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A novel PHEX mutation associated with
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Abstract

X-linked hypophosphatemic rickets (XLH) is the most common form of hereditary rickets. Here, we present a case of
XLH associated with a novel mutation in a phosphate-regulating gene with homologies to endopeptidases on the X
chromosome (PHEX). PCR-direct sequencing revealed a novel PHEX mutation in exon 22, NM_000444.6(PHEX):c.2202del
[p.Asn736llefs*4], near the 3/-UTR region encoding the COOH-terminal extracellular domain. In silico analysis indicated
that a single mutation in N736 may have caused a significant change in higher-order protein structure and function.

J

X-linked hypophosphatemic rickets (XLH), the most
common form of hereditary rickets, is associated with
impaired renal tubular resorption that causes chronic
hypophosphatemic rickets. A 2010 national epidemiolo-
gical survey in Japan reported an estimated incidence rate
of XLH of approximately 1 in 20,000". Hypophosphatemic
rickets includes various diseases, such as vitamin D
metabolite dysfunction, renal tubular abnormality, fibro-
blast growth factor 23 (FGF23)-related hypopho-
sphatemia, and phosphorus deficiency. FGF23, which
comprises 251 amino acids, decreases the expression of
type 2a and type 2c sodium-phosphorus cotransporters,
suppresses proximal renal tubular phosphorus reabsorp-
tion, and concurrently alters the expression of vitamin D
metabolizing enzyme, resulting in a decrease in the con-
centration of 25-(OH),2. FGF23-related hypopho-
sphatemia is caused by genetic mutations in phosphate-
regulating gene with homologies to endopeptidases on the
X chromosome (PHEX)?, FGF23, dentin matrix protein 1
(DMPI), ectonucleotide pyrophosphatase/phosphodies-
terase (ENPPI), and family with sequence similarity 20,
member C (FAM20C). PHEX comprises 22 exons,
encodes a type 2 transmembrane protein with a single-
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pass structure and is primarily expressed in bones but not
the kidneys®. Since a PHEX gene mutation was first
identified in 1995, at least 364 mutations, including
nonsense mutations, have been registered in the Human
Gene Mutation Database (http://www.hgmd.cf.ac.uk/ac/
index.php). However, although PHEX mutations are
thought to increase the production of FGF23, which
promotes the phosphorus diuretic effect, resulting in
hypophosphatemia, how PHEX gene mutations increase
FGF23 and which domain is responsible for the function
of PHEX remain unknown’. Therefore, understanding the
relationship between mutation loci in PHEX and hetero-
geneous clinical features of XLH is necessary to better
understand the function of PHEX in regulating FGF23
and phosphorus metabolism.

A 40-year-old Japanese woman was referred to our
hospital for a detailed examination of her rickets. She had
a short stature and bow legs but lacked a family history of
congenital diseases and short stature. She had been born
at full term via vaginal delivery. At 1 year of age, she
experienced gait disturbance and was diagnosed with
vitamin D-resistant rickets. Despite treatment with 1,25-
(OH),D3, her bone lesions worsened. At 25 years of age,
her height was 131 cm. X-ray examinations revealed genu
varum and Looser’s zones in the tibias. She underwent
surgeries for bone correction and hip adductor muscle
dissection. When the patient was 40 years of age, we
performed laboratory tests, X-ray examinations of the
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Table 1 Laboratory data of the patient on admission
Patient Reference range

P (mg/dL) 18 25-45

Ca (mg/dL) 9 8.0-105

ALP (IU/L) 255 115-359

25-(OH)D5 (ng/mL) 12 7-41

1.25-(OH),D; (pg/mL) 472 20-60

Intact PTH (pg/mL) 624 10-65

BAP (g/L) 236 29-226

FGF23 (pg/mL) 42 <30

TmP/GFR (mg/mL) 1.88 23-43

TRP (%) 92 81-90

Estimated GFR (ml/min per 1.73 m?) 161.89 >90

Urine Ca (g/day) 0.116 0.1-03

lower limbs, computed tomography (CT) of the cervical
spine, and measurements of bone mineral density (BMD).

Table 1 presents laboratory test data for the patient on
admission. She had a phosphate (Pi) level of 1.8 (normal
range, 2.5-4.5) mg/dL, a calcium (Ca) level of 9.0 (normal
range, 8.0-10.5) mg/dL, an alkaline phosphatase (ALP)
level of 255 (normal range, 115-359) IU/L, a bone-type
ALP level of 82.4%, an intact parathyroid hormone (PTH)
level of 62.4 (normal range, 10.3-65.9) pg/mL, a 25-
hydroxyvitamin D3 [25-(OH)Dj3] level of 12.0 (normal
range, 7-41) ng/mlL, a 1,25-(OH),D; level of 47.2 (normal
range, 20—60) pg/mL, an FGF23 level of 42 (normal range,
<30) pg/mL, a tubular maximum phosphate reabsorption
per glomerular filtration rate of 1.88 (normal range,
2.3-4.3) mg/dL, and an urine Ca level of 0.116 (normal
range, 0.1-0.3) g/day.

X-ray examinations revealed genu varum and Looser’s
zones in the tibias, and cervical spine CT revealed calci-
fication of the posterior longitudinal ligament of the spine
with no evidence of tumors. Her BMD was 1.694 g/cm? at
the lumbar spine (L2-14).

Based on the findings of bone changes, hypopho-
sphatemia, and elevated FGF23 levels, FGF23-related
hypophosphatemia rickets was suspected; consequently,
a genetic analysis was performed. Genomic DNA was
extracted from whole blood samples using a genomic
DNA extraction kit (Qiagen, Hilden, Germany). PCR-
direct sequencing revealed a PHEX mutation,
NM_000444.6(PHEX):c.2202del  [p.Asn736llefs*4], in
exon 22 (Fig. 1). This mutation was not found in various
databases, including the Genome Aggregation Database
(http://gnomad.broadinstitute.org), the Exome Aggrega-
tion Consortium database (http://exac.broadinstitute.org),
and the Human Gene Mutation Database, suggesting that
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Fig. 1 Genomic DNA sequence of the patient’s PHEX gene, indicating
a novel mutation, NM_000444.6(PHEX):c.2202del [p.Asn736llefs*4], in
exon 22

|\

this mutation is novel rather than an SNP. Therefore, the
patient’s definitive diagnosis was XLH caused by a novel
PHEX mutation. The mutation is believed to be “de novo”,
as assessed from a clinical perspective. She was treated
with activated vitamin D metabolites and phosphate salts.

To our knowledge, we have described the first reported
case of XLH caused by NM_000444.6(PHEX):c.2202del
[p.-Asn736llefs*4] in exon 22. This single base deletion
induces a premature stop codon at position 739. Although
this PHEX gene mutation is located near the 3’-UTR
region encoding the COOH-terminal extracellular
domain, which contains no putative zinc binding sites or
active sites, we believe that this mutation causes XLH
based on the following reasons. First, the deleted region of
the PHEX gene is highly conserved among wide ranges of
mammalian species, with homology of >88% for the 17 C-
terminal amino acids in humans, mice, rats, rabbits, cats,
dogs, horses, pigs, and bats. Furthermore, p.C733, p.C746,
p.R747° and p.N736 (our case), which are mutated in
patients with XLH, are completely conserved across spe-
cies. These results suggest that this region is critical for
the function of the protein. Second, we predicted the
impact of this novel mutation on protein structure by
conducting in silico analyses using software tools,
including PROVEAN (http://provean.jcvi.org/index.php)
and PANTHER (http://pantherdb.org/about.jsp); these in
silico prediction engines produced scores of —4.43 and
—3.05, respectively, both of which suggested deleteriously
damaged PHEX function. Third, in two other cases, XLH
was reported to be associated with missense mutations
located in the COOH-terminal region of the PHEX gene
(C746W and R747X)°. Fourth, it is conceivable that even a
single mutation causing a premature stop codon elim-
inates mRNA transcripts via the mechanism known as
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nonsense-mediated mRNA decay. Finally, our patient did
not have any mutations in the genes encoding DMP1 and
ENPP1, which are also involved in FGF23-related hypo-
phosphatemia. In any event, because the protein encoded
by the mutated PHEX is unknown, the causal phenotypic
role of this mutation in rickets requires future study.

A limitation of the present report is lack of investigation
of the mutant PHEX protein observed in the patient. As
has been previously reported, it is necessary to investigate
the trafficking, endopeptidase activity, and conformation
of this protein’.

In summary, a single N736 mutation in the COOH-
terminal extracellular domain of PHEX may result in a
significant change in higher-order protein structure and
function and may cause XLH by increasing the produc-
tion of FGF23. We believe that the present report con-
tributes to understanding the relationship between
mutation loci in the PHEX gene and heterogeneous
clinical features of XLH.
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