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BACKGROUND: Efforts to improve the value of care for
high-cost patients may benefit from care management
strategies targeted at clinically distinct subgroups of
patients.
OBJECTIVE: To evaluate the performance of three differ-
ent machine learning algorithms for identifying sub-
groups of high-cost patients.
DESIGN: We applied three different clustering
algorithms—connectivity-based clustering using agglom-
erative hierarchical clustering, centroid-based clustering
with the k-medoids algorithm, and density-based cluster-
ing with the OPTICS algorithm—to a clinical and admin-
istrative dataset. We then examined the extent to which
each algorithm identified subgroups of patients that were
(1) clinically distinct and (2) associated with meaningful
differences in relevant utilization metrics.
PARTICIPANTS: Patients enrolled in a national Medicare
Advantage plan, categorized in the top decile of spending
(n = 6154).
MAIN MEASURES: Post hoc discriminative models com-
paring the importance of variables for distinguishing ob-
servations in one cluster from the rest. Variance in utili-
zation and spending measures.
KEY RESULTS: Connectivity-based, centroid-based, and
density-based clustering identified eight, five, and ten
subgroups of high-cost patients, respectively. Post hoc
discriminative models indicated that density-based clus-
tering subgroups were the most clinically distinct. The
variance of utilization and spending measures was the
greatest among the subgroups identified through
density-based clustering.
CONCLUSIONS: Machine learning algorithms can be
used to segment a high-cost patient population into sub-
groups of patients that are clinically distinct and

associated with meaningful differences in utilization and
spending measures. For these purposes, density-based
clustering with the OPTICS algorithm outperformed
connectivity-based and centroid-based clustering
algorithms.
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INTRODUCTION

Efforts to improve the value of care for high-cost patients may
benefit from care management strategies targeted at clinically
distinct subgroups of patients 1–4. Existing frameworks for
segmenting high-cost patients are derived from expert opinion
and are based predominately on patterns of comorbidity and
functional status 1,3,5,6. There may be an opportunity to sup-
plement these approaches using machine learning methods.
Clustering is an unsupervised machine learning technique

that groups observations (e.g., patients) according to similar-
ities among measured characteristics. There are a variety of
approaches to clustering. Three of the most commonly used
are connectivity-based clustering (also known as hierarchical
clustering), centroid-based clustering, and density-based clus-
tering 7,8. Connectivity-based clustering algorithms sequen-
tially combine, or split, groups of observations based on a
metric reflecting the similarity among observations. Centroid-
based clustering algorithms begin with a pre-specified number
of subgroups and then assign observations to the subgroup
with the closest centroid based on a distance metric. Common
centroid-based clustering algorithms include k-means and k-
medoids. Density-based clustering algorithms identify areas of
varied density within a dataset and group together observa-
tions that make up areas of high density. One popular density-
based clustering algorithm is ordering points to identify the
clustering structure (OPTICS), which is an extension of the
earlier density-based spatial clustering of applications with
noise (DBSCAN) algorithm. Table 1 provides a broad
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overview of these three clustering approaches and summarizes
selected advantages and disadvantages of each.
Clustering has been used to identify novel disease sub-

groups across various conditions, including asthma 9,10,

COPD 11,12, CHF 13,14, and neurologic disorders 15, 16. How-
ever, the application of clustering to health care delivery
remains nascent 17,18. In this study, we aimed to evaluate the
performance of connectivity-based, centroid-based, and
density-based clustering for identifying subgroups of high-
cost patients using a clinical and administrative dataset.

METHODS

Study Population and Data

The study population consisted of patients enrolled in a na-
tional Medicare Advantage plan who were in the top decile of
total per-patient spending in 2014 (n = 6154). See an accom-
panying article for a full description of the study population 19.
We extracted demographic and clinical data directly from the
health plan’s electronic data warehouse (EDW). Data were
obtained for the years 2013–2015. We grouped 377 unique
variables into several major categories: demographics, chronic
conditions, active diagnoses, procedures, laboratory, and phar-
macy. A full list and description of the study variables is
provided in Appendix 1.

Data Pre-processing

An important first step in analyzingdatasetswith largenumbers of
variables is to remove redundancies and correlations that limit the
ability to extract meaningful information. Since we aimed to
identify clinically distinct subgroups of patients, we sought to
remove variables that would not provide meaningful differentia-
tion among patients. First, we removed variables with extremely
lowvariance based on two criteria: (1) the ratio of the secondmost
common value to the most common value was ≥ 0.99 and (2) the
percentage of unique values (the number of unique values divided
by the number of observations) was ≤ 1%. A total of 214 (of 377)
variableswere removedbasedon these criteria.Next,we removed
non-binary variables that were highly correlated with others. We
definedhighcorrelationasaPearsoncorrelationcoefficientgreater
than 0.85. A total of 2 (of 163) variables were removed based on
this criterion.A complete list of the remaining 161 variables and a
descriptionof a standardmethodused for imputingmissingvalues
are provided inAppendices 2 and 3, respectively.

Dimension Reduction

When clustering datasets with large numbers of variables (i.e.,
dimensions), a common task is to reduce the number of
variables in the dataset while retaining as much of the original
information and structure as possible, a task known as dimen-
sion reduction. Dimension reduction not only reduces com-
putational burden but also mitigates the Bcurse of
dimensionality^—the fact that data become increasingly

sparse as the number of variables increases 20,21. The curse
of dimensionality makes it conceptually and computationally
difficult to converge on a reasonable clustering solution.
We utilized a validated, non-linear dimension reduction

algorithm called t-distributed stochastic neighbor embedding
(t-SNE) 22. The t-SNE method takes as input a high-
dimensional data set and maps each observation to a lower-
dimensional space. We ran a specific implementation of t-SNE
known as the Barnes-Hut algorithm and mapped to a two-
dimensional space in order to facilitate visualization 22,23. Full
details on t-SNE implementation are provided in Appendix 4.

Model Tuning

For each of the algorithms described below, we followed a
standardized approach for tuning model parameters. First, we
a priori restricted algorithm solutions to those that yielded
between five and ten clusters. This helped to ensure that the
resultant subgroups of patients would not be so small as to be
operationally insignificant. Next, we calculated the average
silhouette width for each solution. Average silhouette width,
which we calculated using Euclidean distance, reflects how
similar an observation is to those in its own cluster as com-
pared to observations in other clusters 24. Finally, we selected
the solution that maximized average silhouette width. Addi-
tional information on model tuning is provided in Appendix 5.

Connectivity-Based Clustering

For connectivity-based clustering, we used agglomerative hi-
erarchical clustering with Ward’s criterion 25. This algorithm
places each observation in its own cluster and then sequential-
ly merges the two most similar clusters until there is only one
large group. The decision of which clusters to merge at each
step is made by selecting the combination that minimizes the
squared Euclidean distance (e.g., the Bordinary^ straight-line
distance) between observations within each cluster. The result
is a hierarchy, or dendrogram, that classifies each observation
as a member of progressively larger clusters. Cutting the
hierarchy at different levels, therefore, generates a different
number of final clusters. We cut the hierarchy at six different
levels to produce solutions with five to ten clusters. We then
computed the average silhouette width for all observations and
selected the clustering with the highest value.

Centroid-Based Clustering

For centroid-based clustering, we used the k-medoids algo-
rithm 26. K-medoids requires pre-specification of the number
of clusters (k) within which to group observations. The algo-
rithm begins with a random selection of k observations to
serve as the center, or medoid, of each cluster. Observations
are then assigned to the cluster with the closest medoid, as
defined by a chosen distance metric (e.g., Euclidean). Next,
the algorithm re-selects the most central observation for each
cluster and conducts a re-assignment of observations until it
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converges to a final, stable assignment. We ran several itera-
tions of the k-medoids algorithm using Euclidean distance and
varying k between 5 and 10. We calculated the average sil-
houette width for each solution and selected the k that yielded
the solution with the highest average silhouette width.

Density-Based Clustering

For density-based clustering, we used the OPTICS algorithm 27,

28. OPTICS requires a specified minimum number of nearest
neighbors (MinPts) within a specified radius around the obser-
vation (ε). Points located in relatively low-density regions have
few Bneighbors^ and may be classified as outliers. We set
MinPts at 1% of the study population, or 62 patients (observa-
tions), to help ensure that clusters would not be so small as to be
operationally insignificant. Given a specified ε, OPTICS returns
any cluster solution corresponding to a radius less than ε. We
varied ε such that we extracted all of the clustering solutions that
produced between five and ten clusters. Then, we then calculated
the average silhouette width for each solution and selected the
solution with the highest average silhouette width.

Evaluating Algorithm Performance

First, we performed a visual examination of the cluster assign-
ments using the two-dimensional representation of the data set
generated by the t-SNE algorithm. We created colored hull
plots to visualize the clusters generated by each algorithm.

Second, we employed a set of ridge regression 29 models to
better understand the relationship between cluster assignment and
clinical variables. A separate set of models was implemented for
each cluster. The dependent variable in each model was a dichot-
omous indicator of assignment to a given cluster, and the original
161 variables were independent variables. The magnitudes of the
resulting model coefficient estimates represent the relative con-
tribution of each independent variable to discriminating patients
in one cluster from other high-cost patients. Details of model
fitting are provided in Appendix 6, including technical details
about how we averaged across models and how we chose
penalization terms to ensure comparability across clusters and
methods. Following model fitting, we computed the range of the
estimated coefficients (maximum value minus minimum value)
across clusters for each independent variable. This metric is a
measure of variable importance, where a large value suggests that
the variable is useful for distinguishing observations in one
cluster from the rest. In order to visualize these results, we plotted
the values of the variables with the largest 20 ranges for each of
the clustering methods.
Finally, we examined the extent to which cluster assign-

ments were associated with differences in utilization and
spending. As noted above, these variables were not used for
clustering. First, we calculated intra-cluster averages for the
following utilization and spending variables: inpatient hospital
(IP) admissions; total number of IP days; emergency depart-
ment (ED) visits; total spending; the percentage of spending

Table 1 Overview of Common Clustering Methods Used in This Study

Method Algorithm Computational approach Advantages Disadvantages

Connectivity-
based

Agglomerative
hierarchical clustering
with Ward’s criterion

Clusters are sequentially merged
according to a chosen distance
metric to form a hierarchy.

• Does not require a priori
specification of the
number of clusters.
• Works with a variety of
distance metrics and
linkage methods to merge
clusters.
• Standard methods exist
to be able to visualize the
entire cluster hierarchy.

• High computational cost with
high-dimensional data such that
obtaining a clustering solution may
be infeasible.
• Requires specifying what level to
split the hierarchy to extract a final
clustering.
• Does not allow for outlier
observations (i.e., forces every
observation into a cluster)

Centroid-
based

K-medoids Assigns subjects to the nearest
medoid, defined as the most central
observation within a cluster.

• Simple, fast.
• Works with a variety of
distance metrics.
• More robust to outliers
than other centroid-based
approaches, such as k-
-means.

• More memory intensive than other
centroid-based approaches, such as
k-means.
• Must specify the number of
clusters a priori or evaluate a large
number of different clustering
solutions to choose the number of
clusters.
• Does not allow for outlier
observations (i.e., forces every
observation into a cluster)

Density-based Ordering points to
identify the clustering
structure (OPTICS)

Orders observations based on
information about their nearest
neighbors and defines clusters as
areas with a high density of data
points.

• Robust to outliers, with
the ability to label them as
noise points.
• Can return clusters of
arbitrary shapes and
unequal sizes.
• Does not require a priori
specification of the
number of clusters.

• Requires specification of multiple
tuning parameters that are not
intuitive.
• Produces noise points (can also be
considered an advantage).
• May fail to converge in some
cases if there is large variance in the
density of clusters.
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attributable to inpatient care, medications, and other sources;
and the percentage of persistently high-cost patients (those
who remained in the top decile of spending the subsequent
year). Next, we calculated inter-cluster variance in these utili-
zation and spending averages for each clustering method.

Implementation Details

Data preparation was done in SAS version 9.4 (SAS
Institute, Cary, NC). R version 3.2.5 was used for all
other analyses. The Rtsne package version 0.13 was
used for dimension reduction and the dbscan package
version 1.1–1 was used for OPTICS density-based clus-
tering analysis. The cluster package version 2.0.7–1 was
used for agglomerative hierarchical clustering with
Ward’s criterion and k-medoids clustering.

RESULTS

Figure 1 summarizes the results of each clustering algorithm.
Connectivity-based clustering identified eight subgroups of
high-cost patients, ranging in size from 458 to 1170 patients.
Centroid-based clustering identified five subgroups, ranging
in size from 1003 to 1427 patients. Density-based clustering
identified ten subgroups, ranging in size from 56 to 3686
patients, with 382 not assigned to any subgroup.
Figure 1 also graphically depicts the clustering results in the

two-dimensional projection of our dataset generated by the t-
SNE dimension reduction algorithm. Each point is a patient in
the study population, and the distance between two points
approximates their similarity in high-dimensional space. Col-
ored hull plots are used to depict the subgroups of patients
identified by each clustering method. Connectivity- and
centroid-based clustering identified subgroups of roughly sim-
ilar sizes and shapes. Density-based clustering, on the other
hand, yielded subgroups of markedly varied sizes and shapes.
Figure 1 also highlights the difference between the three
clustering methods with respect to the treatment of outliers.
The density-based clustering algorithm permitted outliers,
whereas the connectivity- and centroid-based algorithms did
not. By forcing all points into clusters, most of the subgroups
identified by the connectivity- and centroid-based algorithms
appear more heterogeneous.
Results from the ridge regression analysis are summarized

in Figure 2, which depicts the estimated coefficient ranges for
the 20 variables with the ranges among each clustering meth-
od. This range roughly corresponds to the extent to which the
variable contributes to differentiation among subgroups.
Centroid-based clustering had the largest range for the top
ranked variable. Density-based clustering resulted in a larger
range for the next 11 highest ranked variables, after which the
three methods converged. The estimated coefficient ranges for
each variable, as well as a list of the variables depicted in
Figure 2, are provided in Appendix 8.

Variance of utilization and spending measures across sub-
groups is summarized in Table 2. Higher variance corresponds
to more differentiation across subgroups. Density-based clus-
tering resulted in subgroups with the greatest variance across
all utilization and spending variables, with the exception of
ED visits. The difference was most pronounced among IP
admissions, IP days, total spending, and the percent of spend-
ing attributable to medications. The mean values from which
variances were calculated are provided in Appendix 9.

DISCUSSION

We evaluated the performance of three different clustering
methods for identifying subgroups of high-cost patients using
a multi-dimensional clinical and administrative data set. Spe-
cifically, we compared connectivity-based clustering using
agglomerative hierarchical clustering, centroid-based cluster-
ing with the k-medoids algorithm, and density-based cluster-
ing with the OPTICS algorithm.
We performed several analyses to assess the performance of

the three clustering algorithms. Our intention was to evaluate
the capability of each algorithm to identify subgroups of pa-
tients that were (1) clinically distinct and (2) associated with
meaningful differences in relevant utilization metrics. To an-
swer the first question, we fit a set of post hoc ridge regression
models to the subgroups in order to learn about how patients in
one subgroup were different from the rest of the population. We
then compared the estimated model coefficients for each vari-
able across subgroups. This allowed us to determine the extent
to which specific variables (i.e., clinical characteristics) created
differentiation across subgroups. In general, we found that the
estimated coefficient ranges for the density-based algorithm
were greater than those for the connectivity- and centroid-
based algorithms, suggesting that the subgroups identified by
the density-based algorithm were the most clinically distinct.
To answer the second question, we examined the variance

of selected utilization and spending measures across sub-
groups. The level of variance across subgroups identified by
the density-based clustering algorithm exceeded that of the
connectivity- and centroid-based algorithms for nearly all
measures. High variance across utilization and spending mea-
sures has important operational implications. For example, a
subgroup with high rates of inpatient admissions will benefit
from different care management interventions than those nec-
essary for a subgroup with high rates of spending attributable
to medications.
Since utilization and spending variables were not used

for clustering, this analysis also functioned as a test of
external validity. For all three clustering methods, we
found significant variance in utilization and spending
variables across subgroups. This suggests that clustering
patients on clinical variables can effectively identify
unique subgroups of patients with distinct patterns of
utilization and spending.

214 Yan et al.: Machine Learning for High-Cost Patient Segmentation JGIM



Taken together, our results suggest that density-based clus-
tering with the OPTICS algorithm performs best for identify-
ing clinically distinct and operationally significant subgroups
of high-cost patients in our data, and may be a promising and
feasible approach for subgroup analysis in health plan or
health system data. An accompanying article provides an in-
depth description of the clinical composition, utilization pat-
terns, and spending trajectories of the subgroups identified by
the OPTICS algorithm 19.

Differences in the algorithmic approach of density-based
clustering with OPTICS may explain why it outperformed
connectivity- and centroid-based algorithms in this study.
First, OPTICS allows for Bnoise^ points (i.e., observations
not assigned to any cluster), whereas connectivity- and
centroid-based clustering algorithms force all observations
into clusters. By forcing outlier observations into subgroups,
the resultant subgroups become more heterogeneous. Since
outliers are frequent in medical data, this may limit clinical

utility. We found that including outliers (as defined by OP-
TICS) led to subgroups that were less clinically distinct and,
therefore, less operationally significant. Second, the OPTICS
algorithm is able to identify subgroups of uneven sizes, as
demonstrated in Figure 1. In care management settings, pro-
grams are often designed for various patient groups, and the
size of sub-populations to which the programs apply may vary
drastically. Lastly, OPTICS does not require one to specify the
number of clusters a priori, an attractive property in clinical
settings where the underlying data structure may not be well
understood. However, the process of tuning models to maxi-
mize discrimination and select the optimal number of clusters
may mitigate this advantage.
Using unsupervised machine learning algorithms to identify

subgroups of high-cost patients is a departure from existing
efforts to segment high-cost populations that rely predomi-
nately on expert-opinion derived taxonomies 1,3,5,6,30. We do
not expect, nor advocate, that clustering and other machine

Figure 1 Visual representation of patient subgroups, by clustering method. The figures represent two-dimensional projection of our dataset
generated by the t-SNE dimension reduction algorithm (t-SNE projection). Each point is a patient in the study population, and the distance
between two points approximates their similarity in high-dimensional space. The top left plot represents the t-SNE projection in insolation. The
remaining plots overlay colored convex cluster outlines to the t-SNE projection for each of the three clustering methods. The number of patients

in each cluster is provided next to the plots.
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learning methods replace existing, expert-opinion derived tax-
onomies. Rather, these methods could serve as an important
complement through two major channels. First, for payers and
large delivery organizations, there likely exists sufficient in-
house technical expertise to use clustering to derive high-cost
patient subgroups directly from internal data sets. This ap-
proach, which utilizes free, publicly available algorithms and
software packages, contrasts with the recent proliferation of
proprietary, Bblack box^ commercial risk-prediction and pop-
ulation segmentation algorithms. Second, researchers and pol-
icy analysts may be able to use clustering to identify common
subgroups across populations that could be added to existing
taxonomies.
This study has several limitations. First, by pre-specifying a

small number of subgroups (five to ten), wemay have failed to
identify a more quantitatively optimal segmentation of the data

set that included several small, homogeneous subgroups.
However, we selected this range based on prior literature 1,3,5

and to avoid identifying subgroups so small that they would be
operationally insignificant. Second, our comparison of differ-
ent clustering methods used illustrative algorithms from each
class of methods and was limited to three classes of methods.
This should not be construed to be a comprehensive, or
definitive, assessment of clustering approaches. We chose to
focus on three of the most common clustering methods that
can be implemented with standard packages in open source
software. Finally, we limited our study to a single approach to
dimensional reduction, t-SNE. Although t-SNE has been
shown to produce well-separated clusters in a variety of bio-
medical settings 31–34, it is a stochastic method that relies on a
number of user-specified inputs. Future work should include
comparisons of t-SNE to other projection techniques, such as
principal component analysis (PCA).

Corresponding Author: Amol S. Navathe, MD, PhD; Department of
Medical Ethics and Health PolicyUniversity of Pennsylvania Perelman
School of Medicine, 1108 Blockley Hall, Philadelphia, PA 19104, USA
(e-mail: amol@wharton.upenn.edu).

Funding Information This study was supported by a grant from the
Anthem Public Policy Institute and, in part, under a grant with the
Pennsylvania Department of Health.

Compliance with Ethical Standards:

This study was approved by the Institutional Review Board of the
University of Pennsylvania.

Conflict of Interest: Dr. Navathe reports that he has received grant
support fromHawaii Medical Service Association, Anthem Public Policy
Institute, and Oscar Health; personal fees from Navvis and Co,
Navigant Inc., Lynx Medical, Indegene Inc., Agathos, Inc, and Suther-
land Global Services; personal fees and equity from NavaHealth;
serves on the board without compensation for Integrated Services,
Inc., speaking fees from the Cleveland Clinic, and honoraria from
Elsevier Press. Dr. Linn reports that she has received grant support
from Hawaii Medical Service Association. Dr. Jain reports employment
by Anthem, Inc.; stock ownership in Anthem, Inc., and honoraria from
Elsevier Press. Ms. Kowalski reports employment by Anthem, Inc. and
stock ownership in Anthem, Inc. and Amazon. Dr. Powers reports
employment by Anthem, Inc. All other authors declare no conflicts of
interest.

Disclaimer: The Pennsylvania Department of Health specifically dis-
claims responsibility for any analyses, interpretations, or conclusions.

REFERENCES
1. National Academy of Medicine. Effective Care for High-Need Patients.

Washington, DC: National Academy of Medicine; 2017.
2. Hong CS, Siegel AL, Ferris TG. Caring for High-Need, High-Cost

Patients: What Makes for a Successful Care Management Program?
2014; https://www.commonwealthfund.org/sites/default/files/docu-
ments/___media_files_publications_issue_brief_2014_aug_1764_hong_
caring_for_high_need_high_cost_patients_ccm_ib.pdf. Accessed October
19, 2018.

Figure 2 Summary of the results of the ridge regression analysis. The
ridge regression estimated coefficient range represents the range of
estimated coefficients (maximum value minus minimum value) for a
given variable, across all subgroups. These ranges correspond to the

extent to which a variable drives differentiation among the
subgroups of patients identified by that method—a large value

suggests that the variable is useful for distinguishing observations in
one subgroup from the rest. For each clustering method, the 20

variables with the largest coefficient ranges are included. A list of the
variables depicted along the x-axis for each method is provided in

Appendix 8.

Table 2 Variance of Utilization and Spending Variables Across
Subgroups, by Clustering Method

Connectivity-
based clustering

Centroid-
based
clustering

Density-
based
clustering

Inpatient
admissions

0.55 0.51 0.77

Inpatient days 5.23 5.17 7.17
ED visits 0.86 0.88 0.78
Total spending,
$

11,887 12,441 14,621

Inpatient, % 12% 12% 18%
Medication, % 5% 5% 22%
Other, % 14% 16% 23%
Persistently
high-cost, %

20% 23% 25%

Persistently high-cost was defined as remaining in the highest decile of
spending in the subsequent year. The mean values from which variances
were calculated are provided in Appendix 9
ED emergency department

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

216 Yan et al.: Machine Learning for High-Cost Patient Segmentation JGIM

http://dx.doi.org/https://www.commonwealthfund.org/sites/default/files/documents/___media_files_publications_issue_brief_2014_aug_1764_hong_caring_for_high_need_high_cost_patients_ccm_ib.pdf
http://dx.doi.org/https://www.commonwealthfund.org/sites/default/files/documents/___media_files_publications_issue_brief_2014_aug_1764_hong_caring_for_high_need_high_cost_patients_ccm_ib.pdf
http://dx.doi.org/https://www.commonwealthfund.org/sites/default/files/documents/___media_files_publications_issue_brief_2014_aug_1764_hong_caring_for_high_need_high_cost_patients_ccm_ib.pdf


3. Joynt KE, Figueroa JF, Beaulieu N, Wild RC, Orav EJ, Jha AK.
Segmenting high-cost Medicare patients into potentially actionable
cohorts. Healthc (Amst). 2017;5(1–2):62–67.

4. Blumenthal D, Abrams MK. Tailoring Complex Care Management for
High-Need, High-Cost Patients. JAMA 2016;316(16):1657–1658.

5. Clough JD, Riley GF, Cohen M, et al. Patterns of care for clinically
distinct segments of high cost Medicare beneficiaries. Healthc (Amst).
2016;4(3):160–165.

6. Lynn J, Straube BM, Bell KM, Jencks SF,Kambic RT. Using population
segmentation to provide better health care for all: the BBridges to Health^
model. Milbank Q. 2007;85(2):185–208; discussion 209-112.

7. BerkhinP. A Survey of Clustering Data Mining Techniques. In: Kogan J,
Nicholas C, Teboulle M, eds. Grouping Multidimensional Data: Recent
Advances in Clustering. Berlin, Heidelberg: Springer Berlin Heidelberg;
2006:25–71.

8. Gan G, Ma C, Wu J. Data Clustering: Theory, Algorithms, and Applica-
tions. Society for Industrial and Applied Mathematics; 2007.

9. Moore WC, Meyers DA, Wenzel SE, et al. Identification of asthma
phenotypes using cluster analysis in the Severe Asthma Research
Program. Am J Respir Crit Care Med. 2010;181(4):315–323.

10. Haldar P, Pavord ID, Shaw DE, et al. Cluster analysis and clinical
asthma phenotypes. Am J Respir Crit Care Med. 2008;178(3):218–224.

11. Weatherall M, Shirtcliffe P, Travers J, Beasley R. Use of cluster analysis to
define COPD phenotypes. Eur Respir J. 2010;36(3):472–474.

12. Chen CZ, Wang LY, Ou CY, Lee CH, Lin CC, Hsiue TR. Using cluster
analysis to identify phenotypes and validation of mortality in men with
COPD. Lung. 2014;192(6):889–896.

13. Ahmad T, Pencina MJ, Schulte PJ, et al. Clinical implications of chronic
heart failure phenotypes defined by cluster analysis. J Am Coll Cardiol
2014;64(17):1765–1774.

14. Ahmad T, Desai N, Wilson F, et al. Clinical Implications of Cluster
Analysis-Based Classification of Acute Decompensated Heart Failure and
Correlation with Bedside Hemodynamic Profiles. PloS one.
2016;11(2):e0145881.

15. Erro R, Vitale C, Amboni M, et al. The heterogeneity of early Parkinson’s
disease: a cluster analysis on newly diagnosed untreated patients. PloS
one. 2013;8(8):e70244.

16. Hamid JS, Meaney C, Crowcroft NS, Granerod J, Beyene J, Group
UKEoES. Cluster analysis for identifying sub-groups and selecting
potential discriminatory variables in human encephalitis. BMC Infect
Dis. 2010;10:364.

17. Newcomer SR, Steiner JF, Bayliss EA. Identifying subgroups of complex
patients with cluster analysis. Am J Manag Care. 2011;17(8):e324–332.

18. Lee NS, Whitman N, Vakharia N, Ph DG, Rothberg MB. High-Cost
Patients: Hot-Spotters Don’t Explain the Half of It. J Gen Intern Med.
2017;32(1):28–34.

19. Powers BW, Yan J, Zhu J, et al. Subgroups of High-Cost Medicare
Advantage Patients: An Observational Study. J Gen Intern Med 2018.

20. Bellman R. Adaptive control processes: a guided tour. Princeton, N.J.,:
Princeton University Press; 1961.

21. Donoho DL. High-dimensional data analysis: The curses and blessings of
dimensionality. AMS Math Challenges Lecture. 2000:1–32.

22. Van Der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn
Res 2008;9(Nov):2579–2605.

23. Van Der Maaten L. Accelerating t-SNE using tree-based algorithms. J
Mach Learn Res 2014;15(1):3221–3245.

24. Rousseeuw PJ. Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis. J Comput Appl Math 1987;20:53–65.

25. Ward JH. Hierarchical Grouping to Optimize an Objective Function. J Am
Stat Assoc 1963;58(301):236–244.

26. Kaufman L, Rousseeuw PJ. Clustering by means of medoids. Amsterdam:
North-Holland/Elsevier; 1987.

27. EsterM,KriegelH-P, Sander J,XuX.Adensity-basedalgorithm for discovering
clusters a density-based algorithm for discovering clusters in large spatial
databases with noise. Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining; 1996; Portland, Oregon.

28. Ankerst M, Breunig MM, Kriegel H-P, Sander J. OPTICS: ordering points
to identify the clustering structure. SIGMOD Rec. 1999;28(2):49–60.

29. Hoerl AE, Kennard RW. Ridge Regression: Biased Estimation for
Nonorthogonal Problems. Technometrics. 1970;12(1):55–67.

30. Figueroa JF, Jha AK. Approach for Achieving Effective Care for High-Need
Patients. JAMA Intern Med. 2018;178(6):845–846.

31. Grun D, Lyubimova A, Kester L, et al. Single-cell messenger RNA
sequenc ing revea ls rare intes t ina l ce l l types . Nature .
2015;525(7568):251–255.

32. Keren-Shaul H, Spinrad A, Weiner A, et al. A Unique Microglia Type
Associated with Restricting Development of Alzheimer’s Disease. Cell.
2017;169(7):1276–1290 e1217.

33. Becher B, Schlitzer A, Chen J, et al. High-dimensional analysis of the
murine myeloid cell system. Nat Immunol. 2014;15(12):1181–1189.

34. Abdelmoula WM, Balluff B, Englert S, et al. Data-driven identification of
prognostic tumor subpopulations using spatially mapped t-SNE of mass
spectrometry imaging data. Proc Nat l Acad Sci U S A.
2016;113(43):12244–12249.

217Yan et al.: Machine Learning for High-Cost Patient SegmentationJGIM


	Applying Machine Learning Algorithms to Segment High-Cost Patient Populations
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	INTRODUCTION
	METHODS
	Study Population and Data
	Data Pre-processing
	Dimension Reduction
	Model Tuning
	Connectivity-Based Clustering
	Centroid-Based Clustering
	Density-Based Clustering
	Evaluating Algorithm Performance
	Implementation Details

	RESULTS
	DISCUSSION

	References


