25 (sex*WRAT*age) contributed .139 (weights in supplemental Table 2); all 

other model weights were under .05. Significant interactions included ɛ4 count 1*age2, 

sex*age, and sex*literacy (left-panel, Figure 1). Figure 1 (right-hand panel) depicts AVLT 

Total model-averaged predicted performance for the latter two interactions since the 

estimated beta for the interaction with age and ɛ4 count 1 was ostensibly 0 (i.e., at 10 years 

below the average age, estimated AVLT performance is .0329 points higher for those with 0 

vs 1 ɛ4 allele while at 10 years above the average age, estimated AVLT performance is .0331 

points higher for those with 0 vs 1 ɛ4 allele). There’s a larger gap in AVLT Total scores for 

high vs low literacy in men than in women (i.e., worse scores at lower literacy levels) and 

men show faster AVLT Total age-related decline than women.

The best fitting model for AVLT Delay was also Model 21 (weight=.531), followed by 

Model 15 (WRAT*age, sex*age, weight=.123) and Model 25 (.119). Variability in AVLT 

Delay was explained largely by SES, sex, literacy and age, with age-related AVLT Delay 

decline steeper for men than women (see Supp. Fig. 1A for S trajectories).

Executive function/ Working Memory.

The best fitting models for log10 Trails B were Models 6 (WRAT + age2; weight=.330), 26 

(weight=.297), 12 (WRAT*age2; weight=.124), and 19 (sex*WRAT; weight=.109). 

Variability in log10 Trails B was explained by SES, URG status, sex, literacy, age (linear and 

quadratic), and a 3-way interaction with sex*APOE ɛ4 count 1*age (left-hand panel, Figure 

2A). Though significant, the estimated beta for the sex*age*APOE interaction was again 

close to 0. Predicted age-related trajectories show slower times for men than women and 

lower vs higher literacy (right-hand panel, Figure 2A; no predicted values are shown for men 

and APOE ɛ4 count=2 due to the small cell size (n=4)).

The best fitting models for Digit Span Backward were Models 6 (weight=.583), 12(.168), 

26(.117), and 8 (WRAT + APOE + age2; weight=.104). Variability in Digit Span Backward 

was explained by quadratic age, literacy, and sex with greater sex differences at higher 

literacy levels (Supp. Figure 1B).
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Attention.

The best fitting models for log10 Trails A were Models 19 (weight=.574), 21 (.248), and 25 

(.064). Supplemental Figure 1C depicts significant beta estimates and their CI’s (left panel) 

and predicted values vs age, stratifying by sex and literacy (high vs low; right panel). 

Predicted values indicate that women of high literacy perform worse on log10 Trails A than 

women of low literacy while the opposite is true for men. Although the interactions of 

sex*quadratic age, and sex*age*APOE ɛ4 counts of 1 or 2 were statistically significant, all 

had estimated betas extremely close to 0 (Table 4; Supp. Fig. 1C).

The best fitting models for Digit Span Forward were Models 6 (weight=.307), 26 (.234), 19 

(.163), and 12 (.124). Variability in Digit Span Forward was explained by sex, age (linear 

and quadratic) and literacy; significant interactions included sex*literacy and 

literacy*quadratic age. The latter beta estimate was near zero; sex differences in the outcome 

are negligible at low literacy levels while men outperform women at high literacy levels 

(Supp. Figure 1D).

Language.

The best fitting models for CFL were Models 19 (weight=.416) and 21 (.251). Variability in 

CFL was explained by age, sex, literacy, and interactions sex*APOE count 1, sex*literacy, 

and sex*APOE count 1*quadratic age, although the three-way beta estimate was essentially 

0 (Figure 2B). Women did better overall and sex differences were smaller in ɛ4 count=0 than 

count=1. All improved with age. The best fitting models for BNT were Models 6 (weight=.

630), 12 (.239), and 8 (.128). Variability in BNT was explained by SES, URG status, sex, 

age, ESL status, and literacy level with higher literacy, SES, male sex and older age 

associated with better performance, while URG and ESL status were associated with lower 

BNT scores (Supp. Figure 2).

Intraindividual variability.

The best fitting model for 4-Test IICV was Model 26 (weight=0.959); all other models 

contributed <0.05 to the parameter weights. Variability in 4-Test IICV was accounted for by 

sex, age, and literacy, with significant sex* age2, sex*literacy, and literacy*age interactions 

(Figure 3). At lower levels of literacy, women show higher 4-Test IICV than men and IICV 

declines with age; in contrast, IICV increases with age at higher literacy levels and is at 

times higher among men than women (Figure 3).

Model comparisons.

In secondary analyses of 3 outcomes (AVLT Total, AVLT Delay, and Trails B), we compared 

estimated betas and 95% CI’s between the IT, best fit, and backward selection approaches 

for coefficients that were significant in any of the methods, per outcome. Results differed 

most across model selection approaches for Trails B, with 6 of 11 terms inconsistently 

significant across methods (see Figure 4 for point estimates and CI’s for the three 

approaches for Trails B and Supplementary Figure 4 for AVLT Total and Delay).
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Type I error assessment.

Fourteen (14.1%) of 99 unique two-way interactions were significant, corresponding to a 

probability of 0.00012 under the global null. Four (7.4%) of 54 unique three-way 

interactions were significant, corresponding to a 0.132 probability under the global null.

Discussion

In this study, we used information-theoretic (IT) model averaging techniques to characterize 

how sex, APOE ɛ4 carrier status, and literacy modify age-related cognitive and IICV 

trajectories in a sample that was middle-aged and free of clinical impairment at baseline 

assessment. We observed age-related declines for all cognitive outcomes except the two 

language-related measures (CFL and BNT). Age-related declines in IICV were associated 

with lower literacy levels while IICV tended to increase with age among participants with 

higher literacy. Significant but small quadratic age effects were observed for a few 

outcomes. APOE ɛ4 count showed significant but small modifying effects on age-related 

trajectories on four outcomes. Sex and literacy were consistently significant predictors of 

measures of memory, executive function, working memory, language and intra-individual 

cognitive variability with effects showing stronger performance in women (vs men) and 

higher (vs lower) literacy.

Compared to those with no APOE ɛ4 alleles, carriage of one or two ɛ4 alleles is associated 

with greater risk of AD (Neu et al., 2017) and faster or earlier cognitive decline in certain 

domains. For example, in a sample of cognitively normal adults (mean baseline age ~60 

years, followed an average of ~5 years), Caselli and colleagues reported accelerated age-

related decline on AVLT Delay among APOE ɛ4 carriers (vs non-carriers) beginning prior to 

age 60 (Caselli et al., 2009). Predicted annual rate of AVLT Delay change, however, was 

very small for carriers and non-carriers in age-ranges similar to our sample (e.g., 50–59, 

0.07 vs 0.08 and 60–69, 0.04 vs −0.03 for non-carriers vs carriers, respectively). In a 

metaanalyses, Wisdom and colleagues also reported significant yet small differences in age-

related decline among APOE ɛ4 carriers relative to non-carriers (Cohen’s d estimated effect 

sizes <.20; (Wisdom et al., 2011)). Results in our sample showed similar significant, yet 

small age-modifying effects of one APOE ɛ4 allele (vs 0) for AVLT Total, Trails A and B, 

and CFL. These patterns, when considered along with data showing that APOE ɛ4 effects on 

later life cognitive trajectories are mediated by underlying neuropathology (Yu, Boyle, 

Leurgans, Schneider, & Bennett, 2014), underscore the importance of thoroughly 

characterizing neuropathology in late-middle age to better understand how APOE ɛ4 confers 

increased risk of AD dementia.

Previous research has also shown sex differences in risk of MCI (Roberts et al., 2012) and 

AD (e.g., Altmann et al., 2014), and rates of decline (e.g., McCarrey, An, Kitner-Triolo, 

Ferrucci, & Resnick, 2016; Mortensen & Høgh, 2001), with other studies showing evidence 

of potential sex*ɛ4 interactions (Payami et al., 1996). In our sample, sex*age interactions 

showed lower scores and faster decline in men for both AVLT measures. These results are 

consistent with other studies such as those reported for the Mayo Clinic Study of Aging in 

which men had worse memory (including , decline) and lower hippocampal volume 

compared to women (Jack, Wiste, Weigand, et al., 2015). Sundermann and colleagues 
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posited that the paradoxical higher rates of MCI in men and higher rates of AD in women 

may be explained at least partially by two things: first, the “female advantage in verbal 

memory” may constitute a form of cognitive reserve for women which delays declines in 

verbal memory until older ages or until AD biomarkers are present; and second, the use of 

norms that don’t adjust for sex may result in over-identification of men or delayed 

identification of women with MCI (Sundermann et al., 2017, 2016).

Literacy level as measured by word reading tasks is considered a proxy for verbal 

intellectual ability and quality of education; lower literacy has been associated with faster 

memory decline in non-demented elders (e.g., Manly et al., 2003). Higher literacy levels 

have also been shown to be associated with resilience to APOE ɛ4-related cognitive decline 

(Kaup et al., 2015; Vemuri, Lesnick, Przybelski, et al., 2014). In our sample, literacy did not 

modify effects of APOE ɛ4 or age on cognition. These results were consistent, however, 

with other studies showing main effects only for predictors such as literacy or educational 

attainment (e.g., Berggren, Nilsson, & Lövdén, 2018, Lenehan, Summers, Saunders, 

Summers, & Vickers, 2015) and suggest that performance differences in late middle-age 

associated with these measures “reflect the persistence of earlier-life differences in cognitive 

functioning, and not differential rates of cognitive decline” (p. 11, Tucker-Drob, Johnson, & 

Jones, 2009). We did observe several sex*literacy interactions showing the pattern that the 

benefits of higher literacy associated were stronger for men than women for AVLT Total, 

Trails A, CFL and Digit Span; these results also underscore the importance of using norms 

that adjust for key demographic features.

4-Test IICV had several moderating effects. At lower literacy/premorbid verbal ability levels 

predicted IICV declined faster with age among men compared to women. In contrast, 

predicted IICV increased with age at higher literacy levels (and for both sexes), suggesting 

probable worsening in memory and/or executive function relative to premorbid verbal 

abilities. This pattern corresponds to other studies that have shown that higher IICV 

(calculated using variables similar to those we used) predicts MCI, AD or AD pathology ((E. 

D. Anderson et al., 2016; Gleason, Norton, Anderson, Wahoske, Washington, Umucu, 

Koscik, Dowling, Johnson, Carlsson, et al., 2017; Holtzer et al., 2008; Koscik et al., 2016)). 

The former pattern suggests that future studies could examine whether the risk-indicating 

value of IICV varies across underlying characteristics such as sex and literacy.

Traditional model selection methods such as stepwise regression are prone to overfitting the 

data, producing overconfident estimates with standard errors that do not account for the 

degrees of freedom in the search process (Hastie, Trevor, Tibshirani, Robert, & Friedman, 

Jerome, 2009). Shrinkage methods, such as Lasso (Taylor & Tibshirani, 2015), can help 

select important predictors with respect to the outcome, but parsimonious models and 

predictive accuracy are the typical goal, and statistical inference can be difficult (Hastie, 

Tibshirani, & Wainwright, 2015). While new post-selection inference techniques exist for 

certain models, they have not been developed for mixed models (Lee, Sun, Sun, & Taylor, 

2016) and extensions of Lasso to mixed modeling environments have not yet been developed 

for inference (Schelldorfer, Bühlmann, & Van de Geer, 2011). Bayesian model averaging 

combines information from posterior distributions of parameters of interest across several 

models, weighting each by its posterior model probability (Hoeting, Madigan, Raftery, & 
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Volinsky, 1999). However, it is important in Bayesian methods to formulate reasonable prior 

distributions for all parameters and model probabilities, and this can be prohibitive when the 

set of models under consideration is large (Claeskens & Hjort, 2008), Chen and colleagues 

(Chen, Ibrahim, Shao, & Weiss, 2003) have developed an automatic method that requires 

few hyperparameters to be directly specified, but their method depends upon the existence of 

a comparable independent dataset that can be used for elicitation. By using the IT approach 

in this paper, we obtained the robustness benefits of model averaging without the overhead 

of Bayesian methods, while still yielding familiar statistical outputs that support inferences 

(i.e. point estimates, CI’s).

Our secondary analyses suggest that the IT approach may guard against over-identifying and 

overestimating effects compared to traditional methods. First, in our comparison of the IT 

approach with best fit and backwards elimination approaches, main effects estimates 

between the three methods were generally very similar, though the IT method tended to have 

the widest confidence intervals. Relationships between the three methods were more 

complex for quadratic effects and interactions. Backwards elimination commonly “found” 

interactions that best fit did not, while IT tended to attenuate the estimated interaction 

coefficient ostensibly to zero. Second, the high numbers of significant two-way interaction 

effects detected in the IT method were well above those expected from random chance under 

the global null, lending confidence to conclusions about significant IT model-averaged 

effects. For all 4 significant three-way interactions, the IT method estimates have very tight 

CI’s that are extremely close to zero, especially compared to estimates that were found by 

backwards elimination, suggesting that IT methods might further guard against 

overconfident results.

The generalizability of our results is limited by cohort characteristics, including that our 

sample is relatively young, highly educated, enriched for AD risk, has few males 

homozygous for ɛ4 and has limited follow-up on participants from URG’s. In addition, use 

of APOE ɛ4 count is just one of many possible ways of parameterizing APOE-associated 

risk. The IT approach is computationally intensive and is not appropriate for every analysis 

scenario involving model selection, particularly those with few model terms. Like any model 

selection or averaging approach, IT model averaging methods are not without potential 

pitfalls. For example, some question whether weights assigned to models can reasonably 

extend to weights on specific model parameters between the models (Cade, 2015). Post-

selection inference, model averaging and associated methods such as Lasso are still areas of 

active research and vetting through application. Applying these methods to additional data 

sets including simulated data sets with pre-specified characteristics (i.e. significant effects) 

will help inform when the more complex approaches yield most benefit in terms of 

predictive or inferential accuracy.

Conclusions

Data increasingly suggest that there are multiple risk factors that influence the path to 

Alzheimer’s dementia. Simple model selection approaches (e.g., building up models and 

comparing more complex to less complex nested models) will continue to be useful ways to 

handle relatively simple sets of model comparisons. However, as researchers seek to 
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consider multiple risk factors simultaneously, more complex methods that are appropriate 

for mixed effects models and which avoid the pitfalls of methods like stepwise selection are 

needed. The IT model averaging approach offers a framework that allows results from 

multiple plausible hypotheses to provide weighted model-averaged parameter estimates and 

CI’s which can then be used to make inferences about parameters and to estimate outcomes.

The results from the WRAP sample suggest that age-related trajectories are modified more 

by sex and literacy levels than by APOE ɛ4 allele count in this age range. These patterns 

may be important to consider when interpreting standard scores that ignore sex or literacy in 

their calculations. Future applications of the IT methodology will examine the interplay of 

sex and literacy with other potential cognitive trajectory-modifying variables such as 

polygenic risk, AD biomarkers, or lifestyle factors (e.g., exercise or diet).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. AVLT Total: Significant Model-Averaged Terms (Left) and Predicted Values (Right)
Results are for the outcome, AVLT Total. The left panel depicts parameter estimates and 

95% confidence intervals (CI’s) for CI’s that do not overlap 0. The right panel depicts 

predicted values and 95% confidence limits using the model averaged parameter estimates 

for both sexes and high vs low literacy. SES=Socioeconomic status; URG = 

Underrepresented groups; WRAT = Wide Range Achievement Test (3rd edition).
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Figure 2. Trails B and CFL Significant Model-Averaged Terms (Left) and Predicted Values 
(Right).
Results in Figure 2A are for Trails B (log10 transformed) and in Figure 2B are for CFL 

(square-root transformed). For each, the left panel depicts parameter estimates and 95% 

confidence intervals (CI’s) for CI’s that do not overlap 0. The right panel depicts predicted 

values and 95% confidence limits using the model averaged parameter estimates for both 

sexes, high vs low literacy, and APOE ɛ4 allele count. SES=Socioeconomic status; URG = 

Underrepresented groups; WRAT = Wide Range Achievement Test (3rd edition).
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Figure 3. 4-Test Intraindividual Cognitive Variability Significant Model-Averaged Terms (Left) 
and Predicted Values (Right)
Results are for the outcome, 4-Test IICV. The left panel depicts parameter estimates and 

95% confidence intervals (CI’s) for CI’s that do not overlap 0. The right panel depicts 

predicted values and 95% confidence limits using the model averaged parameter estimates 

for both sexes and high vs low literacy. SES=Socioeconomic status; URG = 

Underrepresented groups; WRAT = Wide Range Achievement Test (3rd edition).
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Figure 4. Trails B Significant Results by IT, Best Fit, and Backward Selection Methods
Parameter estimates and 95% CI’s are depicted for each of three modeling methods (IT, 

AICc Best Fit, and Backward Elimination) for parameters that were significant by at least 

one of the three methods. CI’s that overlap 0 (i.e., not significant) are shown in blue. Results 

varied across methods for all the interaction terms. IT=Information Theoretic model 

averaging method; AICc best = AICc best fit model selection method; back. Elim.= 

backward elimination model selection method; SES=Socioeconomic status; URG = 

Underrepresented groups; WRAT = Wide Range Achievement Test (3rd edition).
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Table 1:

Sample characteristics

Overall Female Male p-value*

N 1256 873 (69.5%) 383 (30.5%)

Age (mean (sd)) 53.67 (6.55) 53.56 (6.57) 53.92 (6.51) 0.238

URG (N (%)) 85 (6.8) 61 (7.0) 24 (6.3) 0.715+

ESL (N (%)) 21 (1.7) 16 (1.8) 5 (1.3) 0.636+

Follow-up years (mean (sd)) 9.10 (2.60) 9.04 (2.63) 9.22 (2.53) 0.34

Number of visits (N (%))

2 135 (10.7) 102 (11.7) 33 (8.6) 0.124+

3 265 (21.1) 180 (20.6) 85 (22.2)

4 432 (34.4) 310 (35.5) 122 (31.9)

5 424 (33.8) 281 (32.2) 143 (37.3)

APOE ε4 count (N (%))

0 767 (61.1) 523 (59.9) 244 (63.7) <0.001+

1 438 (34.9) 303 (34.7) 135 (35.2)

2 51 (4.1) 47 (5.4) 4 (1.0)

SES (N (%))

1 39 (3.1) 26 (3.0) 13 (3.4) <0.001^

2 122 (9.7) 99 (11.3) 23 (6.0)

3 267 (21.3) 202 (23.1) 65 (17.0)

4 241 (19.2) 171 (19.6) 70 (18.3)

5 587 (46.7) 375 (43.0) 212 (55.4)

RAVLT total (mean (sd)) 51.10 (7.95) 52.61 (7.30) 47.64 (8.30) <0.001

RAVLT delayed recall (mean (sd)) 10.46 (2.82) 10.96 (2.60) 9.33 (2.99) <0.001

Trails A (mean (sd)) 26.81 (8.55) 26.28 (8.24) 28.02 (9.11) 0.001

Trails B (mean (sd)) 62.06 (24.61) 60.21 (22.16) 66.28 (29.03) <0.001

Boston Naming 60 (mean (sd)) 57.02 (3.09) 56.87 (3.19) 57.35 (2.84) 0.002

CFL fluency (mean (sd)) 43.37 (11.07) 43.99 (10.75) 41.94 (11.65) 0.002

Digit Span backward (mean (sd)) 7.09 (2.22) 7.00 (2.17) 7.31 (2.32) 0.024

Digit Span forward (mean (sd)) 10.51 (2.18) 10.40 (2.11) 10.76 (2.31) 0.006

Stroop color word, (mean (sd)) 108.12 (20.63) 109.86 (19.58) 104.09 (22.42) <0.001
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Overall Female Male p-value*

4-Test IICV (mean (sd)) 0.73 (0.33) 0.73 (0.33) 0.73 (0.33) 0.803

*
Note: Comparisons made with Mann-Whitney, unless noted with or # of participants omitted from model averaging for that outcome due to <2 

visits with that outcome’s data: AVLT Total and Delay, 7; Trails A and B, 6; Digit span forward and backward, 7; Stroop CW, 21; BNT, 10; CFL, 
10; 4 Test IICV, 9.

+
Fisher’s exact

^
Chi-squared

Abbreviations: URG = Underrepresented groups; ESL = English is a Second Language; SES = Socioeconomic Status; IICV = Intraindividual 
Cognitive Variability.
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